Higher spins and AdS/CFT dualities

Arkady Tseytlin

"Partition functions and Casimir energies
in higher spin $\mathrm{AdS}_{d+1} / \mathrm{CFT}_{d} "$ arXiv:1402.5396
with S. Giombi and I. Klebanov
"Higher spins in AdS_{5} at one loop: vacuum energy, boundary conformal anomalies and AdS/CFT" arXiv:1410.3273
"Vectorial $\mathrm{AdS}_{5} / \mathrm{CFT}_{4}$ duality for spin-one boundary theory" arXiv:1410.4457
with M. Beccaria
"Supergravity one-loop corrections on AdS_{7} and AdS_{3}, higher spins and AdS/CFT" arXiv:1412.0489
with M. Beccaria and G. Macorini

Motivation: learn about (i) structure of HS theories; (ii) limits of AdS/CFT
$\mathrm{AdS}_{d+1} / \mathrm{CFT}_{d}$ "light":
free boundary CFT_{d}
(i) "vectorial": e.g. free scalar in fundamental of $U(N)$ or $O(N)$
(ii) "adjoint": e.g. free vector in adjoint of $U(N)$ or $O(N)$
no anomalous dimensions of composite operators but correlation functions are non-trivial in N
vectorial: bilinear "single-trace" operators $\Phi_{i}^{*} \partial \ldots \partial \Phi_{i}$
adjoint: multilinear single-trace operators $\operatorname{tr}(\Phi \partial \ldots \partial \Phi \partial \ldots \partial \Phi \ldots . \Phi)$
in general, any $d=3,4, \ldots$ and any free conformal field is ok but restrictons of unitarity, etc.:
$d=3$: scalars or spinor [Maldacena, Zhiboedov 11]
$d=4$: scalar, spinor or vector [Stanev 12; Alba, Diab 13]
$d=6:$ scalar,..., tensor - e.g. $(2,0)$ tensor multiplet in susy case

- existence of higher-spin symmetries:
[Vasiliev 04; Boulanger, Ponomarev, Skvortsov, Taronna 13]
- vectorial AdS/CFT:
originally in $d=3$
free or interacting $O(N)$ fixed point theory [Klebanov, Polyakov 02]
- adjoint AdS/CFT:
e.g. in $d=4$
$g_{\mathrm{YM}}=0$, fixed N limit of $\mathcal{N}=4 \mathrm{SYM}-A d S_{5} \times S^{5}$ string duality:
$\lambda=g_{\mathrm{YM}}^{2} N=0$ limit of standard $\mathrm{AdS}_{5} / \mathrm{CFT}_{4}$
- Dual higher spin theory in AdS:
contains infinite set of (massless and massive) HS fields in AdS dual to primary operators in boundary CFT
vectorial duality:
- spectrum: Flato-Fronsdal type relation:
$\Phi^{*}(x) \Phi\left(x^{\prime}\right) \rightarrow \sum \Phi^{*} \partial \ldots \partial \Phi$, e.g., in $d=4$

$$
\{0,0\} \times\{0,0\}=(2 ; 0,0)+\bigoplus_{s=1}^{\infty}\left(2+s ; \frac{s}{2}, \frac{s}{2}\right)
$$

corresponding relation for characters same as
AdS/CFT relation for one-particle partition functions

- correlation functions summarised by interaction vertices in $A d S_{d+1}$

HS theory: Vasiliev-type theory with AdS vacuum

Aim: learn about HS theory in AdS

- match quantum partition functions on both sides of duality boundary: $S^{1} \times S^{d-1}, S^{d}$, or Einstein space M^{d} bulk: (quotient of) $A d S_{d+1}$, or asymptotically $A d S_{d+1}$ space
- match Casimir energy on $R \times S^{d-1}$ to vacuum energy in $A d S_{d+1}$
- match a, c_{r} conformal anomaly coefficients to $A d S_{d+1}$ counterparts
- consistent interacting massless higher spin gauge theories:
exist in AdS (or dS) background [Fradkin, Vasiliev 88; Vasiliev 92]
e.g. in bosonic 4d case:
infinite set $s=1,2, \ldots, \infty$ plus $s=0$ with $m^{2}=-2$
action \sim quadratic Fronsdal action plus higher interactions
- vectorial $\mathrm{AdS}_{4} / \mathrm{CFT}_{3}$: [Klebanov, Polyakov 02]
free 3d complex scalar in fundamental representation of $U(N)$
$L=\partial_{m} \Phi_{i}^{*} \partial_{m} \Phi_{i}, \quad i=1, \ldots, N$
has tower of conserved higher spin currents
$J_{m_{1} \ldots m_{s}}=\Phi_{i}^{*} \partial_{\left(m_{1} \ldots \partial_{\left.m_{s}\right)}\right.} \Phi_{i}+\ldots$
singlet sector $-U(N)$ inv "single-trace" CFT primaries:
$J_{s}, \quad s=1,2, \ldots, \infty$ with $\Delta=s+1$ - dual to spin s field in $A d S_{4}$
$J_{0}=\Phi_{i}^{*} \Phi_{i}$ with $\Delta=1$ - dual to massive scalar $\Delta(\Delta-3)=m^{2}=-2$
same spectrum of states as in HS theory in $A d S_{4}$

HS theory dual to free CFT is non-trivial:
free-theory correlators of J_{s} should be reproduced by
HS interactions in $A d S_{4}$ with coupling $\sim 1 / N$
checked for tree 3-point functions [Giombi, Yin; Maldacena, Zhiboedov]
$S=N \int d^{d+1} x\left[\sum_{s} \phi_{s}\left(-\nabla^{2}+m_{s}^{2}\right) \phi_{s}+\sum C_{s_{1} s_{2} s_{3}}(\nabla) \phi_{s_{1}} \phi_{s_{2}} \phi_{s_{3}}+\ldots\right]$
full classical action $S=N \bar{S}$ of HS theory for Vasiliev equations not known
quantum corrections: $\quad \Gamma=N \bar{S}+\Gamma_{1}+N^{-1} \Gamma_{2}+\ldots$
one-loop $\Gamma_{1}(0)$ can be found as quadratic action for ϕ_{s} is known
[Fronsdal 78; Metsaev 94]

- HS theory "summarizes" correlators of bilinear primaries in free theory
- summing up infinite sets of correlators:
partition functions on non-trivial backgrounds should also match

Other similar $d=3$ models:

- $O(N)$ model : N real scalars
singlet sector - higher spin conserved currents $\Phi_{i} \partial_{m_{1}} \ldots \partial_{m_{s}} \Phi_{i}+\ldots$ non-trivial for even $s=2,4,6, \ldots$ plus scalar $\Phi_{i} \Phi_{i}$ with $\Delta=1$ dual to "minimal" HS theory in $A d S_{4}$ containing even spins only
- "critical vector model": $L=\left(\partial \Phi_{i}\right)^{2}+\lambda\left(\Phi_{i} \Phi_{i}\right)^{2}$

IR fixed point seen at large N :
scalar $\Delta=2+O\left(\frac{1}{N}\right), J_{s}$ bilinears $\Delta=s+1+O\left(\frac{1}{N}\right)$ dual to (non)minimal HS theory with $m^{2}=-2$ bulk scalar with alternative b.c.: $\Delta=2$

- free or critical $U(N)$ or $O(N)$ fermionic 3d models: [Sezgin, Sundell 02] dual to "type B " $(s=1 / 2)$ HS theories:
scalar of "type A" $(s=0)$ theory \rightarrow pseudo-scalar
- higher dimensions: vectorial AdS/CFT duality should apply for $d \geqslant 3$
- singlet sector of $U(N)$ or $O(N)$ free scalar CFT_{d}
dual to non-minimal $(s=1,2, \ldots)$ or minimal $(s=2,4, \ldots)$
HS theory in $A d S_{d+1}+$ scalar with $\Delta=d-2$, i.e. $m^{2}=-2(d-2)$
[Didenko, Skvortsov 13; Giombi, Klebanov, Safdi 14]
- "non-trivial" interacting critical theory only in $d=3$ or also in $d=5$?
[Fei, Giombi, Klebanov 14]
- singlet sector may be "dynamically" selected by gauging $U(N)$ or $O(N)$ symmetry and taking gauge coupling to 0 (e.g. coupling to $k=\infty \mathrm{CS}$ in $d=3$)
- test: compare, e.g., quantum partition functions
of large N CFT on $M^{d}=S^{d}, S^{1} \times S^{d-1}, \ldots$ and of massless HS theory in $A d S_{d+1}$ with boundary M^{d}

Example: $M^{3}=S^{3} \quad Z_{\mathrm{CFT}}\left(S^{3}\right)=Z_{\mathrm{HS}}\left(A d S_{4}\right)$
free complex $U(N)$ scalar CFT: $\quad \int d^{3} x \sqrt{g} \Phi_{i}^{*}\left(-\nabla^{2}+\frac{1}{8} R\right) \Phi_{i}$

$$
\begin{aligned}
& \Gamma_{\text {free }}=-\ln Z=N \ln \operatorname{det}\left(-\nabla^{2}+\frac{3}{4}\right) \\
& \quad=N \sum_{n=0}^{\infty}(n+1)^{2} \ln \left[\left(n+\frac{1}{2}\right)\left(n+\frac{3}{2}\right)\right]=N\left[\frac{1}{4} \ln 2-\frac{3}{8 \pi^{2}} \zeta(3)\right]
\end{aligned}
$$

Bulk HS theory: expand near $A d S_{4}$ vacuum: $d s^{2}=d \rho^{2}+\sinh ^{2} \rho d \Omega_{3}$

- vacuum value of (unknown) classical action $S=N \bar{S}$ should match (one-loop) CFT value: remains open problem
- AdS/CFT: all quantum corrections in $\Gamma=N \bar{S}+\Gamma_{1}+N^{-1} \Gamma_{2}+\ldots$ should then vanish
- check directly that $\Gamma_{1}=0$

Free action of massless totally symmetric HS fields in $A d S_{d+1}$ is known; gauge fixing ($\delta \phi_{s}=\nabla \epsilon_{s-1}$) leads to 1-loop HS partition function:

$$
\begin{aligned}
& Z_{s}\left(A d S_{d+1}\right)=\left[\frac{\operatorname{det}\left(-\nabla^{2}+\mathrm{m}_{s-1}^{\prime 2}\right)_{s-1, \perp}}{\operatorname{det}\left(-\nabla^{2}+\mathrm{m}_{s}^{2}\right)_{s, \perp}}\right]^{1 / 2} \\
& \mathrm{~m}_{s}^{2}=(s-2)(s+d-2)-s, \quad \mathrm{~m}_{s-1}^{\prime 2}=(s-1)(s+d-2)
\end{aligned}
$$

∇^{2} on symmetric transverse traceless tensors (curvature radius $r=1$) $d=2, s \geqslant 2$: [Gaberdiel, Gopakumar, Saha 10]; $d \geqslant 3$: [Gupta, Lal 12]
physical and ghost "mass" terms $\mathrm{m}_{s}^{2}=\Delta(\Delta-d)-s$ $\Delta=s+d-2$ and $\Delta^{\prime}=s+d-1 \quad$-dimensions of J_{s} and ∂J_{s} scalar $s=0: \quad-\nabla^{2}-2(d-2)$ and no ghost numerator

Compute determinants using $A d S$ heat kernel [Camporesi, Higuchi 92] spectral ζ-function in non-compact case
$\zeta(z)=\sum_{n} d_{n} \lambda_{n}^{-z} \rightarrow \int d u \mu(u) \lambda_{u}^{-z}$

$$
\Gamma_{1}\left(A d S_{d+1}\right)=-\frac{1}{2} \zeta(0) \ln \left(r^{2} \Lambda^{2}\right)-\frac{1}{2} \zeta^{\prime}(0), \quad \Lambda=\left(\varepsilon_{\mathrm{UV}}\right)^{-1} \rightarrow \infty
$$

- even $d+1$: \log UV divergence $\rightarrow \mathrm{IR}$ divergence in CFT on S^{d} must be absent - UV finiteness: $\sum_{s} \zeta_{s}(0)=0$
- odd $d+1: \zeta_{s}(0)=0$ but need to show that $\sum_{s} \zeta_{s}^{\prime}(0)=0$

For $\left(-\nabla^{2}+m^{2}\right)_{s \perp}, \quad m^{2}=\Delta(\Delta-d)-s$

$$
\zeta_{\Delta, s}(z)=c_{d} g_{s} \int_{0}^{\infty} d u \mu_{s}(u)\left[u^{2}+\left(\Delta-\frac{1}{2} d\right)^{2}\right]^{-z}
$$

$d=3:$
$c_{d}=\frac{2^{d-1}}{\pi} \frac{\operatorname{Vol}\left(A d S_{d+1}\right)}{\operatorname{Vol}\left(S^{d}\right)} \rightarrow \frac{8}{3 \pi}, \quad g_{s}=2 s+1$
$\mu_{s}=\frac{\pi u}{16}\left[u^{2}+\left(s+\frac{1}{2}\right)^{2}\right] \tanh \pi u$

