Remarks on $d \approx 3$ HS theory

Higher Spin Theories and Holography

Zhenya Skvortsov
Albert Einstein Institute and Lebedev Institute

December, 8, 2014

[^0]Free fields are boring while HS geometry is not understood well. The second order/cubic action is the approximation where all fields become to interact while all the interaction terms have a plain meaning.
$3 d$ Vasiliev theory ${ }^{\dagger}$ is a 'toy' model, but still highly nontrivial, and captures many basic features of higher-dimensional cousins. The 3d Vasiliev equations are very close to 4d and any- d ones. Rich AdS/CFT dualities.

[^1]Vasiliev HS theories feature quasilocal expressions

$$
J_{a(s)}=\sum_{k} \nabla_{a} . . \nabla_{a} \nabla_{c(k)} \Phi \nabla_{a} . . \nabla_{a} \nabla^{c(k)} \Phi
$$

which naturally come out of star-products.
At the cubic/second order these are not needed (cubic vertices have a finite number of derivatives) and may not be safe. At the quartic order and higher ∞ of derivative couplings is necessary and the quasi-local expressions can be easily hidden under the carpet. Therefore, classes of functions/redefinitions etc. are easier to answer at the cubic order.

HS fields in $3 d$

In 3d most of the fields do not propagate, except for maximal depth p.m., $s=0, \frac{1}{2}$, $s=1$ can be dualized.

Instead of Fronsdal fields

$$
\phi_{\underline{m}_{1} \ldots \underline{m}_{s}}
$$

one can use frame-like fields

$$
e_{\underline{m}}^{a(s-1)} \quad \omega_{\underline{m}}^{a(s-1)}=\epsilon^{a}{ }_{b c} \omega_{\underline{m}}^{a(s-2) b, c}
$$

$s o(2,1) \sim s p(2)$ allows to replace them with totally-symmetric spin-tensors

$$
e_{\underline{m}}^{\alpha(2 s-2)} \quad \omega_{\underline{m}}^{\alpha(2 s-2)}
$$

These can be organized as gauge fields of HS algebra
$A d S_{3}$ algebra so $(2,2) \sim s p(2) \oplus s p(2)$.
$\left[L_{\alpha \alpha}, L_{\beta \beta}\right]=\epsilon_{\alpha \beta} L_{\alpha \beta} \quad\left[L_{\alpha \alpha}, P_{\beta \beta}\right]=\epsilon_{\alpha \beta} P_{\alpha \beta} \quad\left[P_{\alpha \alpha}, P_{\beta \beta}\right]=\epsilon_{\alpha \beta} L_{\alpha \beta}$
One takes harmonic oscillator times Clifford algebra $\mathrm{Cl}_{2,0}$

$$
\left[\hat{y}_{\alpha}, \hat{y}_{\beta}\right]=2 i \epsilon_{\alpha \beta} \quad \phi^{2}=1 \quad \psi^{2}=1 \quad\{\phi, \psi\}=0
$$

The $A d S_{3}$ algebra are bilinears in \hat{y}_{α}

$$
L_{\alpha \beta}=-\frac{i}{4}\left\{\hat{y}_{\alpha}, \hat{y}_{\beta}\right\} \quad P_{\alpha \beta}=\phi L_{\alpha \beta}
$$

The HS algebra is the algebra of all functions $f(\hat{y}, \phi, \psi)$

$$
\omega(\hat{y}, \phi)=\sum_{s}\left(\phi e^{\alpha(2 s-2)}+\omega^{\alpha(2 s-2)}\right) \hat{y}_{\alpha} \ldots \hat{y}_{\alpha}
$$

Distinguished background solution is given by empty AdS space, which is a flat so(2,2)-connection of the HS algebra

$$
d \Omega=\Omega^{2} \quad \Omega=\frac{1}{2} \varpi^{\alpha \alpha} L_{\alpha \alpha}+\frac{1}{2} h^{\alpha \alpha} P_{\alpha \alpha}
$$

