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Intro

Free fields are boring while HS geometry is not understood
well. The second order/cubic action is the approximation
where all fields become to interact while all the interaction
terms have a plain meaning.

3d Vasiliev theory† is a ’toy’ model, but still highly nontrivial,
and captures many basic features of higher-dimensional
cousins. The 3d Vasiliev equations are very close to 4d and
any-d ones. Rich AdS/CFT dualities.

†Unless otherwise stated all references are to Vasiliev’s works
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Intro

Vasiliev HS theories feature quasilocal expressions

Ja(s) =
∑
k

∇a..∇a∇c(k)Φ∇a..∇a∇c(k)Φ

which naturally come out of star-products.

At the cubic/second order these are not needed (cubic vertices
have a finite number of derivatives) and may not be safe. At
the quartic order and higher ∞ of derivative couplings is
necessary and the quasi-local expressions can be easily hidden
under the carpet. Therefore, classes of functions/redefinitions
etc. are easier to answer at the cubic order.
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HS fields in 3d

In 3d most of the fields do not propagate, except for maximal
depth p.m., s = 0, 1

2
, s = 1 can be dualized.

Instead of Fronsdal fields

φm1...ms

one can use frame-like fields

ea(s−1)m ωa(s−1)
m = εabcω

a(s−2)b,c
m

so(2, 1) ∼ sp(2) allows to replace them with totally-symmetric
spin-tensors

eα(2s−2)m ωα(2s−2)m

These can be organized as gauge fields of HS algebra
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HS algebra

AdS3 algebra so(2, 2) ∼ sp(2)⊕ sp(2).

[Lαα, Lββ] = εαβLαβ [Lαα,Pββ] = εαβPαβ [Pαα,Pββ] = εαβLαβ

One takes harmonic oscillator times Clifford algebra Cl2,0

[ŷα, ŷβ] = 2iεαβ φ2 = 1 ψ2 = 1 {φ, ψ} = 0

The AdS3 algebra are bilinears in ŷα

Lαβ = − i

4
{ŷα, ŷβ} Pαβ = φLαβ

The HS algebra is the algebra of all functions f (ŷ , φ, ψ)

ω(ŷ , φ) =
∑
s

(
φeα(2s−2) + ωα(2s−2)

)
ŷα...ŷα
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Free fields

Distinguished background solution is given by empty AdS
space, which is a flat so(2, 2)-connection of the HS algebra

dΩ = Ω2 Ω =
1

2
$ααLαα +

1

2
hααPαα

Free HS fields plus matter are described by

dω = [Ω, ω] dC = [Ω,C ]

where ω and C are one- and zero-forms valued in the HS
algebra
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Free fields

ψ gives usual HS and matter fields and a shadow sector

D̃ω̃ψ = 0 Dω = 0

D̃Cψ = 0 DC̃ = 0

D = ∇− 1

2
hαα[Pαα, •] D̃ = ∇− 1

2
hαα{Pαα, •}

matter fields, scalar, C (ŷ = 0|x) and fermion, Cα(x)ŷα

HS gauge fields, ω(ŷ , φ)

Killing tensors+constant, C̃ (ŷ , φ|x)

Strange one-forms, ω̃(ŷ , φ|x)
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Free fields

HS gauge fields and matter fields are required by the
Gaberdiel-Gopakumar conjecture. Nothing was said about
Killing tensors. This is puzzling, especially if all of them
interact and they do interact.

In Prokushkin-Vasiliev 3d theory C (0) is the parameter of the
3d family hs(λ) of HS algebras. The HS algebra just defined
has λ = 0.

We do not understand the meaning of the shadow sector and
for the second-order computations prefer to disentangle it with
the physical one.
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Unfolded HS theory

The linear equations can be completed to

dω = F ω(ω,C )

dC = FC (ω,C )

where the expansion is in matter fields C

F ω(ω,C ) = V(ω, ω) + V(ω, ω,C ) + V(ω, ω,C ,C ) + ...

FC (ω,C ) = V(ω,C ) + V(ω,C ,C ) + V(ω,C ,C ,C ) + ...

and F ’s are constrained by Frobenius integrability condition
d2 ≡ 0, which implies certain gauge symmetry.

Perturbative C -exansion is effectively resummed by Vasiliev
equations
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Second order

The most general equations at the second order are

Dω2 = ω ? ω + V(Ω, ω,C ) + V(Ω,Ω,C ,C )

DC2 = [ω,C ]? + V(Ω,C ,C )

where some of the cocycles are explicitly determined by the
HS algebra.