UV finiteness of HS theory in $A d S_{4}$ vacuum [Giombi, Klebanov 13]

$$
\begin{aligned}
\sum_{s} \zeta_{s}(0) & =\zeta_{1,0}(0)+\sum_{s=1}^{\infty}\left[\zeta_{s+1, s}(0)-\zeta_{s+2, s-1}(0)\right] \\
& =\frac{1}{360}+\frac{1}{24} \sum_{s=1}^{\infty}\left(\frac{2}{15}-s^{2}+5 s^{4}\right)=0
\end{aligned}
$$

if regularized with Riemann ζ-function: $\zeta(0)=-\frac{1}{2}, \zeta(-2 n)=0$ (same if add cutoff $e^{-\epsilon s}, \epsilon \rightarrow 0$ and drop singular terms)

- this regularization should be required by symmetries of theory
- finiteness is automatic if \sum_{s} done for fixed UV cutoff Λ and then $\Lambda \rightarrow \infty$ can be demonstrated by first summing $\zeta_{s}(z)$ for arbitrary z one-loop UV finiteness applies to all bosonic massless HS theories in $A d S_{d+1}$

Vanishing of finite part of $\Gamma_{1}\left(A d S_{4}\right)$ [Giombi, Klebanov 13]

$$
\begin{aligned}
& \Gamma_{1}=-\frac{1}{2} \zeta_{1,0}^{\prime}(0)-\frac{1}{2} \sum_{s=1}^{\infty}\left[\zeta_{s+1, s}^{\prime}(0)-\zeta_{s+2, s-1}^{\prime}(0)\right] \\
& \zeta_{\Delta, s}^{\prime}(0)=-\frac{1}{3}(2 s+1) \int_{0}^{\Delta-\frac{3}{2}} d v v\left[v^{2}-\left(s+\frac{1}{2}\right)^{2}\right] \psi\left(v+\frac{1}{2}\right)
\end{aligned}
$$

HS tower part contribution exactly cancels against scalar part

$$
\zeta_{1,0}^{\prime}(0)=-\frac{1}{1152}-\frac{11}{2880} \ln 2-\frac{1}{8 \pi^{2}} \zeta(3)+\frac{1}{8} \zeta^{\prime}(-1)+\frac{5}{8} \zeta^{\prime}(-3)
$$

1-loop partition function in non-minimal HS theory in $A d S_{4}$ vanishes: consistent with no N^{0} term in Γ of free $U(N) \mathrm{CFT}$ on S^{3}

In minimal (even spin) HS theory - non-zero one-loop result:

$$
\Gamma_{1 \min }=\frac{1}{8} \ln 2-\frac{3}{16 \pi^{2}} \zeta(3)
$$

dual to $O(N)$ real scalar CFT where no N^{0} correction ?!

$$
\Gamma_{\text {free } \mathrm{O}(\mathrm{~N})}=N\left[\frac{1}{8} \ln 2-\frac{3}{16 \pi^{2}} \zeta(3)\right]
$$

Assume: minimal HS theory coupling $N-1$ not N [Giombi, Klebanov 13]:

$$
\begin{aligned}
& \Gamma_{0 \min }=(N-1) \bar{S}=(N-1)\left[\frac{1}{8} \ln 2-\frac{3}{16 \pi^{2}} \zeta(3)\right] \\
& \Gamma_{0 \min }+\Gamma_{1 \text { min }}=\Gamma_{\text {free }}(\mathrm{N})
\end{aligned}
$$

evidence for $g_{\min }^{-1}=N-1$ found also in $M^{d}=S^{1} \times S^{d}$ case

- same $N-1$ in minimal type B theory (dual to free Majorana fermions)
- in minimal "type C theory" (dual to real N vectors) coupling should be $N-2$ [Beccaria, AT 14]
open questions:
- true meaning of $N \rightarrow N-1$
(quantum shift, analogy with CS theory, cf. quantization of HS coupling,...)
- why classical action $\bar{S}\left(A d S_{4}\right)=\frac{1}{8} \ln 2-\frac{3}{16 \pi^{2}} \zeta(3)$
or there is some interpretational subtlety ?

General d : free scalar CFT on $M^{d}=S^{d} \leftrightarrow$ HS theory in $A d S_{d+1}$

- Vasiliev theory in $A d S_{d+1}$: totally symm. ϕ_{s} plus $m^{2}=-2(d-2)$ scalar same spectrum as bilinear primaries in scalar CFT
- similar results about matching of partition functions as in $d=3$, e.g.,

UV divergences vanish for any $d: \sum_{s} \zeta_{s}(0)=0$

- use of spectral zeta-function
$\zeta_{\Delta, s}(z)=c_{d} g_{s} \int_{0}^{\infty} d u \mu_{s}(u)\left[u^{2}+\left(\Delta-\frac{1}{2} d\right)^{2}\right]^{-z}$
suggests natural regularization: [Giombi, Klebanov, Safdi 14]
first sum over spins for fixed z and then analytically continue in z;
equivalent to cutoff $e^{-\epsilon \bar{s}}, \quad \bar{s} \equiv s+\frac{1}{2}(d-3)$
(same as Riemann zeta-function reg. in $d=3$ only)
$\Gamma_{1}=-\frac{1}{2} \zeta_{1,0}^{\prime}(0)-\left.\frac{1}{2} \sum_{s=1}^{\infty} e^{-\epsilon \bar{s}}\left[\zeta_{s+1, s}^{\prime}(0)-\zeta_{s+2, s-1}^{\prime}(0)\right]\right|_{\epsilon \rightarrow 0, \text { finite }}$

Odd $d: \quad A d S_{4}, A d S_{6}, A d S_{8}, \ldots$.
$\Gamma_{\mathrm{CFT}}\left(S^{d}\right)=$ finite $\sim N$, should be equal to $\Gamma_{0}\left(A d S_{d+1}\right)=N \bar{S}$

- $\Gamma_{0}=N \bar{S}$ is finite:
regularized $\operatorname{Vol}\left(A d S_{d+1}\right)=\pi^{d / 2} \Gamma\left(-\frac{1}{2} d\right) \quad($ drop power IR $\infty)$
- non-minimal theory $(s=1,2,3, \ldots): \quad \Gamma_{1}\left(A d S_{d+1}\right)=0$
- minimal theory ($s=2,4,6, \ldots$): find non-trivial identity (as in $d=3$)

$$
\Gamma_{1 \min }\left(A d S_{d+1}\right)=\Gamma_{\text {conf. scalar }}\left(S^{d}\right)
$$

- consistent with AdS/CFT if minimal HS theory coupling is $N-1$

Even $d: \quad A d S_{5}, A d S_{7}, A d S_{9}, \ldots$

- $\Gamma_{\mathrm{CFT}}\left(S^{d}\right)$ has UV divergence $=-\frac{1}{2} N \zeta(0) \ln \left(\Lambda^{2} r^{2}\right)$
$\zeta(0)=B_{d}\left(S^{d}\right)=-4 \mathrm{a}_{d}, \quad \mathrm{a}_{d}=$ conformal anomaly of scalar in S^{d}
$B_{d} \sim \int\left(\mathrm{a}_{d} \mathcal{E}_{d}+\sum_{k} \mathrm{c}_{k} C_{\ldots} \ldots . C_{\ldots .}\right) \rightarrow-2 \mathrm{a}_{d} \chi\left(S^{d}\right)$
$\mathrm{a}_{4}=\frac{1}{360}, \quad \mathrm{a}_{6}=-\frac{1}{4 \times 756}, \quad \mathrm{a}_{8}=\frac{23}{4 \times 113400}, \ldots$
- corresponds to \log IR divergence of regularized $A d S_{d+1}$ volume:
$\operatorname{Vol}\left(A d S_{d+1}\right)=\frac{2(-1)^{d / 2} \pi^{d / 2}}{\Gamma\left(1+\frac{1}{2} d\right)} \ln R, \quad R=\varepsilon_{\mathrm{IR}}{ }^{-1} \rightarrow \infty$
- $\ln R$ term in classical HS action $\Gamma_{0}=N \bar{S} \sim N \operatorname{Vol}\left(A d S_{d+1}\right)$ should match $\ln \Lambda=\ln \varepsilon_{\mathrm{UV}}^{-1}$ term in $\Gamma_{\mathrm{CFT}}\left(S^{d}\right): \quad \varepsilon_{\mathrm{IR}}=\varepsilon_{\mathrm{UV}}=\varepsilon$
- non-minimal theory: 1-loop correction indeed vanishes $\Gamma_{1}\left(A d S_{d+1}\right)=0$
- minimal theory: need again $N \rightarrow N-1$ in classical HS action since

$$
\Gamma_{1 \min }\left(A d S_{d+1}\right)=\Gamma_{\text {conf. scalar }}\left(S^{d}\right)
$$

Scalar theory in $d=4$ or symmetric HS theory in $A d S_{5}$:

$$
\Gamma_{1}\left(A d S_{5}\right)=-\mathrm{a} \ln \varepsilon_{\mathrm{IR}}
$$

- in non-minimal theory:

$$
\mathrm{a}=-\frac{1}{720} \sum_{s=1}^{\infty} s^{2}(s+1)^{2}[14 s(s+1)+3]=-\frac{1}{72} \zeta(-3)-\frac{7}{240} \zeta(-5)=0
$$

- in minimal theory:

$$
\begin{aligned}
\mathrm{a}_{\min } & =-\frac{1}{720} \sum_{s=2,4, \ldots}^{\infty} s^{2}(s+1)^{2}[14 s(s+1)+3] \\
& =-\frac{1}{9} \zeta(-3)-\frac{16}{15} \zeta(-5)=\frac{1}{360}=\mathrm{a}_{4} \text { scalar }
\end{aligned}
$$

agrees with $N \rightarrow N-1$ coupling shift

CFT in $M^{d}=S_{\beta}^{1} \times S^{d-1} \leftrightarrow$ HS theory in thermal $A d S_{d+1}$

[Giombi, Klebanov, AT 14]

- CFT_{d} in radial quantization: operators in $R^{d} \rightarrow$ states in $R_{t} \times S^{d-1}$ spectrum of dimensions / energies - in finite $T=\beta^{-1}$ partition function
- dual theory on thermal quotient of $\left(A d S_{d+1}\right)_{\beta}$ with boundary $S_{\beta}^{1} \times S^{d-1}$
- check matching of thermal partition functions $=$ free energies also: Casimir energy in $R_{t} \times S^{d-1} \rightarrow$ vacuum energy in $A d S_{d+1}$
- matching implied by equivalence of the spectra but non-trivial:
(i) singlet constraint in CFT; (ii) summation over spins in AdS
- singlet constraint: $O\left(N^{0}\right)$ term in CFT free energy no longer $=0$; one-loop correction in HS theory in $\left(A d S_{d+1}\right)_{\beta}$ no longer $=0$
- HS vacuum energy in $A d S_{d+1}$: vanishes after sum over spins

Standard relations: $\quad \mathrm{CFT}_{d}$ in $R_{t} \times S^{d-1}$
one-particle or canonical partition function

$$
\mathcal{Z}(\beta)=\operatorname{tr} e^{-\beta H}=\sum_{n} \mathrm{~d}_{n} e^{-\beta \omega_{n}}
$$

"energy" zeta-function

$$
\zeta_{E}(z)=\sum_{n} \mathrm{~d}_{n} \omega_{n}^{-z}=\frac{1}{\Gamma(z)} \int_{0}^{\infty} d \beta \beta^{z-1} \mathcal{Z}(\beta)
$$

Casimir or vacuum energy

$$
E_{c}=\frac{1}{2} \sum_{n} \mathrm{~d}_{n} \omega_{n}=\frac{1}{2} \zeta_{E}(-1)
$$

multi-particle or grand canonical partition function Z and free energy

$$
\begin{aligned}
& \ln Z(\beta)=\operatorname{tr} \ln \left(1-e^{-\beta H}\right)^{-1}=-\sum_{n} d_{n} \ln \left(1-e^{-\beta \omega_{n}}\right) \\
& F_{\beta}=-\ln Z(\beta)=-\sum_{m=1}^{\infty} \frac{1}{m} \mathcal{Z}(m \beta)
\end{aligned}
$$

