Remarks on $d \approx 3$ HS theory Higher Spin Theories and Holography

Zhenya Skvortsov

Albert Einstein Institute and Lebedev Institute

December, 8, 2014

*

*Based on the work to appear, with G.Gomez, P.Kessel and M.Taronna 🚊 👁 🕫

Free fields are boring while HS geometry is not understood well. The second order/cubic action is the approximation where all fields become to interact while all the interaction terms have a plain meaning.

3d Vasiliev theory[†] is a 'toy' model, but still highly nontrivial, and captures many basic features of higher-dimensional cousins. The 3d Vasiliev equations are very close to 4d and any-d ones. Rich AdS/CFT dualities.

Vasiliev HS theories feature quasilocal expressions

$$J_{a(s)} = \sum_{k} \nabla_{a} .. \nabla_{a} \nabla_{c(k)} \Phi \nabla_{a} .. \nabla_{a} \nabla^{c(k)} \Phi$$

which naturally come out of star-products.

At the cubic/second order these are not needed (cubic vertices have a finite number of derivatives) and may not be safe. At the quartic order and higher ∞ of derivative couplings is necessary and the quasi-local expressions can be easily hidden under the carpet. Therefore, classes of functions/redefinitions etc. are easier to answer at the cubic order.

HS fields in 3d

In 3*d* most of the fields do not propagate, except for maximal depth p.m., $s = 0, \frac{1}{2}$, s = 1 can be dualized.

Instead of Fronsdal fields

$$\phi_{\underline{m}_1...\underline{m}_s}$$

one can use frame-like fields

$$e_{\underline{m}}^{a(s-1)}$$
 $\omega_{\underline{m}}^{a(s-1)} = \epsilon^{a}{}_{bc}\omega_{\underline{m}}^{a(s-2)b,c}$

 $so(2,1) \sim sp(2)$ allows to replace them with totally-symmetric spin-tensors

$$e_{\underline{m}}^{\alpha(2s-2)} \qquad \qquad \omega_{\underline{m}}^{\alpha(2s-2)}$$

These can be organized as gauge fields of HS algebra

물 🖌 옷 물 🛌 물

HS algebra

$$AdS_3$$
 algebra $so(2,2) \sim sp(2) \oplus sp(2)$.
 $[L_{\alpha\alpha}, L_{\beta\beta}] = \epsilon_{\alpha\beta}L_{\alpha\beta} \quad [L_{\alpha\alpha}, P_{\beta\beta}] = \epsilon_{\alpha\beta}P_{\alpha\beta} \quad [P_{\alpha\alpha}, P_{\beta\beta}] = \epsilon_{\alpha\beta}L_{\alpha\beta}$

One takes harmonic oscillator times Clifford algebra Cl_{2,0}

$$[\hat{y}_{lpha}, \hat{y}_{eta}] = 2i\epsilon_{lphaeta} \qquad \phi^2 = 1 \qquad \psi^2 = 1 \qquad \{\phi, \psi\} = 0$$

The AdS_3 algebra are bilinears in \hat{y}_{α}

$$L_{lphaeta} = -rac{i}{4} \{ \hat{y}_{lpha}, \hat{y}_{eta} \} \qquad P_{lphaeta} = \phi L_{lphaeta}$$

The HS algebra is the algebra of all functions $f(\hat{y}, \phi, \psi)$

$$\omega(\hat{y},\phi) = \sum_{s} \left(\phi e^{\alpha(2s-2)} + \omega^{\alpha(2s-2)}\right) \hat{y}_{\alpha} ... \hat{y}_{\alpha}$$

Distinguished background solution is given by empty AdS space, which is a flat so(2, 2)-connection of the HS algebra

$$d\Omega = \Omega^2$$
 $\Omega = rac{1}{2} arpi^{lpha lpha} L_{lpha lpha} + rac{1}{2} h^{lpha lpha} P_{lpha lpha}$

Free HS fields plus matter are described by

$$d\omega = [\Omega, \omega]$$
 $dC = [\Omega, C]$

where ω and ${\it C}$ are one- and zero-forms valued in the HS algebra

Free fields

 ψ gives usual HS and matter fields and a shadow sector

$$\begin{split} \mathsf{D} \tilde{\omega} \psi &= \mathbf{0} & \mathsf{D} \omega &= \mathbf{0} \\ \tilde{\mathsf{D}} C \psi &= \mathbf{0} & \mathsf{D} \tilde{C} &= \mathbf{0} \end{split}$$

$$\mathsf{D} = \nabla - \frac{1}{2} h^{\alpha \alpha} [P_{\alpha \alpha}, \bullet] \qquad \widetilde{\mathsf{D}} = \nabla - \frac{1}{2} h^{\alpha \alpha} \{P_{\alpha \alpha}, \bullet\}$$

- matter fields, scalar, $C(\hat{y}=0|x)$ and fermion, $C_{lpha}(x)\hat{y}^{lpha}$
- HS gauge fields, $\omega(\hat{y}, \phi)$
- Killing tensors+constant, $ilde{C}(\hat{y}, \phi | x)$
- Strange one-forms, $\tilde{\omega}(\hat{y}, \phi | x)$

HS gauge fields and matter fields are required by the Gaberdiel-Gopakumar conjecture. Nothing was said about Killing tensors. This is puzzling, especially if all of them interact and they do interact.