Free HS fields plus matter are described by

$$
d \omega=[\Omega, \omega] \quad d C=[\Omega, C]
$$

where ω and C are one- and zero-forms valued in the HS algebra
ψ gives usual HS and matter fields and a shadow sector

$$
\begin{array}{cc}
\widetilde{\mathrm{D}} \tilde{\omega} \psi=0 & \mathrm{D} \omega=0 \\
\tilde{\mathrm{D}} \mathrm{C} \psi=0 & \mathrm{D} \tilde{\mathrm{C}}=0 \\
\mathrm{D}=\nabla-\frac{1}{2} h^{\alpha \alpha}\left[P_{\alpha \alpha}, \bullet\right] & \widetilde{\mathrm{D}}=\nabla-\frac{1}{2} h^{\alpha \alpha}\left\{P_{\alpha \alpha}, \bullet\right\}
\end{array}
$$

- matter fields, scalar, $C(\hat{y}=0 \mid x)$ and fermion, $C_{\alpha}(x) \hat{y}^{\alpha}$
- HS gauge fields, $\omega(\hat{y}, \phi)$
- Killing tensors+constant, $\tilde{C}(\hat{y}, \phi \mid x)$
- Strange one-forms, $\tilde{\omega}(\hat{y}, \phi \mid x)$

HS gauge fields and matter fields are required by the Gaberdiel-Gopakumar conjecture. Nothing was said about Killing tensors. This is puzzling, especially if all of them interact and they do interact.

In Prokushkin-Vasiliev 3d theory $C(0)$ is the parameter of the $3 d$ family $h s(\lambda)$ of HS algebras. The HS algebra just defined has $\lambda=0$.

We do not understand the meaning of the shadow sector and for the second-order computations prefer to disentangle it with the physical one.

Unfolded HS theory

The linear equations can be completed to

$$
\begin{aligned}
& d \omega=F^{\omega}(\omega, C) \\
& d C=F^{C}(\omega, C)
\end{aligned}
$$

where the expansion is in matter fields C

$$
\begin{aligned}
& F^{\omega}(\omega, C)=\mathcal{V}(\omega, \omega)+\mathcal{V}(\omega, \omega, C)+\mathcal{V}(\omega, \omega, C, C)+\ldots \\
& F^{C}(\omega, C)=\mathcal{V}(\omega, C)+\mathcal{V}(\omega, C, C)+\mathcal{V}(\omega, C, C, C)+\ldots
\end{aligned}
$$

and F 's are constrained by Frobenius integrability condition $d^{2} \equiv 0$, which implies certain gauge symmetry.
Perturbative C-exansion is effectively resummed by Vasiliev equations

The most general equations at the second order are

$$
\begin{aligned}
& \mathcal{D} \omega_{2}=\omega \star \omega+\mathcal{V}(\Omega, \omega, C)+\mathcal{V}(\Omega, \Omega, C, C) \\
& \mathcal{D} C_{2}=[\omega, C]_{\star}+\mathcal{V}(\Omega, C, C)
\end{aligned}
$$

where some of the cocycles are explicitly determined by the HS algebra.

On the r.h.s. of $\square \phi_{\underline{m}_{1} \ldots \underline{m}_{s}}+\ldots=$ one finds a generalized stress-tensor

$$
\mathcal{V}(\Omega, \Omega, C, C)
$$

which should be a usual stress-tensor for $s=2$, but it is not

Cubic action

A canonical way to do quantum computations is to have an action, which we do not. The (at least) cubic action consists of three pieces

$$
\begin{aligned}
S & =S_{C S}+S_{\text {matter }}+S_{i n t} \\
S_{C S} & =\frac{k}{4 \pi} \int \operatorname{tr}\left(\omega \wedge d \omega-\frac{2}{3} \omega \wedge \omega \wedge \omega\right) \\
S_{\text {matter }} & =\frac{1}{2} \int \operatorname{det}|e|\left(\left(\nabla \Phi_{i}\right)^{2}+m^{2} \Phi_{i}^{2}\right) \\
S_{i n t} & =\int \operatorname{tr}\left(\omega \wedge \mathcal{J}\left(\Phi^{i}, \Phi_{i}\right)\right)
\end{aligned}
$$

where \mathcal{J} are canonical s-derivative conserved tensors

$$
S_{i n t}=\sum g_{s} \int \phi_{s}\left(\Phi \overleftrightarrow{\nabla}^{s} \Phi\right)
$$

