Computing
Logarithmic
Corrections for
Extremal
Black Holes

Shailesh Lal

Computing Logarithmic Corrections for
Extremal Black Holes

Shailesh Lal

Seoul National University

8 December 2014
Higher—Spin Theory and Holography,
Lebedev Physical Institute, Moscow

R. K. Gupta, S.L., S. Thakur 1402.2441, 1311.6286.
& A. Chowdhury, M. Shyani 1404.6363.



Computing
Logarithmic
Corrections for
Extremal
Black Holes

Shailesh Lal

Introduction

Black Holes in a quantum theory of gravitation are
expected to have entropy.

A
SBH—m

This formula is obtained in two approximations:

e Low energy,
e Semi-classical.

A complete theory of quantum gravity will encode
corrections to this formula.

We will focus on a quantum correction of the form

A
0S ~In ——
s n4GN
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The Area Law is a powerful constraint on quantum gravity.

A universal result which any microscopic interpretation
must reproduce.

Question: Can we sharpen this constraint?

In particular, compute quantum corrections to Sgy from
low—energy physics?
We will do this for extremal Black Holes.

e The quantum answer is explicitly known from string theory.

e More generally, compute quantum entropy by AdS/CFT.
o Make new predictions!
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Quantum Entropy Function

A new proposal for the quantum entropy of extremal black
holes: Quantum Entropy Function. [Sen]

Exploits the fact that NHG of an extremal black hole is
always AdS, ® M.

Consider the string theory path integral over all
configurations that asymptote to the black hole NHG.

This path integral is divergent because the radial
coordinate 1 of AdS, stretches out to infinity.

string _ _C-L+O(L™?! ~
Z s, =€ (57) Zgoire, L~ e

Then the proposal is that

‘ d(Q, P) = Zrinite

Zfinite 1S known as the Quantum Entropy Function (QEF).
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afesh =2 e We evaluate Zgnite in a saddle—point approximation.

e One saddle—point of the QEF is the near—horizon geometry
of the black hole itself.

e Evaluating Zjinite at this saddle—point produces

A
SgH =1Ind (Q, P) = In Zfnite = 2

e Which is the Bekenstein—Hawking formula.

e How do we reproduce the Log term?

A

~ |
0S n4GN

e We do a loop expansion about this saddle—point.
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Introduction

Naively, this sounds prohibitive! Infinite number of fields,
what order in loop expansion?
It turns out that the log terms are simple to reproduce!

The only contribution to the log term comes from
e massless fields of supergravity,
e only one—loop fluctuations,
e Two derivative sector of the action is sufficient.
The log term is therefore a quantum counterpart of the
leading Bekenstein—Hawking answer!
o It is determined purely from low—energy physics of the
black hole
e It places a strong constraint on any candidate quantum
description of black holes.

Any candidate quantum gravity theory must produce the
Bekenstein—Hawking answer, and the log correction.
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It turns out that the log term computed in this way matches

Introduction

perfectly with the string theory answer.

Theory | Macroscopic | Microscopic | Match
N =4 0 0 V
N =38 —4 —4 V
N =2 (2—%%) I V(M

x: Euler character of the CY3 on which 10-d ST is compactified.




Computing
Logarithmic
Corrections for
Extremal
Black Holes

Shailesh Lal

A Puzzle

The string theory answer for d(Q, P) takes the form
A A
d(Q,P)~es +> e
N

Question: What is the origin of these terms in the QEF?
Proposal: sum over all spacetimes ~ black hole NHG.
7 orbifolds are natural candidates.

e They are admissible saddle-points of the QEF.
e At the saddle-point Zgpite = ein
e explain exponentially suppressed corrections to d (Q, P)?

e Test: match the log term!
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New Saddle Points

Consider the AdS, metric in coordinates ¢ = cosh 7.

d52:a2< 2d01+(a2—1) d92>, 6 € [0,2m)
o2 —

Suppose we identify 6 — 6 + %
Also, rescale coordinates on the quotient space, AdSy/Zy.

o=

. 6= No,

=[q

Then the metric becomes

ds? 1\ ) ~ o~
dszzaz<N201+<52—N>d92>,6:9+2w.
g

N

Hence, this is a new spacetime which is asymptotically AdS.
= should be included in the QEF.
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Gaussian Integrals

Consider a Gaussian Integral over a matrix Mj; = k;dj;.

e This is true only if k; > 0V /.
e What if say x, = 07 i.e. M has a zero mode?

In that case
n—1 s . L
Z:/ de,-e‘""xf /dx,7 = (det’/\/l)_Z/dxn.
i=1

e We get a determinant over non-zero modes,

e The zero mode contribution has to be analyzed separately.
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sl One-loop corrections about a saddle—point are contained in the
SR determinant
1
Z, ¢y =det 2 (D).

The Heat Further: define the (integrated) heat kernel
Kernel and
Log Terms —

¢ K (t) = Z dme .

m

In this case

= dt
IndetD:/ 9 )
0 t

Importantly, for us

1
InZ=ZK(O:t)InAt .

Only the t° term in K(t) contributes to the log term in the
QEF saddle—points.
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e Couple fields to background metric. Then

c
D~A+—
a
i L e Turn on background EM fields. These shift eigenvalues,
Conical not degeneracies.