Free conformal scalar in $S_{\beta}^{1} \times S^{d-1}$:

$$
\begin{aligned}
& \Gamma=-\ln Z=\frac{1}{2} \ln \operatorname{det} \Delta_{0}, \quad \Delta_{0}=-\nabla^{2}+\frac{d-2}{4(d-1)} R \\
& \Delta_{0}=-\partial_{t}^{2}+\Delta_{S^{d-1}}, \quad \Delta_{S^{d-1}}=-\nabla_{S^{d-1}}^{2}+\frac{1}{4}(d-2)^{2}
\end{aligned}
$$

spectrum of $\Delta_{S^{d-1}}$

$$
\lambda_{n}=\omega_{n}^{2}, \quad \omega_{n}=n+\frac{1}{2}(d-2), \quad \mathrm{d}_{n}=2\left[n+\frac{1}{2}(d-2)\right] \frac{(n+d-3)!}{(d-2)!n!}
$$

eigenvalues of $\Delta_{0}: \quad \lambda_{k, n}=\left(\frac{2 \pi k}{\beta}\right)^{2}+\omega_{n}^{2}$

$$
\zeta_{\Delta_{0}}(z)=\sum_{k=-\infty}^{\infty} \sum_{n=0}^{\infty} \mathrm{d}_{n}\left(\lambda_{k, n}\right)^{-z}
$$

In general:

$$
\begin{aligned}
& \Gamma=-\zeta_{\Delta_{0}}(0) \ln \Lambda-\frac{1}{2} \zeta_{\Delta_{0}}^{\prime}(0) \equiv \widehat{F}=\widehat{F}_{\infty}+\widehat{F}_{c}+\widehat{F}_{\beta} \\
& \widehat{F}_{\infty}=a_{d} \ln \Lambda, \quad \widehat{F}_{c}=\beta E_{c}=\frac{1}{2} \beta \sum_{n=0}^{\infty} \mathrm{d}_{n} \omega_{n} \\
& \widehat{F}_{\beta}=\beta F(\beta)=\sum_{n=0}^{\infty} \mathrm{d}_{n} \ln \left(1-e^{-\beta \omega_{n}}\right)=-\sum_{m=1}^{\infty} \frac{1}{m} \mathcal{Z}(m \beta)
\end{aligned}
$$

Explicitly: $\quad \widehat{F}_{\infty}=0, \quad a_{d}=0, \quad \chi\left(S^{1} \times S^{d-1}\right)=0$

$$
\begin{array}{llrl}
d=\text { odd } \geqslant 3: \quad \widehat{F}=\widehat{F}_{\beta} ; & d=\text { even } \geqslant 4: \quad \widehat{F} & =\beta E_{c}+\widehat{F}_{\beta} \\
\widehat{F}_{\beta}=-\sum_{m=1}^{\infty} \frac{1}{m} \mathcal{Z}_{0}(m \beta), & \mathcal{Z}_{0}(\beta)=\sum_{n=0}^{\infty} \mathrm{d}_{n} e^{-\beta \omega_{n}} & =\frac{q^{\frac{1}{2}(d-2)}\left(1-q^{2}\right)}{(1-q)^{d}}
\end{array}
$$

Casimir energy: $\quad E_{c}=\frac{1}{2} \zeta_{E}(-1)$

$$
\begin{aligned}
& E_{c}=\left.\frac{1}{2} \sum_{n=0}^{\infty} \mathrm{d}_{n}\left(\omega_{n}\right)^{-z}\right|_{z \rightarrow-1}=\left.\sum_{n=0}^{\infty} \frac{(n+d-3)!}{(d-2)!n!}\left[n+\frac{1}{2}(d-2)\right]^{-2 z}\right|_{z \rightarrow-1} \\
& E_{c}^{(d=\mathrm{odd})}=0, \quad E_{c}^{(d=\mathrm{even})}=\sum_{q=0}^{\frac{1}{2} d-2} \kappa_{q} \zeta(2 q+1-d), \\
& E_{c}^{(2)}=\zeta(-1)=-\frac{1}{12}, \quad E_{c}^{(4)}=\frac{1}{2} \zeta(-3)=\frac{1}{240}, \ldots
\end{aligned}
$$

Interpretation of one-particle partition function $\mathcal{Z}_{0}(\beta)$ in R^{d}

- counts conf. operators $\mathcal{O}_{m_{1} \ldots m_{n}}=\partial_{m_{1}} \ldots \partial_{m_{n}} \Phi$ in R^{d} modulo $\partial^{2} \Phi=0$ [Cardy 91; Kutasov, Larsen 00]

$$
\begin{gathered}
\Delta(\Phi)=\frac{1}{2}(d-2), \Delta\left(\mathcal{O}_{m_{1} \ldots m_{n}}\right)=n+\frac{1}{2}(d-2), \quad \mathrm{d}_{n}=\binom{n+d-1}{d-1}-\binom{n+d-3}{d-1} \\
\mathcal{Z}_{0}=\sum_{\mathcal{O}} q^{\Delta \mathcal{O}}=\sum_{n=1}^{\infty} \mathrm{d}_{n} q^{n+\frac{1}{2}(d-2)}=\frac{q^{\frac{1}{2}(d-2)}\left(1-q^{2}\right)}{(1-q)^{d}}
\end{gathered}
$$

(e.g. $\prod_{k=1}^{d}\left(1+\partial_{k}+\partial_{k}^{2}+\ldots\right)$ gives $(1-q)^{-d}$ and $1-q^{2}$ is subtr. of e.o.m.)

- also: character of scalar (singleton) representation of $S O(d, 2)$ [Dolan 05]
- AdS/CFT: need to count $U(N)$ invariant or singlet operators $\Phi_{i}^{*} \partial_{m_{1}} \ldots \partial_{m_{n}} \Phi_{i}+\ldots$
- Singlet constraint can be implemented in path integral by integrating over flat $U(N)$ gauge field with non-trivial holonomy in S^{1}
- Partition function counting singlet operators turns out to be square of \mathcal{Z}_{0} :

$$
\mathcal{Z}_{0}(\beta) \rightarrow \mathcal{Z}_{\mathrm{U}(\mathrm{~N})}(\beta)=\left[\mathcal{Z}_{0}(\beta)\right]^{2}=\frac{q^{d-2}(1+q)^{2}}{(1-q)^{2 d-2}}, \quad q=e^{-\beta}
$$

- scalar partition function $\sim N ; \quad$ singlet partition function $\sim N^{0}$

CFT partition function with singlet constraint

- general relation: [Skagerstam 84]

$$
Z=\exp \sum_{m=1}^{\infty} \frac{1}{m} \mathcal{Z}\left(q^{m}\right) \rightarrow Z_{G}=\int[d g] \exp \sum_{m=1}^{\infty} \frac{1}{m} \chi\left(g^{m}\right) \mathcal{Z}\left(q^{m}\right)
$$

χ - character of corresponding rep. of symmetry group G

- Direct derivation from scalar partition function on $S_{\beta}^{1} \times S^{d-1}$: [Sundborg 00; Aharony et al 03; Schnitzer 04] couple complex $U(N)$ scalars Φ_{i} to gauge field with const holonomy in S^{1}

$$
\begin{aligned}
& \partial_{t}^{2} \rightarrow\left(\partial_{t}+A_{0}\right)^{2}, \quad A_{0}=g^{-1} \partial_{0} g, \quad g=\operatorname{diag}\left(e^{i \frac{\alpha_{1}}{\beta} t}, \ldots, e^{i \frac{\alpha_{N}}{\beta} t}\right) \\
& Z_{\mathrm{U}(\mathrm{~N})}=\int \prod_{k=1}^{N} d \alpha_{k} e^{-\widetilde{F}(\alpha, \beta)}, \quad \widetilde{F}=-\sum_{i \neq j}^{N} \ln \left|\sin \frac{\alpha_{i}-\alpha_{j}}{2}\right|+\bar{F}(\alpha, \beta) \\
& \bar{F}=\ln \operatorname{det}\left[-\left(\partial_{t}+A_{0}\right)^{2}+\Delta_{S^{d-1}}\right]=\sum_{i=1}^{N} \sum_{k, n}^{\infty} \mathrm{d}_{n} \ln \left[\frac{\left(2 \pi k+\alpha_{i}\right)^{2}}{\beta^{2}}+\omega_{n}^{2}\right] \\
& =-\sum_{m=1}^{\infty} \frac{1}{m} c_{m}(\alpha) \mathcal{Z}_{0}(m \beta),
\end{aligned} \quad c_{m}(\alpha)=2 \sum_{i=1}^{N} \cos m \alpha_{i} .
$$

Large N limit:
$\left\{\alpha_{i}\right\} \rightarrow \rho(\alpha) ; \quad$ measure $\sim N^{2}, \bar{F} \sim N$
saddle point $\rho(\alpha)=\frac{1}{2 \pi}+\frac{1}{N} \widetilde{\rho}(\alpha)$; integrate over $\widetilde{\rho}$: [Shenker, Yin 11]

$$
\begin{aligned}
& \widehat{F}_{\mathrm{U}(\mathrm{~N})}=-\ln Z_{\mathrm{U}(\mathrm{~N})}=2 N \beta E_{c}+\widehat{F}_{\beta}+O\left(N^{-1}\right), \\
& \widehat{F}_{\beta}=-\sum_{m=1}^{\infty} \frac{1}{m} \mathcal{Z}_{\mathrm{U}(\mathrm{~N})}(m \beta), \quad \mathcal{Z}_{\mathrm{U}(\mathrm{~N})}(\beta)=\left[\mathcal{Z}_{0}(\beta)\right]^{2}
\end{aligned}
$$

- in real scalar $O(N)$ case: [Giombi, Klebanov, AT 14; Jevicki et al 14]

$$
\mathcal{Z}_{\mathrm{O}(\mathrm{~N})}(\beta)=\frac{1}{2}\left[\mathcal{Z}_{0}(\beta)\right]^{2}+\frac{1}{2} \mathcal{Z}_{0}(2 \beta)=\frac{1}{2} \frac{q^{d-2}(1+q)^{2}}{(1-q)^{2 d-2}}+\frac{1}{2} \frac{q^{d-2}\left(1+q^{2}\right)}{\left(1-q^{2}\right)^{d-1}}
$$

$O\left(N^{0}\right)$ terms in CFT free energy should match 1-loop terms in free energies of corresponding HS theories in $A d S_{d+1}$

Higher spin partition function in thermal AdS_{d+1} with $S^{1} \times S^{d-1}$ bndry

$$
\begin{aligned}
& Z=\prod_{s} Z_{s}=e^{-\widehat{F}(\beta)}, \quad \widehat{F}=\sum_{s} \widehat{F}^{(s)}, \quad \widehat{F}^{(s)}=-\ln Z_{s} \\
& Z_{s}=\left(\frac{\operatorname{det}\left[-\nabla^{2}+(s-1)(s+d-2)\right]_{s-1, \perp}}{\operatorname{det}\left[-\nabla^{2}+(s-2)(s+d-2)-s\right]_{s, \perp}}\right)^{1 / 2}
\end{aligned}
$$

\widehat{F} is UV finite as in S^{4} bndry case: a ${ }_{d+1}=0$ (local property of $A d S_{d+1}$)

$$
\widehat{F}=\widehat{F}_{c}+\widehat{F}_{\beta}, \quad \widehat{F}_{c}=\beta E_{c}, \quad \widehat{F}_{\beta}=\beta F(\beta)
$$

To compute non-trivial part \widehat{F}_{β} :

- Hamiltonian approach [Allen, Davis 83; Gibbons, Perry, Pope 06] and group theory to determine energy spectrum of spin s in global AdS_{d+1} with reflective boundary conditions [Avis et al; Breitenlohner, Freedman 82]
- path integral approach - heat kernel for H^{d+1} [Camporesi, Higuchi 92] and method of images - thermal $A d S_{d+1}$ as quotient H^{d+1} / Z
[Gopakumar, Gupta, Lal 11]

Temperature-dependent part of AdS free energy

$$
F_{\beta}^{(s)}=-\sum_{m=1}^{\infty} \frac{1}{m} \mathcal{Z}_{s}(m \beta), \quad \mathcal{Z}_{s}(\beta)=\frac{\mathrm{d}_{s} q^{s+d-2}-\mathrm{d}_{s-1} q^{s+d-1}}{(1-q)^{d}}
$$

$\mathrm{d}_{s}=2\left[s+\frac{1}{2}(d-2)\right] \frac{(s+d-3)!}{(d-2)!s!}-$ STT tensors in d dimensions
$\left.\mathrm{d}_{s}\right|_{d=3}=2 s+1,\left.\quad \mathrm{~d}_{s}\right|_{d=4}=(s+1)^{2}, \ldots$
From CFT_{d} side: \mathcal{Z}_{s} is character of $S O(d, 2)$ rep. containing spin s primary of $\operatorname{dim} \Delta=s+d-2$ and its descendants
[Dolan 05; Gibbons, Perry, Pope 06]
\bullet for HS theory with $\Delta=d-2$ scalar with $\mathcal{Z}_{0}^{(\Delta)}=\frac{q^{\Delta}}{(1-q)^{d}}$:

$$
\begin{aligned}
& F_{\beta}=\sum_{s=0}^{\infty} F_{\beta}^{(s)}=-\sum_{m=1}^{\infty} \frac{1}{m} \mathcal{Z}(m \beta) \\
& \mathcal{Z}(\beta)=\mathcal{Z}_{0}^{(d-2)}+\sum_{s=1}^{\infty} \mathcal{Z}_{s}(\beta)=\frac{q^{d-2}(1+q)^{2}}{(1-q)^{2 d-2}}
\end{aligned}
$$

matches N^{0} term in singlet-sector free energy of complex $U(N)$ scalar

- Non-trivial consistency check: bulk and boundary have same spectrum
- Interpretation: one-particle partition function as character $\mathcal{Z}_{s}(q)$ of $S O(d, 2)$: matching implied by group-theoretic Flato-Fronsdal type relation

$$
\begin{aligned}
& \{0,0\} \times\{0,0\}=(d-2 ; 0,0)+\bigoplus_{s=1}^{\infty}\left(d-2+s ; \frac{s}{2}, \frac{s}{2}\right) \\
& \quad\left[\mathcal{Z}_{0}(\beta)\right]^{2}=\mathcal{Z}_{0}^{(d-2)}(\beta)+\sum_{s=1}^{\infty} \mathcal{Z}_{s}(\beta)
\end{aligned}
$$

- For minimal Vasiliev theory in $A d S_{d+1}$:

$$
\begin{aligned}
& F_{\beta \min }=\sum_{s=0,2,4, . .}^{\infty} F_{\beta}^{(s)}=-\sum_{m=1}^{\infty} \frac{1}{m} \mathcal{Z}_{\min }(m \beta) \\
& \mathcal{Z}_{\min }(\beta)=\mathcal{Z}_{0}^{(d-2)}+\sum_{s=2,4, \ldots}^{\infty} \mathcal{Z}_{s}(\beta)=\frac{1}{2} \frac{q^{d-2}(1+q)^{2}}{(1-q)^{2 d-2}}+\frac{1}{2} \frac{q^{d-2}\left(1+q^{2}\right)}{\left(1-q^{2}\right)^{d-1}}
\end{aligned}
$$

matches order N^{0} term in free energy of $O(N)$ singlet-sector CFT group-theoretic interpretation?