In Prokushkin-Vasiliev 3*d* theory C(0) is the parameter of the 3*d* family $hs(\lambda)$ of HS algebras. The HS algebra just defined has $\lambda = 0$.

We do not understand the meaning of the shadow sector and for the second-order computations prefer to disentangle it with the physical one.

- (目) - (日) - (日)

The linear equations can be completed to

$$d\omega = F^{\omega}(\omega, C)$$
$$dC = F^{C}(\omega, C)$$

where the expansion is in matter fields C

$$F^{\omega}(\omega, C) = \mathcal{V}(\omega, \omega) + \mathcal{V}(\omega, \omega, C) + \mathcal{V}(\omega, \omega, C, C) + \dots$$

$$F^{C}(\omega, C) = \mathcal{V}(\omega, C) + \mathcal{V}(\omega, C, C) + \mathcal{V}(\omega, C, C, C) + \dots$$

and *F*'s are constrained by Frobenius integrability condition $d^2 \equiv 0$, which implies certain gauge symmetry.

Perturbative *C*-exansion is effectively resummed by Vasiliev equations

The most general equations at the second order are

$$\mathcal{D}\omega_{2} = \omega \star \omega + \mathcal{V}(\Omega, \omega, C) + \mathcal{V}(\Omega, \Omega, C, C)$$

$$\mathcal{D}C_{2} = [\omega, C]_{\star} + \mathcal{V}(\Omega, C, C)$$

where some of the cocycles are explicitly determined by the HS algebra.

On the r.h.s. of $\Box \phi_{\underline{m}_1 \dots \underline{m}_s} + \ldots =$ one finds a generalized stress-tensor

 $\mathcal{V}(\Omega, \Omega, C, C)$

which should be a usual stress-tensor for s = 2, but it is not

Cubic action

A canonical way to do quantum computations is to have an action, which we do not. The (at least) cubic action consists of three pieces

$$S = S_{CS} + S_{matter} + S_{int}$$

 $S_{CS} = rac{k}{4\pi} \int tr\left(\omega \wedge d\omega - rac{2}{3}\omega \wedge \omega \wedge \omega
ight)$
 $S_{matter} = rac{1}{2} \int \det |e| \left((
abla \Phi_i)^2 + m^2 \Phi_i^2\right)$
 $S_{int} = \int tr \left(\omega \wedge \mathcal{J}(\Phi^i, \Phi_i)
ight)$

where $\mathcal J$ are canonical *s*-derivative conserved tensors

$$S_{int} = \sum g_s \int \phi_s \left(\Phi \overleftrightarrow \nabla^s \Phi \right)$$

One can compare equations with the action

$$DC_2 = [\omega, C]$$
 vs. $(\Box - m^2)\Phi = \frac{\delta S_{int}}{\delta \Phi}$

or equivalently gauge transformations

$$\delta C_2 = [\epsilon, C]$$
 vs. $\delta \Phi = \frac{\partial \cdot \mathcal{J}}{(\Box - m^2)\Phi}$

which allows to determine all the couplings. The mass of the scalar is also fixed. Bare cubic approximation leaves these numbers undetermined. Complete cubic action is found!

3d Vasiliev equations

The 3*d* equations are based on osp(1|2)

$$egin{aligned} dW &= W st W \ dS_lpha &= [W,S_lpha]_st \ dT_{lphaeta} &= [W,T_{lphaeta}]_st \ \{S_lpha,S_eta\}_st &= T_{lphaeta} \ [T_{lphaeta},S_{\gamma}]_st &= \epsilon_{lpha\gamma}S_eta + \epsilon_{eta\gamma}S_lpha \end{aligned}$$

The last two equations are defining relations of osp(1|2). W is a flat connection of a bigger algebra that contains HS algebra.

$$f(y,z) \star g(y,z) = \int du \, dv \, f(y+u,z+u)g(y+v,z-v)e^{(iv^{\alpha}u_{\alpha})}$$

3d Vasiliev equations

a slightly different (canonical) form is achieved by introducing Hubbard-Stratanovich zero-form B and excluding $T_{\alpha\beta}$

$$egin{aligned} dW &= W * W \ dS_lpha &= [W,S_lpha]_* \ dB &= [W,B]_* \ \{S_lpha,B\}_* &= 0 \ S_lpha * S^lpha &= 1+B \end{aligned}$$