One can compare equations with the action

$$
D C_{2}=[\omega, C] \quad \text { vs. } \quad\left(\square-m^{2}\right) \Phi=\frac{\delta S_{i n t}}{\delta \Phi}
$$

or equivalently gauge transformations

$$
\delta C_{2}=[\epsilon, C] \quad \text { vs. } \quad \delta \Phi=\frac{\partial \cdot \mathcal{J}}{\left(\square-m^{2}\right) \Phi}
$$

which allows to determine all the couplings. The mass of the scalar is also fixed. Bare cubic approximation leaves these numbers undetermined. Complete cubic action is found!

The $3 d$ equations are based on $\operatorname{osp}(1 \mid 2)$

$$
\begin{aligned}
d W & =W * W \\
d S_{\alpha} & =\left[W, S_{\alpha}\right]_{*} \\
d T_{\alpha \beta} & =\left[W, T_{\alpha \beta}\right]_{*} \\
\left\{S_{\alpha}, S_{\beta}\right\}_{*} & =T_{\alpha \beta} \\
{\left[T_{\alpha \beta}, S_{\gamma}\right]_{*} } & =\epsilon_{\alpha \gamma} S_{\beta}+\epsilon_{\beta \gamma} S_{\alpha}
\end{aligned}
$$

The last two equations are defining relations of $\operatorname{osp}(1 \mid 2) . W$ is a flat connection of a bigger algebra that contains HS algebra.
$f(y, z) \star g(y, z)=\int d u d v f(y+u, z+u) g(y+v, z-v) e^{\left(i v^{\alpha} u_{\alpha}\right)}$
a slightly different (canonical) form is achieved by introducing Hubbard-Stratanovich zero-form B and excluding $T_{\alpha \beta}$

$$
\begin{aligned}
d W & =W * W \\
d S_{\alpha} & =\left[W, S_{\alpha}\right]_{*} \\
d B & =[W, B]_{*} \\
\left\{S_{\alpha}, B\right\}_{*} & =0 \\
S_{\alpha} * S^{\alpha} & =1+B
\end{aligned}
$$

There is also a well-known feature of naive perturbation theory not being manifestly Lorentz-covariant. The right Lorentz generators are given by coset

$$
\frac{s p(2)_{g /} \ltimes s p(2)_{\mathrm{loc}}}{s p(2)_{\text {diag }}}
$$

The $3 d$ theory turns out to be even more complicated then the $4 d$ one because of

$$
\begin{array}{ll}
\tilde{D} \tilde{\omega} \psi=\left.\frac{1}{8} H^{\alpha \alpha}\left(y_{\alpha}+i \partial_{\alpha}\right)\left(y_{\alpha}+i \partial_{\alpha}\right) C(w, \phi) \psi\right|_{w=0} & D \omega=0 \\
\tilde{D} C \psi=0 & D \tilde{C}=0
\end{array}
$$

that can be eliminated via a change of variable

$$
\Delta \tilde{\omega}=\frac{1}{4} \phi h^{\alpha \alpha} \int\left(t^{2}-1\right)\left(y_{\alpha}+i t^{-1} \partial_{\alpha}^{y}\right)\left(y_{\alpha}+i t^{-1} \partial_{\alpha}^{y}\right) C(y t, \phi)
$$

Note that the source is Φ and $\nabla \Phi$ while the redefinition has $\nabla^{\infty} \phi$.