Casimir energy

similar pattern of matching: order N in CFT to match classical HS part no 1-loop correction in non-minimal case: HS AdS vacuum energy vanishes

$$
\begin{aligned}
& \zeta_{E}(z)=\frac{1}{\Gamma(z)} \int_{0}^{\infty} d \beta \beta^{z-1} \mathcal{Z}(\beta), \quad \mathcal{Z}(\beta)=\frac{e^{-(d-2) \beta}\left(1+e^{-\beta}\right)^{2}}{\left(1-e^{-\beta}\right)^{2 d-2}} \\
& E_{c}=\frac{1}{2} \zeta_{E}(-1)=\sum_{s=0}^{\infty} E_{c, s}=0
\end{aligned}
$$

$\mathcal{Z}(\beta)=\mathcal{Z}(-\beta)$ property implies vanishing of $\zeta_{E}(-1)$ for all d
individual spin contributions:

$$
\begin{aligned}
& E_{c, s}=\frac{1}{2} \sum_{n=1}^{\infty}\binom{n+d-2}{d-1}\left[\mathrm{~d}_{s}(n+s+d-3)-\mathrm{d}_{s-1}(n+s+d-2)\right] \\
& d=3: \quad E_{c, s}=\frac{1}{8} s^{4}-\frac{1}{12} s^{2}+\frac{1}{240}
\end{aligned}
$$

$A d S_{4}$: $\quad E_{c, s}$ computed using standard ζ-function in n [Allen, Davis 83]

- $E_{v a c}=0$ in $\mathcal{N}>4$ extended gauged supergravities from susy sum rules $\sum_{s}(-1)^{2 s} d(s) s^{p}=0, \quad p<\mathcal{N}=1, \ldots, 8, \quad s=0, \frac{1}{2}, 1, \frac{3}{2}, 2$ $E_{c}=0$ in $\mathcal{N}>4$ extended gauged supergravities [Allen, Davis 83] and also at each KK level of spectrum of 11-d supergravity on S^{7} [Gibbons, Nicolai 84; Inami, Yamagishi 84]
- cancellation in purely bosonic HS theory:

$$
E_{c}\left(A d S_{4}\right)=\frac{1}{480}+\sum_{s=1}^{\infty}\left(\frac{1}{8} s^{4}-\frac{1}{12} s^{2}+\frac{1}{240}\right)=0
$$

since $\zeta(0)=-\frac{1}{2}, \zeta(-2)=\zeta(-4)=0$
$E_{c}\left(A d S_{5}\right)=-\frac{1}{1440} \sum_{s=0}^{\infty} s(s+1)\left[18 s^{2}(s+1)^{2}-14 s(s+1)-11\right]=0$

- instead of susy here ζ-function regul. (consistent with symmetries):
no need to use special prescription to sum over s in each d : automatically get zero if sum over spins is done first for finite z in $\zeta_{E}(z)$

Non-minimal vs minimal HS theory:

odd $d: \quad$ in CFT $E_{c}=0$ and in $A d S_{d+1}$ sum overs spins gives $E_{c}=0$ both in non-minimal (all s) and minimal (even s) HS theory even $d: \quad$ in CFT $E_{c} \sim N$ and should match classical HS action 1-loop $E_{c}=0$ in non-minimal case but $E_{c} \neq 0$ in minimal HS case: using $\zeta_{E}(z)$ find that

$$
E_{c}^{\min }=\sum_{s=0,2,4, \ldots} E_{c, s}=\sum_{n=0}^{\infty} \frac{(n+d-3)!}{(d-2)!n!}\left[n+\frac{1}{2}(d-2)\right]^{2}
$$

i.e. same as Casimir energy of single real conformal scalar in $R \times S^{d-1}$

- again consistent with $N \rightarrow N-1$ shift of coupling constant in minimal HS theory dual to $O(N)$ real scalar CFT
- equivalence of scalar Casimir energy in $R \times S^{d-1}$ and minimal HS energy in $A d S_{d+1}$ requires use of same (zeta-function) regularization of sum over radial quantum number n on both sides of AdS/CFT duality

Conclusions

- quantum tests of vectorial - higher spin AdS/CFT
- massless HS theories in $A d S_{d+1}$ at one loop:

UV finite partition function; vanishing vac energy; matching free energies

- importance of definition / regularization of sum over infinite set of spins

Questions:

- leading large N term - classical action of Vasiliev theory?
- meaning of $N \rightarrow N-1$ shift in minimal HS theory?
- correlation functions:
sum over spins prescription in intermediate channel; consistency with $N \rightarrow N-1$; etc
$\mathrm{AdS}_{5} / \mathrm{CFT}_{4}: \quad$ mixed $S O(2,4)$ representations
- type A HS theory dual to $U(N)$ or $O(N)$ scalars:
bilinear currents are totally symmetric traceless tensors
- $d \geqslant 4$: conformal fields and dual HS in AdS not only totally symmetric
- $d=4$: mixed-symmetry reps $-S O(4)$ Young tableau with two rows lengths $h_{1}=j_{1}+j_{2}=s, \quad h_{2}=j_{1}-j_{2}, \quad S U(2) \times S U(2)$ weights $\left(j_{1}, j_{2}\right)$ conformal fields in $S O(2,4)$ reps. $\quad\left(\Delta ; j_{1}, j_{2}\right)$
$j_{1}=j_{2}$: totally symmetric case
- such mixed-symmetry fields appear in e.g. $d=4$ free fermion or free Maxwell vector theory and dual type B and C HS theories in AdS_{5} and thus also in $\mathcal{N}=4$ Maxwell multiplet (superdoubleton) theory
- important for understanding (limits of) adjoint AdS/CFT

Aim:

- compute boundary conformal anomalies a and c; partition function and Casimir energy for generic $\left(\Delta ; j_{1}, j_{2}\right)$ field
- check AdS/CFT in type B and type C theories in AdS_{5}

AdS_{5}	CFT_{4} (singlet sector)
non-minimal type A theory $(2 ; 0,0)+\bigoplus_{s=1}^{\infty}\left(2+s ; \frac{s}{2}, \frac{s}{2}\right)$	N complex scalars : $U(N)$
$\begin{gathered} \text { minimal type A theory } \\ (2 ; 0,0)+\bigoplus_{s=2,4, \ldots}^{\infty}\left(2+s ; \frac{s}{2}, \frac{s}{2}\right) \end{gathered}$	N real scalars : $O(N)$
$\begin{gathered} \text { non-minimal type B theory } \\ 2(3 ; 0,0)+ \\ 2 \bigoplus_{s=1}^{\infty}\left(2+s ; \frac{s}{2}, \frac{s}{2}\right)+\bigoplus_{s=1}^{\infty}\left(2+s ; \frac{s+1}{2}, \frac{s-1}{2}\right)_{c} \end{gathered}$	N Dirac fermions : $U(N)$
$\begin{gathered} \text { minimal type B theory } \\ 2(3 ; 0,0)+ \\ \bigoplus_{s=1}^{\infty}\left(2+s ; \frac{s}{2}, \frac{s}{2}\right)+\bigoplus_{s=2,4, \ldots}^{\infty}\left(2+s ; \frac{s+1}{2}, \frac{s-1}{2}\right)_{c} \end{gathered}$	N Majorana fermions : $O(N)$
$\begin{gathered} \text { non-minimal type C theory } \\ 2(4 ; 0,0)+(4 ; 1,0)_{c}+ \\ 2 \bigoplus_{s=2}^{\infty}\left(2+s ; \frac{s}{2}, \frac{s}{2}\right)+\bigoplus_{s=2}^{\infty}\left(2+s ; \frac{s+2}{2}, \frac{s-2}{2}\right)_{c} \end{gathered}$	N complex Maxwell vectors : $U(N)$
$\begin{gathered} \text { minimal type C theory } \\ 2(4 ; 0,0)+ \\ \bigoplus_{s=2}^{\infty}\left(2+s ; \frac{s}{2}, \frac{s}{2}\right)+\bigoplus_{s=2,4, \ldots}^{\infty}\left(2+s ; \frac{s+2}{2}, \frac{s-2}{2}\right)_{c} \end{gathered}$	N real Maxwell vectors : $O(N)$

4d conformal anomaly

$$
\mathcal{A}=-\mathrm{a} \mathcal{E}+\mathrm{c} C^{2}+\mathrm{g} D^{2} R
$$

Casimir energy on S^{3} [Cappelli, Coste 89]

$$
E_{c}=\frac{3}{4}\left(\mathrm{a}+\frac{1}{2} \mathrm{~g}\right)
$$

g and E_{c} both depend on regularization (natural: ζ-function or heat kernel) $\mathcal{N} \geqslant 3$ supersymmetric case (e.g. $\mathcal{N}=4$ SYM)

$$
\mathcal{N} \geqslant 3 \text { susy }: \quad E_{c}=\frac{3}{4} \mathrm{a}, \quad \mathrm{a}=\mathrm{c}, \quad \mathrm{~g}=0
$$

- extract 4d conformal anomaly from bulk description:
(cf. "tree-level" 5d derivation of conf. anom. [Henningson, Skenderis 98]) 1-loop correction:
$\mathcal{O}=-D^{2}+X$ for 5 d field ϕ dual to 4 d field $\left(\Delta ; j_{1}, j_{2}\right)$ [Metsaev]

$$
\mathcal{O}=-D^{2}+X, \quad X=\Delta(\Delta-4)-h_{1}-\left|h_{2}\right|=(\Delta-2)^{2}-2 j_{1}
$$

on asymptotically AdS_{5} space $d s^{2}=z^{-2}\left[d z^{2}+g_{\mu \nu}(x, z) d x^{\mu} d x^{\nu}\right]$

1-loop partition function with Dirichlet-type "+" or Neumann-type "-" b.c.

$$
Z^{ \pm}=(\operatorname{det} \mathcal{O})_{ \pm}^{-1 / 2}
$$

boundary conformal anomaly $\mathcal{A}^{ \pm}$as variation of $Z^{ \pm}$:
$\delta \log Z^{ \pm}=-\frac{1}{(4 \pi)^{2}} \int d^{4} x \sqrt{g} \delta \sigma \mathcal{A}^{ \pm}, \quad \delta g_{\mu \nu}=2 \delta \sigma g_{\mu \nu}$
early attempt [Mansfield, Nolland, Ueno 03]: $\mathcal{A}^{+}=(\Delta-2) \overline{\mathcal{A}}$
in general $\mathcal{A}=\mathcal{A}^{-}-\mathcal{A}^{+}=-2 \mathcal{A}^{+}$and $\overline{\mathcal{A}}$ is function of $\left(\Delta, j_{1}, j_{2}\right)$
now found explicitly in case of S^{4} boundary; conjectured for $R_{\mu \nu}=0$

Partition function on $S^{1} \times S^{3}$ and Casimir energy

one-particle partition functions same as conformal characters [Dolan 05]
"massive" conformal rep. $\left(\Delta ; j_{1}, j_{2}\right): \quad \Delta>2+j_{1}+j_{2}$
long representation of $S O(2,4)$ - massive $\mathrm{AdS}_{5} \mathrm{HS}$ field partition function

$$
\widehat{\mathcal{Z}}^{+}\left(\Delta ; j_{1}, j_{2}\right)=\left(2 j_{1}+1\right)\left(2 j_{2}+1\right) \frac{q^{\Delta}}{(1-q)^{4}}
$$