There is also a well-known feature of naive perturbation theory not being manifestly Lorentz-covariant. The right Lorentz generators are given by coset

$$\frac{sp(2)_{gl} \ltimes sp(2)_{loc}}{sp(2)_{diag}}$$

The 3d theory turns out to be even more complicated then the 4d one because of

$$egin{aligned} & ilde{D} ilde{\omega}\psi = \left.rac{1}{8}H^{lphalpha}(y_{lpha}+i\partial_{lpha})(y_{lpha}+i\partial_{lpha})C(w,\phi)\psi
ight|_{w=0} & D\omega = 0 \ & ilde{D}C\psi = 0 & D ilde{C} = 0 \end{aligned}$$

that can be eliminated via a change of variable

$$\Delta \tilde{\omega} = \frac{1}{4} \phi h^{\alpha \alpha} \int (t^2 - 1) (y_{\alpha} + it^{-1} \partial_{\alpha}^y) (y_{\alpha} + it^{-1} \partial_{\alpha}^y) C(yt, \phi)$$

Note that the source is Φ and $\nabla \Phi$ while the redefinition has $\nabla^{\infty} \Phi$.

Instead of the canonical *s*-derivative tensors we find a sum of several (many) terms

$$h^{lpha}{}_{
u} \wedge h^{
ulpha} \int_{0}^{1} dt \, dq \int d\xi d\eta \, P(t,q) (ext{two-ferm+four-ferm}) \ e^{i(ay\xi+by\eta+c\eta\xi)} C(\xi,\phi|x) C(\eta,-\phi|x)$$

which can be rewritten in the index form

$$\sum_{A,B=0}^{A+B\leq 2} \alpha_{A,B}^{n,m,l} \mathcal{H}^{\beta(A+B)}{}_{\alpha(2-A-B)} \mathcal{C}_{\beta(A)\alpha(n+A-1)\nu(l)} \mathcal{C}^{\nu(l)}{}_{\beta(B)\alpha(m+B-1)}$$

where on-shell derivatives of the scalar are parameterized by

$$\mathcal{C}^{\alpha(2k)} = \nabla^{\alpha\alpha} ... \nabla^{\alpha\alpha} \Phi$$

The stress-tensor consists of three pieces that are conserved! independently.

It has an unbounded number of derivatives.

A remarkable statement proved by P-V is that canonical *s*-derivative stress-tensor is exact in AdS

$$H\Phi \nabla^s \Phi = DU$$

where U is quasi-local, i.e. of the same type as the redefinition needed to make stress-tensors into canonical *s*-derivative stress-tensors.

Canonical *s*-derivative currents are quasi-locally exact (P-V)

$$\langle \phi \phi J_{s} \rangle = \int_{AdS} tr \left(\omega \wedge DK \right) = - \int_{\partial AdS} tr \left(\omega \wedge K \right)$$

There is a nontrivial cohomology at degree one (P-V), which is a natural candidate for K and explains a bit why shadow fields may be present.

The physical observables should be independent of redefinitions

$$\langle \phi \phi J_{s} \rangle = \int_{AdS} tr(\omega \wedge J + DU) = G^{-1} \mathcal{V}(\Omega, \Omega, C, C)$$

Admissible Lagrangian and e.o.m. redefinitions belong to different classes?!

・ 同 ト ・ ヨ ト ・ ヨ ト

Bosonic *d*-dim theory can be extrapolated to d = 3 and the shadow sector can be added via

$$\{y_{\alpha}, k\} = 0$$
 $\{z_{\alpha}, k\} = 0$ $[y_{\alpha}^{a}, k] = 0$ $k^{2} = 1$

In contrast to 3d-theory, the shadow sector can be truncated away. In particular, there are now shadow sources that are quadratic in physical fields

In 3d theory we find a nontrivial source

$$D\tilde{C}_2 = \mathcal{V}(\Omega, C, C)$$

i.e. Killing tensors are generated by matter at the second order, but $\delta\lambda$ of $hs(\lambda)$ vanishes. This is puzzling for AdS/CFT

There is a family of 3*d* HS algebras, $hs(\lambda)$. They are all covered by Prokushkin-Vasiliev theory, $C(0) = \lambda$. The mass of the scalar is $m^2 = -1 + \lambda^2$.

In 3*d* we have two theories: the 3*d* one has $\lambda = 0$ and the *d*-dim. at *d* = 3 has $\lambda = 1$. They are expected to be duals of free fermion and free boson. These values of λ are generic, but the behaviour of the shadow sectors is quite different

Proposal: in *d*-dim. theory at d = 3 one can define a more complicated factorization (which is anyway there) such that the resulting HS algebra is $hs(\lambda) \oplus hs(\lambda)$. This seem to solve the puzzle.

・ロン ・回 と ・ ヨ と ・ ヨ と