Spaces

e e.g. Modes on S? are labelled by a quantum number ¢

Qty Flux OFF Flux ON

degeneracy 2041 20+1

Eigenvalue | £(0+1),0(¢+1) | £(¢—1),((+1)(£+2)

e Compute degeneracies, eigenvalues known.
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Strategy
e Final computation on AdS; ® S? = non-compact.

e Note the analytic continuation from S?

The Heat a (dX +sin Xda ) = a (dn +Slnh nda )’
Comeal "
Spaces

when a — ia, x — in.

e Hence compute on S2 ® S? and analytically continue.

Also have to impose the Zy orbifold.

Consider the toy example of the scalar on S2/ZN here.
ds? = a2 (dy? + sin® 1hd¢?)

In: ¢— o+ %r

Two fixed points: x = 0, .

Note: In contrast, AdS; has one fixed point, n = 0.
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The Heat
Kernel on
Conical
Spaces

Scalar on S?/Zy

The spectrum of the scalar Laplacian on S2:

e Eigenvalues: E; =/ (£ +1)

e Eigenfunctions: Y; , (¢, ¢) = Pg’"e"’m, —£<m</.
The heat kernel is

00 4

K (t) = Z Z 1. S 0(¢+1)

£=0 m=—/(

The Zy orbifold:

e No change in eigenvalues

e Modes restrictedto m=Np, peZ, —+{L<m</{
The degeneracy changes:

l
d= > Omnp

m=—/
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N—1
1 i27rms
6m,Np = N e N
s=0
The Heat Then the heat kernel on SZ/ZN is
Kernel on
Ccemical0
Spaces 00 ¢ N—
j : : : 271'5 _ .t
- N E - e 32£(f+1)
=0 m=—¢ s=0
Doing the sum over m
-1 20+1

1 & sin (2t 1)ms +) — 2 0(e11)

N MEE— — PvALNS

N Z Z sin 22

=0 s=
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241, 1 ~ (7s

b3 ()
N TN Xy

Pt X¢ is the Weyl character of SU(2).
Conical
Spaces

The heat kernel on S?/Zy is given by

1 N? —1
Ksz /7, (1) = NKS2 + 6N +0O(t).

Log Term:

1 N2-1
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1 :
Kszz, (1) = NKSZ + conical terms.

To analytically continue to AdS,,

The Heat

Kernel on ° KS2 — KAdSQr

Conical . . .

Spaces e a— iain conical terms

e multiply conical terms by half.

This because S has two fixed points, AdS, has one.
We then find

1 1N2—1
Kads,/zy (t) = NKAdSQ 5 6N + 0O (t) |

This is how we compute on the NHG as well.
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e In principle, the zero mode integral can also contribute.

e If ¢ has ng zero modes, then

B
ZZero — AT 2,

e Suppose V; is the set of orthonormal zero modes of D.
Zero Mode
Contribution

9= (V;|v;) = /\u;*w,-
ng =y (Vi) ZAdSQ

i

To compute on the Zy orbifold, project onto orbifold
invariant modes.
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Zero modes of Hodge Operator on vector field on AdS;
= 0,0 & — (S0 ) e
g R ~ \1+coshy

Then )
Zero Mode no = Z<A|A> = ﬁeno_l + O (770) :

Contribution m

The number of zero modes is the O (1) term

n():*].
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Theory | Macroscopic | Microscopic | Match
N =4 0 0 V
N =38 —4 —4 V
— N x
N=2| (2-5%) 77 77

Log Terms for
N =2,4,8
Supergravity

The N = 2 answer is interesting and puzzling.

o InZz, ~ &+ NlInA. If N~ /Ay then the 1-loop
correction is bigger than the classical answer!

e Also, the N dependence does not appear for ' = 4 and
N = 8. Reproduce from the microscopic side?
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The Twisted QEF

The QEF computes the total number of black hole microstates.
Can we extract more refined information? In particular:

e |f the theory admits discrete symmetries, compute indices
weighted with these symmetries?

e Can we define quantities that behave like indices in
theories with less supersymmetry?
Twisted Indices in String Theory do this job.
= if the theory has a discrete symmetry g = Zy
Compute the Black Hole entropy index, with an insertion of g.

Tr |g (~1)" (2h)”"]

= Twisted Index
Question: QEF Interpretation?
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Proposal: QEF, but Zy twisted boundary conditions.
The Black Hole NHG is not an admissible saddle—point.
The (NHG) /Zy is an admissible saddle—point. Indeed

A
thisted ~ e,

which is in accordance with microscopic results.

e Can we match the log term? = K(t) with twisted b.c.
Yes! For g preserving N' = 4 supersymmetry,

Theory | Macroscopic | Microscopic | Match

The Twisted
QEF

N =4 0 0 v
N =8 0 0 Vi
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e The QEF computes the full quantum entropy of extremal
black holes.

e We tested this against the string answer for N’ = 4 and
N = 8 black holes.

e The answer for N = 2 black holes has curious properties.
It would be interesting to better understand them.

e We also provided evidence that twisted indices can be
computed by a QEF approach.

e Again, the matching persists to the quantum level.

e What about indices preserving N/ = 2 supersymmetry?

Conclusions
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Conclusions

Thank You
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