"massless" rep: $\Delta=2+j_{1}+j_{2}$ corresponds to conserved current in CFT
massless HS gauge field in AdS_{5} (subtract ghost in 5d or cons. cond. in 4d)

$$
\begin{aligned}
& \mathcal{Z}^{+}\left(\Delta ; j_{1}, j_{2}\right)=\widehat{\mathcal{Z}}^{+}\left(\Delta ; j_{1}, j_{2}\right)-\widehat{\mathcal{Z}}^{+}\left(\Delta+1 ; j_{1}-\frac{1}{2}, j_{2}-\frac{1}{2}\right) \\
& \mathcal{Z}^{+}\left(\Delta ; j_{1}, j_{2}\right)=\mathcal{Z}_{+}\left(\Delta ; j_{1}, j_{2}\right)=\frac{q^{\Delta}}{(1-q)^{4}}\left[\left(2 j_{1}+1\right)\left(2 j_{2}+1\right)-4 q j_{1} j_{2}\right]
\end{aligned}
$$

Casimir energy on S^{3}
compute from \mathcal{Z} :

$$
\begin{aligned}
& E_{c}=\frac{1}{2}(-1)^{F} \sum_{n} \mathrm{~d}_{n} \omega_{n}=\frac{1}{2}(-1)^{F} \zeta_{E}(-1) \\
& \zeta_{E}(z)=\sum_{n} \frac{\mathrm{~d}_{n}}{\omega_{n}^{z}}=\frac{1}{\Gamma(z)} \int_{0}^{\infty} d \beta \beta^{z-1} \mathcal{Z}\left(e^{-\beta}\right)
\end{aligned}
$$

$E_{c}\left(\Delta ; j_{1}, j_{2}\right)=E_{c}^{-}-E_{c}^{+}=-2 E_{c}^{+}$
massive rep:

$$
\begin{aligned}
\widehat{E}_{c}\left(\Delta ; j_{1}, j_{2}\right)= & -\frac{1}{720}(-1)^{2 j_{1}+2 j_{2}}\left(2 j_{1}+1\right)\left(2 j_{2}+1\right)(\Delta-2) \\
& \times\left[6(\Delta-2)^{4}-20(\Delta-2)^{2}+11\right]
\end{aligned}
$$

massless rep. $\Delta=2+j_{1}+j_{2}$

$$
E_{c}\left(\Delta ; j_{1}, j_{2}\right)=\widehat{E}_{c}\left(\Delta ; j_{1}, j_{2}\right)-\widehat{E}_{c}\left(\Delta+1 ; j_{1}-\frac{1}{2}, j_{2}-\frac{1}{2}\right)
$$

Conformal anomaly a-coefficient euclidean AdS_{5} with S^{4} boundary

$$
\log Z^{+}=-\frac{1}{2} \log \operatorname{det}_{+} \mathcal{O}=\frac{1}{2} \zeta^{\prime}(0)=-4 \mathrm{a}^{+} \log \mathrm{R}+\ldots
$$

$\zeta(z)$ from \mathbb{H}^{5} heat kernel for "massive" 5 d operator \mathcal{O} gives for $\mathrm{a}=-2 \mathrm{a}^{+}$in massive case

$$
\begin{aligned}
\widehat{\mathrm{a}}\left(\Delta ; j_{1}, j_{2}\right)= & \frac{1}{720}(-1)^{2\left(j_{1}+j_{2}\right)}\left(2 j_{1}+1\right)\left(2 j_{2}+1\right)(\Delta-2) \\
& \times\left[-3(\Delta-2)^{4}+10\left(j_{1}^{2}+j_{2}^{2}+j_{1}+j_{2}+\frac{1}{2}\right)(\Delta-2)^{2}\right. \\
& \left.-15\left(j_{1}-j_{2}\right)^{2}\left(j_{1}+j_{2}+1\right)^{2}\right]
\end{aligned}
$$

in massless case:

$$
\mathrm{a}\left(\Delta ; j_{1}, j_{2}\right)=\widehat{\mathrm{a}}\left(\Delta ; j_{1}, j_{2}\right)-\widehat{\mathrm{a}}\left(\Delta+1 ; j_{1}-\frac{1}{2}, j_{2}-\frac{1}{2}\right)
$$

Conformal anomaly c-coefficient
if a is known, to find c compute $\mathrm{c}-\mathrm{a}$ on Ricci flat 4 d space: $\mathcal{A}=(\mathrm{c}-\mathrm{a}) \mathcal{E}$ for low-spin massive fields $\mathrm{c}=-2 \mathrm{c}^{+}$[Mansfield et al 03; Ardehali et al 13]

$$
\begin{aligned}
& \widehat{\mathrm{c}}^{+}-\widehat{\mathrm{a}}^{+}=-\frac{1}{360}(-1)^{2\left(j_{1}+j_{2}\right)}(\Delta-2) d\left(j_{1}, j_{2}\right)\left[1+f\left(j_{1}\right)+f\left(j_{2}\right)\right] \\
& d\left(j_{1}, j_{2}\right)=\left(2 j_{1}+1\right)\left(2 j_{2}+1\right), \quad f(j) \equiv j(j+1)[6 j(j+1)-7]
\end{aligned}
$$

proposal in general case:

$$
\begin{aligned}
& \widehat{\mathrm{c}}\left(\Delta ; j_{1}, j_{2}\right)=\frac{1}{720}(-1)^{2\left(j_{1}+j_{2}\right)}\left(2 j_{1}+1\right)\left(2 j_{2}+1\right)(\Delta-2) \\
& \quad \times\left[-6(\Delta-2)^{4}+20(\Delta-2)^{2}+6\left(j_{1}^{4}+j_{2}^{4}\right)+20 j_{1}^{2} j_{2}^{2}+12\left(j_{1}^{3}+j_{2}^{3}\right)\right. \\
& \left.\quad+20\left(j_{1}^{2} j_{2}+j_{1} j_{2}^{2}\right)-6\left(j_{1}^{2}+j_{2}^{2}\right)+20 j_{1} j_{2}-12\left(j_{1}+j_{2}\right)-8\right]
\end{aligned}
$$

Thus: E_{c}, a and c are (5-th order) polynomials in $\Delta-2$, and in j_{1}, j_{2}

$E_{c}, \mathrm{a}, \mathrm{c}$ for superconformal $S U(2,2 \mid \mathcal{N})$ multiplets

- $\mathcal{N}=1$ superconformal multiplets
$\mathcal{N}=1$ multiplets containing $\left(\Delta ; j_{1}, j_{2}\right)$ as lowest dim member
(i) long massive multiplets; (ii) shortened ones
(iia) chiral/anti-chiral; (iib) right-handed/left-handed semi-long (SLII/SLI)
$S O(2,4)$ representation content of massive long $\mathcal{N}=1$ multiplet

$$
\begin{aligned}
& {\left[\Delta ; j_{1}, j_{2}\right]_{\text {long }}=\left(\Delta ; j_{1}, j_{2}\right)+\left(\Delta+\frac{1}{2} ; j_{1}+\frac{1}{2}, j_{2}\right)+\left(\Delta+\frac{1}{2} ; j_{1}-\frac{1}{2}, j_{2}\right)} \\
& +\left(\Delta+\frac{1}{2} ; j_{1}, j_{2}+\frac{1}{2}\right)+\left(\Delta+\frac{1}{2} ; j_{1}, j_{2}-\frac{1}{2}\right)+2\left(\Delta+1 ; j_{1}, j_{2}\right) \\
& +\left(\Delta+1 ; j_{1}+\frac{1}{2}, j_{2}+\frac{1}{2}\right)+\left(\Delta+1 ; j_{1}+\frac{1}{2}, j_{2}-\frac{1}{2}\right) \\
& +\left(\Delta+1 ; j_{1}-\frac{1}{2}, j_{2}+\frac{1}{2}\right)+\left(\Delta+1 ; j_{1}-\frac{1}{2}, j_{2}-\frac{1}{2}\right) \\
& +\left(\Delta+\frac{3}{2} ; j_{1}, j_{2}+\frac{1}{2}\right)+\left(\Delta+\frac{3}{2} ; j_{1}, j_{2}-\frac{1}{2}\right) \\
& +\left(\Delta+\frac{3}{2} ; j_{1}-\frac{1}{2}, j_{2}\right)+\left(\Delta+\frac{3}{2} ; j_{1}+\frac{1}{2}, j_{2}+\frac{1}{2}\right)+\left(\Delta+2 ; j_{1}, j_{2}\right) \\
& \text { along }=c_{\text {long }}=0, \quad E_{c \text { long }}=-\frac{1}{16}(-1)^{2\left(j_{1}+j_{2}\right)}\left(2 j_{1}+1\right)\left(2 j_{2}+1\right)(\Delta-1)
\end{aligned}
$$

E_{c} not proportional to a: g of the $D^{2} R$ is non-zero in $\mathcal{N}=1$ case
chiral short multiplet:

$$
\begin{gathered}
{[\Delta ; j, 0]_{\text {chiral }}=(\Delta ; j, 0)+\left(\Delta+\frac{1}{2} ; j+\frac{1}{2}, 0\right)+\left(\Delta+\frac{1}{2} ; j-\frac{1}{2}, 0\right)+(\Delta+1 ; j, 0)} \\
\mathrm{a}_{\text {chiral }}=\frac{1}{96}(-1)^{2 j}(2 j+1)(2 \Delta-3)\left(-2 \Delta^{2}+6 \Delta+6 j^{2}+6 j-3\right) \\
\mathrm{c}_{\text {chiral }}=-\frac{1}{48}(-1)^{2 j}(2 j+1)(2 \Delta-3)\left(\Delta^{2}-3 \Delta+j^{2}+j+1\right) \\
E_{c \text { chiral }}=-\frac{1}{384}(-1)^{2 j}(2 j+1)\left(16 \Delta^{3}-72 \Delta^{2}+94 \Delta-33\right)
\end{gathered}
$$

\mathcal{N}	ϕ	ψ	V_{μ}	E_{c}	a	c
1	-	1	1	$\frac{7}{64}$	$\frac{3}{16}$	$\frac{1}{8}$
2	2	2	1	$\frac{13}{96}$	$\frac{5}{24}$	$\frac{1}{6}$
3,4	6	4	1	$\frac{3}{16}$	$\frac{1}{4}$	$\frac{1}{4}$

$\mathcal{N}>1$ superconformal multiplets
Maxwell supermultiplets

$$
\mathcal{N}=3,4: \quad E_{c}=\frac{3}{4} \mathrm{a}, \quad \mathrm{a}=\mathrm{c}, \quad \mathrm{~g}=0
$$

$\mathcal{N}=4$ Maxwell multiplet same as $\mathcal{N}=4$ superdoubleton of $\operatorname{PSU}(2,2 \mid 4)$ $\{\mathcal{N}=4\}=\{1,0\}_{c}+4\left\{\frac{1}{2}, 0\right\}_{c}+6\{0,0\}$

$$
K(\{\mathcal{N}=4\})=K(\mathcal{N}=4 \text { Maxwell }), \quad K \equiv\left(E_{c}, \mathrm{a}, \mathrm{c}\right)
$$

\mathcal{N}	ϕ	Φ	ψ	Ψ	$T_{\mu \nu}$	V_{μ}	ψ_{μ}	$g_{\mu \nu}$	E_{c}	a	c
1	-	-	-	-	-	1	1	1	$\frac{47}{16}$	3	$\frac{17}{4}$
2	-	-	2	-	1	4	2	1	$\frac{145}{96}$	$\frac{41}{24}$	$\frac{13}{6}$
3	6	-	9	1	3	9	3	1	$\frac{3}{8}$	$\frac{1}{2}$	$\frac{1}{2}$
4	20	2	20	4	6	15	4	1	$-\frac{3}{4}$	-1	-1

Conformal supergravity multiplets
short multiplets with highest spin $2-4 d$ conformal supergravity multiplets

$$
\mathcal{N}=3,4: \quad E_{c}=\frac{3}{4} \mathrm{a}, \quad \mathrm{a}=\mathrm{c}
$$