On the r.h.s. of �φm1...ms
+ ... = one finds a generalized

stress-tensor
V(Ω,Ω,C ,C )

which should be a usual stress-tensor for s = 2, but it is not
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Cubic action

A canonical way to do quantum computations is to have an
action, which we do not. The (at least) cubic action consists
of three pieces

S = SCS + Smatter + Sint

SCS =
k

4π

∫
tr

(
ω ∧ dω − 2

3
ω ∧ ω ∧ ω

)
Smatter =

1

2

∫
det |e|

(
(∇Φi)

2 + m2Φ2
i

)
Sint =

∫
tr
(
ω ∧ J (Φi ,Φi)

)
where J are canonical s-derivative conserved tensors

Sint =
∑

gs

∫
φs

(
Φ
←→
∇ sΦ

)
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Cubic action

One can compare equations with the action

DC2 = [ω,C ] vs. (�−m2)Φ =
δSint

δΦ

or equivalently gauge transformations

δC2 = [ε,C ] vs. δΦ =
∂ · J

(�−m2)Φ

which allows to determine all the couplings. The mass of the
scalar is also fixed. Bare cubic approximation leaves these
numbers undetermined. Complete cubic action is found!
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3d Vasiliev equations

The 3d equations are based on osp(1|2)

dW = W ∗W
dSα = [W , Sα]∗

dTαβ = [W ,Tαβ]∗

{Sα, Sβ}∗ = Tαβ

[Tαβ, Sγ]∗ = εαγSβ + εβγSα

The last two equations are defining relations of osp(1|2). W is
a flat connection of a bigger algebra that contains HS algebra.

f (y , z) ? g(y , z) =

∫
du dv f (y + u, z + u)g(y + v , z − v)e(iv

αuα)
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3d Vasiliev equations

a slightly different (canonical) form is achieved by introducing
Hubbard-Stratanovich zero-form B and excluding Tαβ

dW = W ∗W
dSα = [W , Sα]∗

dB = [W ,B]∗

{Sα,B}∗ = 0

Sα ∗ Sα = 1 + B

There is also a well-known feature of naive perturbation theory
not being manifestly Lorentz-covariant. The right Lorentz
generators are given by coset

sp(2)gl n sp(2)loc
sp(2)diag
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Free fields from Vasiliev equations

The 3d theory turns out to be even more complicated then the
4d one because of

D̃ω̃ψ =
1

8
Hαα(yα + i∂α)(yα + i∂α)C (w , φ)ψ

∣∣∣∣
w=0

Dω = 0

D̃Cψ = 0 DC̃ = 0

that can be eliminated via a change of variable

∆ω̃ =
1

4
φhαα

∫
(t2 − 1)(yα + it−1∂yα)(yα + it−1∂yα)C (yt, φ)

Note that the source is Φ and ∇Φ while the redefinition has
∇∞Φ.
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Stress-tensors

Instead of the canonical s-derivative tensors we find a sum of
several (many) terms

hαν ∧ hνα
∫ 1

0

dt dq

∫
dξdη P(t, q)(two-ferm+four-ferm)

e i(ayξ+byη+cηξ)C (ξ, φ|x)C (η,−φ|x)

which can be rewritten in the index form

A+B≤2∑
A,B=0

αn,m,l
A,B Hβ(A+B)

α(2−A−B)Cβ(A)α(n+A−1)ν(l)C
ν(l)

β(B)α(m+B−1)

where on-shell derivatives of the scalar are parameterized by

Cα(2k) = ∇αα...∇ααΦ
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Locality and redefinitions

The stress-tensor consists of three pieces that are conserved!
independently.

It has an unbounded number of derivatives.

A remarkable statement proved by P-V is that canonical
s-derivative stress-tensor is exact in AdS

HΦ∇sΦ = DU

where U is quasi-local, i.e. of the same type as the redefinition
needed to make stress-tensors into canonical s-derivative
stress-tensors.
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Redefinitions

Canonical s-derivative currents are quasi-locally exact (P-V)

〈φφJs〉 =

∫
AdS

tr (ω ∧ DK ) = −
∫
∂AdS

tr (ω ∧ K )

There is a nontrivial cohomology at degree one (P-V), which is a
natural candidate for K and explains a bit why shadow fields may
be present.

The physical observables should be independent of redefinitions

〈φφJs〉 =

∫
AdS

tr(ω ∧ J + DU) = G−1V(Ω,Ω,C ,C )

Admissible Lagrangian and e.o.m. redefinitions belong to different
classes?!
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d-dim Vasiliev theory at d = 3

Bosonic d-dim theory can be extrapolated to d = 3 and the
shadow sector can be added via

{yα, k} = 0 {zα, k} = 0 [y a
α, k] = 0 k2 = 1

In contrast to 3d-theory, the shadow sector can be truncated
away. In particular, there are now shadow sources that are
quadratic in physical fields

In 3d theory we find a nontrivial source

DC̃2 = V(Ω,C ,C )

i.e. Killing tensors are generated by matter at the second
order, but δλ of hs(λ) vanishes. This is puzzling for AdS/CFT
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Two Vasiliev theories at d = 3

There is a family of 3d HS algebras, hs(λ). They are all
covered by Prokushkin-Vasiliev theory, C (0) = λ. The mass of
the scalar is m2 = −1 + λ2.

In 3d we have two theories: the 3d one has λ = 0 and the
d-dim. at d = 3 has λ = 1. They are expected to be duals of
free fermion and free boson. These values of λ are generic,
but the behaviour of the shadow sectors is quite different

Proposal: in d-dim. theory at d = 3 one can define a more
complicated factorization (which is anyway there) such that
the resulting HS algebra is hs(λ)⊕ hs(λ). This seem to solve
the puzzle.
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