Instead of the canonical s-derivative tensors we find a sum of several (many) terms

$$
\begin{gathered}
h^{\alpha}{ }_{\nu} \wedge h^{\nu \alpha} \int_{0}^{1} d t d q \int d \xi d \eta P(t, q) \text { (two-ferm+four-ferm) } \\
e^{i(a y \xi+b y \eta+c \eta \xi)} C(\xi, \phi \mid x) C(\eta,-\phi \mid x)
\end{gathered}
$$

which can be rewritten in the index form

$$
\sum_{A, B=0}^{A+B \leq 2} \alpha_{A, B}^{n, m, l} H^{\beta(A+B)}{ }_{\alpha(2-A-B)} C_{\beta(A) \alpha(n+A-1) \nu(I)} C^{\nu(I)}{ }_{\beta(B) \alpha(m+B-1)}
$$

where on-shell derivatives of the scalar are parameterized by

$$
C^{\alpha(2 k)}=\nabla^{\alpha \alpha} \ldots \nabla^{\alpha \alpha} \Phi
$$

Locality and redefinitions

The stress-tensor consists of three pieces that are conserved! independently.

It has an unbounded number of derivatives.
A remarkable statement proved by $\mathrm{P}-\mathrm{V}$ is that canonical s-derivative stress-tensor is exact in AdS

$$
H \Phi \nabla^{s} \Phi=D U
$$

where U is quasi-local, i.e. of the same type as the redefinition needed to make stress-tensors into canonical s-derivative stress-tensors.

Redefinitions

Canonical s-derivative currents are quasi-locally exact ($\mathrm{P}-\mathrm{V}$)

$$
\left\langle\phi \phi J_{S}\right\rangle=\int_{A d S} \operatorname{tr}(\omega \wedge D K)=-\int_{\partial A d S} \operatorname{tr}(\omega \wedge K)
$$

There is a nontrivial cohomology at degree one ($\mathrm{P}-\mathrm{V}$), which is a natural candidate for K and explains a bit why shadow fields may be present.

The physical observables should be independent of redefinitions

$$
\left\langle\phi \phi J_{S}\right\rangle=\int_{A d S} \operatorname{tr}(\omega \wedge J+D U)=G^{-1} \mathcal{V}(\Omega, \Omega, C, C)
$$

Admissible Lagrangian and e.o.m. redefinitions belong to different classes?!

d-dim Vasiliev theory at $d=3$

Bosonic d-dim theory can be extrapolated to $d=3$ and the shadow sector can be added via

$$
\left\{y_{\alpha}, k\right\}=0 \quad\left\{z_{\alpha}, k\right\}=0 \quad\left[y_{\alpha}^{a}, k\right]=0 \quad k^{2}=1
$$

In contrast to $3 d$-theory, the shadow sector can be truncated away. In particular, there are now shadow sources that are quadratic in physical fields

In 3d theory we find a nontrivial source

$$
D \tilde{C}_{2}=\mathcal{V}(\Omega, C, C)
$$

i.e. Killing tensors are generated by matter at the second order, but $\delta \lambda$ of $h s(\lambda)$ vanishes. This is puzzling for AdS/CFT

There is a family of $3 d \mathrm{HS}$ algebras, $h s(\lambda)$. They are all covered by Prokushkin-Vasiliev theory, $C(0)=\lambda$. The mass of the scalar is $m^{2}=-1+\lambda^{2}$.

In $3 d$ we have two theories: the $3 d$ one has $\lambda=0$ and the d-dim. at $d=3$ has $\lambda=1$. They are expected to be duals of free fermion and free boson. These values of λ are generic, but the behaviour of the shadow sectors is quite different

Proposal: in d-dim. theory at $d=3$ one can define a more complicated factorization (which is anyway there) such that the resulting HS algebra is $h s(\lambda) \oplus h s(\lambda)$. This seem to solve the puzzle.

[^0]: *Based on the work to appear, with G.Gomez, P.Kessel and M.Taronna

[^1]: †Unless otherwise stated all references are to Vasiliev's works