Field	$\left(\Delta ; j_{1}, j_{2}\right)$	E_{c}	a	c
$\phi(\square)$	$(3 ; 0,0)$	$\frac{1}{240}$	$\frac{1}{360}$	$\frac{1}{120}$
$\Phi\left(\square^{2}\right)$	$(4 ; 0,0)$	$-\frac{3}{40}$	$-\frac{7}{90}$	$-\frac{1}{15}$
$\psi(\partial)$	$\left(\frac{5}{2} ; \frac{1}{2}, 0\right)+\left(\frac{5}{2} ; 0, \frac{1}{2}\right)$	$\frac{17}{960}$	$\frac{11}{720}$	$\frac{1}{40}$
$\Psi\left(\partial^{3}\right)$	$\left(\frac{7}{2} ; \frac{1}{2}, 0\right)+\left(\frac{7}{2} ; 0, \frac{1}{2}\right)$	$-\frac{29}{960}$	$-\frac{3}{80}$	$-\frac{1}{120}$
$T_{\mu \nu}(\square)$	$(3 ; 1,0)+(3 ; 0,1)$	$\frac{1}{40}$	$-\frac{19}{60}$	$\frac{1}{20}$
$V_{\mu}(\square)$	$\left(3 ; \frac{1}{2}, \frac{1}{2}\right)$	$\frac{11}{120}$	$\frac{31}{180}$	$\frac{1}{10}$
$\psi_{\mu}\left(\partial^{3}\right)$	$\left(\frac{7}{2} ; 1, \frac{1}{2}\right)+\left(\frac{7}{2} ; \frac{1}{2}, 1\right)$	$-\frac{141}{80}$	$-\frac{137}{90}$	$-\frac{149}{60}$
$g_{\mu \nu}\left(\square^{2}\right)$	$(4 ; 1,1)$	$\frac{553}{120}$	$\frac{87}{20}$	$\frac{199}{30}$

- $\mathcal{N}=4 \mathrm{CSG}+\operatorname{four} \mathcal{N}=4$ Maxwell is anomaly free [Fradkin, AT 81]
$K(\mathcal{N}=4 \mathrm{CSG})+4 K(\mathcal{N}=4$ Maxwell $)=0, \quad K=\left(E_{c}\right.$, a, c $)$
- $\mathcal{N}=4$ CSG multiplet: isomorphic to supercurrent multiplet of $\mathcal{N}=4$ Maxwell theory and to short massless multiplet of $5 \mathrm{~d} \mathcal{N}=8$ sugra with AdS_{5} vacuum isometry $\operatorname{PSU}(2,2 \mid 4)$
- 5d expressions for conf anomaly and Casimir energy for $\mathcal{N}=4$ CSG are directly related to 1 -loop contribution of $\mathcal{N}=85 \mathrm{~d}$ supergravity

$$
K(\mathcal{N}=4 \mathrm{CSG})=-2 K^{+}(\mathcal{N}=85 \mathrm{~d} \mathrm{SG})
$$

this is 1-loop generalization of tree-level relation [Liu, AT 98]

- implies that

$$
K^{+}(\mathcal{N}=85 \mathrm{~d} \mathrm{SG})=2 K(\mathcal{N}=4 \text { Maxwell })
$$

- this may be interpreted as expressing the fact that states of $\mathcal{N}=85 \mathrm{~d}$ supergravity are in product of two $\mathcal{N}=4$ superdoubletons [Gunaydin, Minic, Zagerman 98]

| spin $\left(j_{L}, j_{R}\right)$ | $S U(4)$ | $\operatorname{spin}\left(j_{L}, j_{R}\right)$ |
| :--- | :--- | :--- | :--- |
| $\left(j_{1}+1, j_{2}+1\right)$ | 1 | $\left(j_{1}, j_{2}-\frac{1}{2}\right)+\left(j_{1}-\frac{1}{2}, j_{2}\right)$ |
| $\left(j_{1}+1, j_{2}+\frac{1}{2}\right)+\left(j_{1}+\frac{1}{2}, j_{2}+1\right)$ | $4+4^{*}$ | $\left(j_{1}+\frac{1}{2}, j_{2}-1\right)+\left(j_{1}-1, j_{2}+\right.$ |
| $\left(j_{1}+\frac{1}{2}, j_{2}+\frac{1}{2}\right)$ | $1+15$ | $\left(j_{1}-\frac{1}{2}, j_{2}-\frac{1}{2}\right)$ |
| $\left(j_{1}+1, j_{2}\right)+\left(j_{1}, j_{2}+1\right)$ | $6+6$ | $\left(j_{1}, j_{2}-1\right)+\left(j_{1}-1, j_{2}\right)$ |
| $\left(j_{1}+\frac{1}{2}, j_{2}\right)+\left(j_{1}, j_{2}+\frac{1}{2}\right)$ | $4+4^{*}+20+20^{*}$ | $\left(j_{1}-\frac{1}{2}, j_{2}-1\right)+\left(j_{1}-1, j_{2}-\right.$ |
| $\left(j_{1}+1, j_{2}-\frac{1}{2}\right)+\left(j_{1}-\frac{1}{2}, j_{2}+1\right)$ | $4+4^{*}$ | $\left(j_{1}-1, j_{2}-1\right)$ |
| $\left(j_{1}, j_{2}\right)$ | $1+15+20^{\prime}$ | |
| $\left(j_{1}+\frac{1}{2}, j_{2}-\frac{1}{2}\right)+\left(j_{1}-\frac{1}{2}, j_{2}+\frac{1}{2}\right)$ | $6+6+10+10^{*}$ | |
| $\left(j_{1}+1, j_{2}-1\right)+\left(j_{1}-1, j_{2}+1\right)$ | $1+1$ | |

General long higher spin massless supermultiplet of $\operatorname{PSU}(2,2 \mid 4)$
general long massless $\mathcal{N}=4$ superconformal multiplet [Gunaydin et al 98] has spin range 4: 8 supercharges
conformal representations are massless: $\Delta=2+j_{1}+j_{2}$
are of $\left[j_{1}, j_{2}\right] \oplus\left[j_{2}, j_{1}\right] \quad\left(\left[j_{1}, j_{2}\right]\right.$ in table $)$
representing massless higher spin fields in AdS_{5}
or corresponding 4 d conformal higher spin fields for all choices of j_{1}, j_{2}

$$
\mathcal{N}=4: \quad E_{c}=\mathrm{a}=\mathrm{c}=0
$$

Applications to AdS/CFT

Adjoint $\mathrm{AdS}_{5} / \mathrm{CFT}_{4}$: 1-loop correction in IIB 10d supergravity on S^{5} type IIB superstring on $\mathrm{AdS}_{5} \times \mathrm{S}^{5}$ and $\mathcal{N}=4 S U(N)$ SYM theory $Z_{\text {SYM }}$ on $M^{4}=Z_{\text {string }}$ on asymptotically AdS_{5} with bndry M^{4} implies matching of conformal anomalies and Casimir energies direct comparison possible due to non-renormalization: on SYM side

$$
K(\mathcal{N}=4 \mathrm{SU}(\mathrm{~N}) \mathrm{SYM})=\left(N^{2}-1\right) \mathrm{k}, \quad K \equiv\left(E_{c}, a, c\right)
$$

$\mathrm{k}=\left(\frac{3}{16}, \frac{1}{4}, \frac{1}{4}\right)$ for single $\mathcal{N}=4$ Maxwell multiplet at N^{2} order (string tree level - classical type IIB supergravity) demonstrated in [Henningson, Skenderis 98] (conformal anomalies) and [Balasubramanian, Kraus 99] (vacuum energy)
string one-loop order: assume contributions of massive string modes vanish
(i) string modes: long $\operatorname{PSU}(2,2 \mid 4)$ multiplets, should not contribute
(ii) masses depend on 't Hooft coupling ($m^{2} \sim \alpha^{\prime-1} \sim \sqrt{\lambda}$)
contribution would contradict expectred non-renormalization

	$\left(\Delta ; j_{1}, j_{2}\right)$	$S U(4)$		$\left(\Delta ; j_{1}, j_{2}\right)$	SU(4)
$p \geq 2$	$\begin{gathered} (p ; 0,0) \\ \left(p+\frac{1}{2} ; \frac{1}{2}, 0\right) \\ (p+1 ; 1,0) \\ (p+1 ; 0,0) \\ (p+2 ; 0,0) \end{gathered}$	$\begin{gathered} (0, p, 0) \\ (0, p-1,1)_{c} \\ (0, p-1,0)_{c} \\ (0, p-2,2)_{c} \\ (0, p-2,0)_{c} \end{gathered}$	$p \geq 3$	$\left(p+\frac{3}{2} ; \frac{1}{2}, 0\right)$ $\left(p+\frac{5}{2} ; \frac{1}{2}, 0\right)$ $\left(p+2 ; \frac{1}{2}, \frac{1}{2}\right)$ $(p+2 ; 1,0)$ $(p+3 ; 1,0)$ $\left(p+\frac{5}{2} ; 1, \frac{1}{2}\right)$	$\begin{aligned} & (2, p-3,1)_{c} \\ & (0, p-3,1)_{c} \\ & (1, p-3,1)_{c} \\ & (2, p-3,0)_{c} \\ & (0, p-3,0)_{c} \\ & (1, p-3,0)_{c} \end{aligned}$
	$\begin{aligned} & \left(p+\frac{3}{2} ; \frac{1}{2}, 0\right) \\ & \left(p+1 ; \frac{1}{2}, \frac{1}{2}\right) \\ & \left(p+\frac{3}{2} ; 1, \frac{1}{2}\right) \\ & (p+2 ; 1,1) \end{aligned}$	$\begin{gathered} (0, p-2,1)_{c} c \\ (1, p-2,1) \\ (1, p-2,0)_{c} \\ (0, p-2,0) \end{gathered}$	$p \geq 4$	$\begin{aligned} & (p+2 ; 0,0) \\ & (p+3 ; 0,0) \\ & (p+4 ; 0,0) \\ & \left(p+\frac{5}{2} ; \frac{1}{2}, 0\right) \\ & \left(p+\frac{7}{2} ; \frac{1}{2}, 0\right) \\ & \left(p+3 ; \frac{1}{2}, \frac{1}{2}\right) \end{aligned}$	$\begin{gathered} (2, p-4,2) \\ (0, p-4,2)_{c} \\ (0, p-4,0) \\ (2, p-4,1)_{c} \\ (0, p-4,1)_{c} \\ (1, p-4,1) \end{gathered}$

Table 1: Field content of compactification of type IIB supergravity on S^{5}
$O\left(N^{0}\right)$ term should come from loop of massless string modes: one-loop correction in 10d type IIB supergravity compactified on S^{5} sum of contributions of massless $\mathcal{N}=85 d$ supergravity multiplet and tower of massive KK multiplets [Kim, Romans, van Nieuwenhuizen 85] thus should find

1-loop 10d IIB SG on $S^{5}: \quad E_{c}^{+}=-\frac{3}{16}, \quad \mathrm{a}^{+}=-\frac{1}{4}, \quad \mathrm{c}^{+}=-\frac{1}{4}$
[contributions of 5d fields with standard ("Dirichlet") b.c.: $K^{+}=-\frac{1}{2} K$]

$$
K^{+}\left(10 \mathrm{~d} \text { IIB SG on } \mathrm{S}^{5}\right)=-K(\mathcal{N}=4 \text { Maxwell })
$$

vacuum energy does not vanish in 1-loop type IIB supergravity on S^{5} different from $\mathcal{N}>4$ gauged SG in 4 d [Allen 83]
and 11d SG on S^{7} [Gibbons, Nicolai 84]
but similar to 11d SG on S^{4} [Beccaria, AT]
use general expressions for a, c, E_{c} and table of KK states to compute massless level: states of $5 \mathrm{~d} \mathcal{N}=8 \mathrm{SG}$ give $(p=2)$

$$
p=2: \quad E_{c}=\frac{3}{8}, \quad \mathrm{a}=\frac{1}{2}, \quad \mathrm{c}=\frac{1}{2}
$$

- same up to $-1 / 2$ as of $\mathcal{N}=44 \mathrm{~d}$ conformal supergravity multiplet $p=3$ and $p \geqslant 4$ massive KK multiplets give

$$
p \geq 3: \quad E_{c}=\frac{3 p}{16}, \quad \mathrm{a}=\frac{p}{4}, \quad \mathrm{c}=\frac{p}{4}
$$

- $K=\left(E_{c}, \mathrm{a}, \mathrm{c}\right)$ are thus universally described by $(p=2,3,4, \ldots)$
$K^{+}\left(\right.$KK level p of 10 d IIB SG on $\left.\mathrm{S}^{5}\right)=p K(\mathcal{N}=4$ Maxwell $)$
- applies also for $p=1$:
$\mathcal{N}=4$ superdoubleton multiplet $=$ Maxwell multiplet
linearity in $p: E_{c}$, a and c are 5 th order polynomials in $\Delta-2$ (and thus in p)
- non-linearity in p cancels out after multiplying by dimensions of $S O(6)$ reps and summing over the members of each supermultiplet
cf. 5d states at level p appear in product of $p \mathcal{N}=4$ doubletons [Gunaydin]
- how to sum over p : corect prescription

$$
\sum_{p=1}^{\infty} p=0, \quad \text { i.e. } \quad \sum_{p=2}^{\infty} p=-1
$$

interpretation: $p=1$ term $-\mathcal{N}=4$ Maxwell multiplet $=$ superdoubleton should not to be included - gauged away
cf. decoupled $U(1)$ D3-brane contribution or $S U(N)$ vs $U(N)$ on SYM side
true if use sharp cutoff $\sum_{p=1}^{P} p=\frac{1}{2} P^{2}+\frac{1}{2} P \rightarrow 0$
can be justified for E_{c} by ζ-function regularization directly in 10d regularization consistent with symmetries of theory
should be applied directly in 10d rather than in 5 d :
should be based on spectrum of original 10d operators

Vectorial $\mathrm{AdS}_{5} / \mathrm{CFT}_{4}$

no supersymmetry, free CFT at the boundary in any d
$d=4$ or AdS_{5} : first non-trivial case where mixed-symmetry representations appear in type B and type C theories
type C theory: dual to (complex or real) $N 4$ d Maxwell fields can be obtained by taking the product of two spin 1 doubletons complex Maxwell field case: $F_{\mu \nu}^{*}(x) F_{\kappa \rho}\left(x^{\prime}\right) \rightarrow F^{*} \partial \ldots \partial F$ dimension 4 states $F_{. .}^{*} F_{. .}$:
(i) scalar $F_{\mu \nu}^{*} F^{\mu \nu}$ and pseudoscalar $F_{\mu \nu}^{*} \widetilde{F}^{\mu \nu}$ in rep ($4 ; 0,0$);
(ii) antisymmetric tensor $F_{\mu[\nu}^{*} F_{\kappa] \mu}$ - massive selfdual + anti-selfdual rank 2 tensors: $(4 ; 1,0)_{c}=(4 ; 1,0)+(4 ; 0,1)$
(iii) spin 2 conserved stress tensor $(4 ; 1,1)$ and its parity-odd counterpart with one $F_{\mu \nu}$ replaced by $\widetilde{F}_{\mu \nu}$
(iv) conserved current with symmetries of Weyl tensor, i.e. massless state $(4 ; 2,0)_{c}$ described by Young tableu with 2 rows and 2 columns

AdS_{5}	CFT $_{4}$ (singlet sector)
non-minimal type A theory	N complex scalars : $U(N)$
$(2 ; 0,0)+\bigoplus_{s=1}^{\infty}\left(2+s ; \frac{s}{2}, \frac{s}{2}\right)$	N real scalars : $O(N)$
minimal type A theory	
$(2 ; 0,0)+\bigoplus_{s=2,4, \ldots}^{\infty}\left(2+s ; \frac{s}{2}, \frac{s}{2}\right)$	
non-minimal type B theory	N Dirac fermions : $U(N)$
$2(3 ; 0,0)+$	
$2 \bigoplus_{s=1}^{\infty}\left(2+s ; \frac{s}{2}, \frac{s}{2}\right)+\bigoplus_{s=1}^{\infty}\left(2+s ; \frac{s+1}{2}, \frac{s-1}{2}\right)_{c}$	
minimal type B theory	
$2(3 ; 0,0)+$	N Majorana fermions $: O(N)$
$\bigoplus_{s=1}^{\infty}\left(2+s ; \frac{s}{2}, \frac{s}{2}\right)+\bigoplus_{s=2,4, \ldots}^{\infty}\left(2+s ; \frac{s+1}{2}, \frac{s-1}{2}\right)_{c}$	
non-minimal type C theory	
$2(4 ; 0,0)+(4 ; 1,0)_{c}$	N real Maxwell vectors : $O(N)$
$2 \bigoplus_{s=2}^{\infty}\left(2+s ; \frac{s}{2}, \frac{s}{2}\right)+\bigoplus_{s=2}^{\infty}\left(2+s ; \frac{s+2}{2}, \frac{s-2}{2}\right)_{c}$	
minimal type C theory	
$2(4 ; 0,0)+$	
$\bigoplus_{s=2}^{\infty}\left(2+s ; \frac{s}{2}, \frac{s}{2}\right)+\bigoplus_{s=2,4, \ldots}^{\infty}\left(2+s ; \frac{s+2}{2}, \frac{s-2}{2}\right)_{c}$	

Table 2: Vectorial $\operatorname{AdS}_{5} / \mathrm{CFT}_{4}$ dualities. $\left(\Delta ; j_{1}, j_{2}\right)_{c}=\left(\Delta ; j_{1}, j_{2}\right)+\left(\Delta ; j_{2}, j_{1}\right)$
sum over spins prescription: sum with fixed cutoff implied by use of spectral ζ-function

$$
\left.\sum_{s} K(s) \equiv \sum_{s} e^{-\epsilon\left(s+\frac{1}{2}\right)} K(s)\right|_{\epsilon \rightarrow 0, \text { finite part }}, \quad K=\left(E_{c}, \mathrm{a}, \mathrm{c}\right)
$$

$s=j_{1}+j_{2}$ is total spin and summation over all states
non-minimal type A theory:

$$
\sum_{s=1}^{\infty} K^{+}\left(2+s ; \frac{s}{2}, \frac{s}{2}\right)=0
$$

minimal type A theory:

$$
\sum_{s=2,4, \ldots}^{\infty} K^{+}\left(2+s ; \frac{s}{2}, \frac{s}{2}\right)=K(3 ; 0,0)
$$

i.e. $\mathrm{AdS}_{5} \mathrm{HS}$ theory 1-loop correction is exactly 1-loop contribution of single real massless 4 d scalar: $K(3 ; 0,0)=\left(\frac{1}{240}, \frac{1}{360}, \frac{1}{120}\right)$ consistent with AdS/CFT duality if minimal HS theory action $N \rightarrow N-1$
non-minimal type B theory:

$$
2 K^{+}(3 ; 0,0)+2 \sum_{s=1}^{\infty} K^{+}\left(2+s ; \frac{s+1}{2}, \frac{s-1}{2}\right)=0
$$

$2 K^{+}(3 ; 0,0)=-K(3 ; 0,0)$ contribution of two 5 d scalars symmetric representation term vanishes separately contributions of $\left(\Delta ; j_{1}, j_{2}\right)$ and $\left(\Delta ; j_{2}, j_{1}\right)$ are equal: doubling
minimal type B theory:

$$
2 K^{+}(3 ; 0,0)+2 \sum_{s=2,4, \ldots}^{\infty} K^{+}\left(2+s ; \frac{s+1}{2}, \frac{s-1}{2}\right)=K\left(\frac{5}{2} ; \frac{1}{2}, 0\right)_{c}
$$

r.h.s. is same as contribution of single 4 d Majorana fermion $K\left(\frac{5}{2} ; \frac{1}{2}, 0\right)_{c}=2 K\left(\frac{5}{2} ; \frac{1}{2}, 0\right)=\left(\frac{17}{960}, \frac{11}{720}, \frac{1}{40}\right)$
non-minimal type C theory:

$$
\begin{aligned}
& 2 K^{+}(4 ; 0,0)+K^{+}(4 ; 1,0)_{c} \\
& +2 \sum_{s=2}^{\infty} K^{+}\left(2+s ; \frac{s}{2}, \frac{s}{2}\right)+\sum_{s=2}^{\infty} K^{+}\left(2+s ; \frac{s+2}{2}, \frac{s-2}{2}\right)_{c} \\
& \quad=2 K\left(3 ; \frac{1}{2}, \frac{1}{2}\right)=-4 K^{+}\left(3 ; \frac{1}{2}, \frac{1}{2}\right)
\end{aligned}
$$

sum of all AdS_{5} 1-loop contributions is no longer zero - is twice of $K\left(3 ; \frac{1}{2}, \frac{1}{2}\right)=\left(\frac{11}{120}, \frac{31}{180}, \frac{1}{10}\right)$ - same as of one complex 4d Maxwell field already in non-minimal type C theory case one needs $N \rightarrow N-1$?!
minimal type C theory:

$$
\begin{aligned}
2 K^{+}(4 ; 0,0) & +\sum_{s=2}^{\infty} K^{+}\left(2+s ; \frac{s}{2}, \frac{s}{2}\right)+\sum_{s=2,4, \ldots}^{\infty} K^{+}\left(2+s ; \frac{s+2}{2}, \frac{s-2}{2}\right)_{c} \\
& =2 K\left(3 ; \frac{1}{2}, \frac{1}{2}\right)=-4 K^{+}\left(3 ; \frac{1}{2}, \frac{1}{2}\right)
\end{aligned}
$$

here boundary vector field is real need shift $N \rightarrow N-2$ in the coefficient of the classical HS action

Supersymmetric cases

- supersymmetry not a necessary ingredient in vectorial AdS/CFT duality but may consider also supersymmetric $\mathrm{AdS}_{5} / \mathrm{CFT}_{4}$ dual pairs (supersymmetric $\mathrm{AdS}_{4} / \mathrm{CFT}_{3}$ cases [Sezgin, Sundell 03,Leigh, Petkou 03])
- $\mathcal{N}=1$ supersymmetric HS theory in AdS_{5} [Alkalaev, Vasiliev 02] boundary theory $-N$ free $\operatorname{spin}\left(0, \frac{1}{2}\right) \mathcal{N}=1$ supermultiplets similar susy generalizations of type A, B and C theory examples
- most supersymmetric case of free unitary boundary CFT:
N free $\mathcal{N}=4$ Maxwell supermultiplets
- spectrum of dual AdS_{5} HS theory: product of two $\mathcal{N}=4$ superdoubletons [Gunaydin et al 98; Sezgin, Sundell 02]
low-spin $s \leqslant 2$ part same as in type IIB supergravity compactified on S^{5}
- this HS theory should correspond to "leading Regge trajectory" part of "zero tension" limit of $\operatorname{AdS}_{5} \times \mathrm{S}^{5}$ superstring [Bianchi et al 03]
- particular maximally supersymmetric case of vectorial AdS/CFT duality as a truncation of $g_{\mathrm{YM}}=0$ limit of the adjoint AdS/CFT
when 5 d fields are combined into supermultiplets many cancellations happen
- $K^{+}=\left(E_{c}^{+}, \mathrm{a}^{+}, \mathrm{c}^{+}\right)$for infinite set of HS 5d fields appearing in product of two superdoubletons $\{\mathcal{N}\}$ each representing \mathcal{N}-super Maxwell theory

$$
K^{+}(\{\mathcal{N}\} \otimes\{\mathcal{N}\})=2 K(\{\mathcal{N}\})=2 K(\mathcal{N} \text {-Maxwell })
$$

r.h.s. is twice the contribution of \mathcal{N}-super Maxwell theory or \mathcal{N}-superdoubleton

- get direct super-generalization of the relation in type C theory
"anomaly of a product is twice anomaly of a factor":
may be viewed as analog of relation for the characters or partition functions $\mathcal{Z}(\{\mathcal{N}\} \otimes\{\mathcal{N}\})=[\mathcal{Z}(\{\mathcal{N}\})]^{2}$
- admits the following interpretation:

1-loop contribution of states of $\mathcal{N}=85 \mathrm{~d}$ supergravity is already equal to that of two $\mathcal{N}=4$ Maxwell multiplets; thus all other states appearing in the product $\{\mathcal{N}\} \otimes\{\mathcal{N}\}$ should give zero contribution: they indeed should form massless supermultiplets of $\operatorname{PSU}(2,2 \mid 4)$ giving 0 contributions

6d case: tensor multiplet and $A d S_{7} \times S^{4}$ supergravity
[Beccaria, Macorini, AT]
one-loop computation in 11d supergravity on $A d S_{7} \times S^{4}$:
determine 2 nd subleading coeff in conf anomaly of $6 \mathrm{~d}(2,0)$ theory of N coincident M5-branes dual to M-theory on $A d S_{7} \times S^{4}$ conformal anomaly in 6d

$$
\mathcal{A}_{6}=\mathrm{a} \mathcal{E}_{6}+W_{6}+D_{6}, \quad W_{6}=\mathrm{c}_{1} I_{1}+\mathrm{c}_{2} I_{2}+\mathrm{c}_{3} I_{3}
$$

$I_{1} \sim C D^{2} C+\ldots, I_{2}, I_{3} \sim C C C, D_{6} \sim D^{2}(\ldots)$
single free 6d tensor multiplet [Bastianelli, Frolov, AT '00]
classical 11d supergravity on S^{7} [Henningson, Skenderis 98]:
large N of $(2,0)$ theory

$$
\begin{aligned}
\mathcal{A}_{6} & =\mathrm{a} \mathcal{E}_{6}+\mathrm{c} \mathcal{W}_{6}, & \mathcal{W}_{6} \equiv 96 I_{1}+24 I_{2}-8 I_{3}, \\
\mathrm{a}_{\text {tens }} & =\frac{7}{4}, \quad \mathrm{c}_{\text {tens }}=1, & \mathrm{a}_{(2,0)}=4 N^{3}+\ldots, \quad \mathrm{c}_{(2,0)}=4 N^{3}+\ldots .
\end{aligned}
$$

same Weyl-invariant combination \mathcal{W}_{6} : related to non-renormalization of ratio of 2- and 3- points of stress tensor [Bastianelli, Frolov, AT 99]
a in $6 d$ related to 4-point stress correlator - gets non-trivial renormalization as order N term in R-symmetry anomaly [Harvey, Minasian, Moore 98] order N terms in $\mathrm{a}_{(2,0)}$ and $\mathrm{c}_{(2,0)}$ from R^{4} in 11d eff. action [AT '00]

$$
\mathrm{a}_{(2,0)}=4 N^{3}-\frac{9}{4} N+a_{1}, \quad \mathrm{c}_{(2,0)}=4 N^{3}-3 N+c_{1}
$$

by analogy with $\mathrm{AdS}_{5} / \mathrm{CFT}_{4}$ duality with anomaly coeff $N^{2}-1$
vanishing for $N=1$ expect boundary singleton (single M5-brane tensor multiplet) should decouple and thus the full 6 d anomaly should vanish for $N=1$:

$$
a_{1}=-\mathrm{a}_{\mathrm{tens}}=-\frac{7}{4}, \quad c_{1}=-\mathrm{c}_{\mathrm{tens}}=-1
$$

$\mathrm{c}_{(2,0)}=4 N^{3}-3 N-1=(N-1)(2 N+1)^{2}$ is same as central charge of A_{N-1} Toda theory at the "symmetric" coupling point
[Beem, Rastelli, van Rees 14]: protected sector - prediction that $c_{1}=-1$
(2d chiral algebra)
show that 1-loop 11d supergravity produces expected $a_{1}=-\mathrm{a}_{\text {tens }}$

$$
\mathrm{a}_{(2,0)}=4 N^{3}-\frac{9}{4} N-\frac{7}{4}=(N-1)\left[(2 N+1)^{2}+\frac{3}{4}\right]
$$

1-loop correction in 11d sugra on S^{7} :
(i) boundary of $A d S_{7}$ is S^{6} (gives a-anomaly part of \mathcal{A}_{6})
(ii) $S^{1} \times S^{5}$ (gives Casimir energy $E_{c}^{1-\text { loop }}$)
result is minus that of single tensor multiplet

$$
\mathrm{a}_{1-\text { loop sugra }}=-\mathrm{a}_{\text {tens }}, \quad E_{c 1-\text { loop sugra }}=-E_{c \text { tens }}
$$

$(2,0)$ tensor multiplet in 6d curved space
5 scalars, 4 MW fermions, self-dual tensor

$$
\begin{aligned}
& S=\int d^{6} x \sqrt{g}\left(-\frac{1}{12} H_{i j k}^{2}-\frac{1}{2} \nabla_{i} \phi^{\alpha} \nabla^{i} \phi^{\alpha}-\frac{1}{10} R \phi^{\alpha} \phi^{\alpha}+i \overline{\psi^{I}} \Gamma_{i} \nabla^{i} \psi^{I}\right) \\
& \mathrm{a}_{\phi}=-\frac{1}{72576}, \quad \mathrm{a}_{\psi}=-\frac{191}{1451520}, \quad \mathrm{a}_{T}=-\frac{221}{40320} \\
& \mathrm{a}_{\text {tens }}=5 \mathrm{a}_{\phi}+4 \mathrm{a}_{\psi}+\mathrm{a}_{T}=-\frac{7}{1152}
\end{aligned}
$$

Single particle thermal partition function

$$
\mathcal{Z}(q)=\operatorname{Tr} e^{-\beta H}=\sum_{n} \mathrm{~d}_{n} e^{-\beta \omega_{n}}=\sum_{n} \mathrm{~d}_{n} q^{\Delta_{n}}, \quad q \equiv e^{-\beta}
$$

on $S^{1} \times S^{5}$: [Kutasov, Larsen 00]
$\mathcal{Z}_{\phi}=\frac{1}{12} \sum_{n=0}^{\infty}(n+1)(n+2)^{2}(n+3) q^{n+2}=\frac{q^{2}-q^{4}}{(1-q)^{6}}$
$\mathcal{Z}_{\psi}=\frac{1}{6} \sum_{n=0}^{\infty}(n+1)(n+2)(n+3)(n+4) q^{n+\frac{5}{2}}=\frac{4 q^{\frac{5}{2}}-4 q^{\frac{7}{2}}}{(1-q)^{6}}$
$\mathcal{Z}_{T}=\frac{1}{4} \sum_{n=0}^{\infty}(n+1)(n+2)(n+4)(n+5) q^{n+3}=\frac{10 q^{3}-15 q^{4}+6 q^{5}-q^{6}}{(1-q)^{6}}$
Casimir energy on S^{5} [Gibbons, Pope, Perry 06]

$$
\begin{aligned}
& E_{c}=\frac{1}{2}(-1)^{F} \sum_{n} \mathrm{~d}_{n} \omega_{n}=\frac{1}{2}(-1)^{F} \zeta_{E}(-1) \\
& E_{c, \phi}=-\frac{31}{60080}, \quad E_{c, \psi}=-\frac{367}{96768}, \quad E_{c, T}=-\frac{191}{4032} \\
& E_{c \text { tens }}=5 E_{c, \phi}+4 E_{c, \psi}+E_{c, T}=-\frac{25}{384}
\end{aligned}
$$

$\frac{E_{c \text { tens }}}{a_{\text {tens }}}=\frac{75}{7}$ does not agree with [Herzog, Huang 13]:
derivative terms $D_{6} \neq 0$ in natural scheme

11d supergravity near $A d S_{7} \times S^{4}$
$S O(2,6) \times S O(5):$ conformal group reps $(\Delta ; \mathbf{h})$
$\mathbf{h}=\left(h_{1}, h_{2}, h_{3}\right), h_{1} \geq h_{2} \geq\left|h_{3}\right|$ or Dynkin labels $\left[r_{1}, r_{2}, r_{3}\right]$
KK spectrum on S^{4} [van Nieuwenhuizen 85]
character of typical massive representation [Dolan 05]

$$
\begin{gathered}
\mathcal{Z}^{+}(\Delta ; \mathbf{h}) \equiv \widehat{\mathcal{Z}}^{+}(\Delta ; \mathbf{h})=\mathrm{d}(\mathbf{h}) \frac{q^{\Delta}}{(1-q)^{6}} \\
\mathrm{~d}(\mathbf{h})=\frac{1}{12}\left(1+h_{1}-h_{2}\right)\left(1+h_{2}-h_{3}\right) \\
\times\left(1+h_{2}+h_{3}\right)\left(2+h_{1}-h_{3}\right)\left(2+h_{1}+h_{3}\right)\left(3+h_{1}+h_{2}\right)
\end{gathered}
$$

singleton representation $\mathbf{h}=(h, h, \pm h)$
$(2,0)$ tensor multiplet as singleton [Gunaydin et al 84] partition functions on $S^{1} \times S^{5}$ are $h=0, \frac{1}{2}, 1$ singleton characters

$$
\mathcal{Z}^{+}(2 ; 0,0,0)=\mathcal{Z}_{\phi}(q), \quad \mathcal{Z}^{+}\left(\frac{5}{2} ; \frac{1}{2}, \frac{1}{2}, \frac{1}{2}\right)=\mathcal{Z}_{\psi}(q), \quad \mathcal{Z}^{+}(3 ; 1,1,1)=\mathcal{Z}_{T}(q)
$$

	$\left(\Delta ;\left[r_{1}, r_{2}, r_{3}\right]\right)$	$\left(h_{1}, h_{2}, h_{3}\right)$	$U S p(4)$
$p \geq 2$	$(2 p ;[0,0,0])$	$(0,0,0)$	$(0, p)$
	$\left(2 p+\frac{1}{2} ;[1,0,0]\right)$	$\left(\frac{1}{2}, \frac{1}{2},-\frac{1}{2}\right)$	$(1, p-1)$
	$(2 p+1 ;[2,0,0])$	$(1,1,-1)$	$(0, p-1)$
	$(2 p+1 ;[0,1,0])$	$(1,0,0)$	$(2, p-2)$
	$\left(2 p+\frac{3}{2} ;[1,1,0]\right)$	$\left(\frac{3}{2}, \frac{1}{2},-\frac{1}{2}\right)$	$(1, p-2)$
	$(2 p+2 ;[0,2,0])$	$(2,0,0)$	$(0, p-2)$
$p \geq 3$	$\left(2 p+\frac{3}{2} ;[0,0,1]\right)$	$\left(\frac{1}{2}, \frac{1}{2}, \frac{1}{2}\right)$	$(3, p-3)$
	$(2 p+2 ;[1,0,1])$	$(1,1,0)$	$(2, p-3)$
	$\left(2 p+\frac{5}{2} ;[0,1,1]\right)$	$\left(\frac{3}{2}, \frac{1}{2}, \frac{1}{2}\right)$	$(1, p-3)$
	$(2 p+3 ;[0,0,2])$	$(1,1,1)$	$(0, p-3)$
$p \geq 4$	$(2 p+2 ;[0,0,0])$	$(0,0,0)$	$(4, p-4)$
	$\left(2 p+\frac{5}{2} ;[1,0,0]\right)$	$\left(\frac{1}{2}, \frac{1}{2},-\frac{1}{2}\right)$	$(3, p-4)$
	$(2 p+3 ;[0,1,0])$	$(1,0,0)$	$(2, p-4)$
	$\left(2 p+\frac{7}{2} ;[0,0,1]\right)$	$\left(\frac{1}{2}, \frac{1}{2}, \frac{1}{2}\right)$	$(1, p-4)$
	$(2 p+4 ;[0,0,0])$	$(0,0,0)$	$(0, p-4)$

Casimir energy

$$
\begin{aligned}
E_{c}(\Delta ; \mathbf{h}) & =\frac{(-1)^{2\left(h_{1}+h_{2}+h_{3}\right)}}{120960} \mathrm{~d}(\mathbf{h})(\Delta-3) \\
& \times\left[12(\Delta-3)^{6}-126(\Delta-3)^{4}+336(\Delta-3)^{2}-191\right]
\end{aligned}
$$

a-anomaly

$$
\begin{aligned}
\mathrm{a}(\Delta ; \mathbf{h})= & (-1)^{2\left(h_{1}+h_{2}+h_{3}\right)} \frac{\mathrm{d}(\mathbf{h})}{2 \times 96 \times 37800} \\
\times & {\left[15(\Delta-3)^{7}-21(\Delta-3)^{5}\left(h_{3}^{2}+h_{1}\left(h_{1}+4\right)+h_{2}\left(h_{2}+2\right)+5\right)\right.} \\
& +35(\Delta-3)^{3}\left(\left(h_{1}+2\right)^{2}\left(h_{2}+1\right)^{2}+\left(h_{1}\left(h_{1}+4\right)+h_{2}\left(h_{2}+2\right)+5\right) h_{3}^{2}\right) \\
& \left.-105(\Delta-3)\left(h_{1}+2\right)^{2}\left(h_{2}+1\right)^{2} h_{3}^{2}\right],
\end{aligned}
$$

for representations saturating unitarity bound need subtractions

One-loop supergravity correction

Casimir energy at level p : summing individual reps contributions

$$
E_{c, p}=\left(6 p^{2}-6 p+1\right) E_{c, \text { tens }}, \quad p=2,3,4, \ldots
$$

$p=1:$ singleton - true also for $p=1: \quad E_{c, 1}=E_{c, \text { tens }}$
a-anomaly:

$$
\mathrm{a}_{p}=\left(6 p^{2}-6 p+1\right) \text { atens }, \quad p=2,3,4, \ldots
$$

again $\mathrm{a}_{1}=\mathrm{a}_{\text {tens }}$ and thus $E_{c, p} / E_{c, \text { tens }}=\mathrm{a}_{c, p} / \mathrm{a}_{c, \text { tens }}$
Total contribution: use special regularization

$$
\sum_{p=1}^{\infty}\left(6 p^{2}-6 p+1\right)=0, \quad \text { i.e. } \quad \sum_{p=2}^{\infty}\left(6 p^{2}-6 p+1\right)=-1
$$

e.g. use sharp cutoff and drop all power divergences:
$\sum_{p=1}^{\Lambda}\left(6 p^{2}-6 p+1\right)=2 \Lambda^{3}-\Lambda \rightarrow 0$

Proper justification: do not sum KK modes, use ζ-func. reg. directly in 11d

$$
\sum_{p=2}^{\infty} E_{c, p}=-E_{c, \text { tens }}, \quad \sum_{p=2}^{\infty} \mathrm{a}_{p}=-\mathrm{a}_{\mathrm{tens}}
$$

Analytic regularisation for E_{c} define energy in 11d with cutoff $\epsilon \rightarrow 0$

$$
\begin{aligned}
& E_{c}(\Delta, \mathbf{h})=\frac{1}{2}(-1)^{2\left(h_{1}+h_{2}+h_{3}\right)} \mathrm{d}(\mathbf{h}) \sum_{n=0}^{\infty}\binom{n+5}{5}(\Delta+n) e^{-\epsilon(\Delta+n)} \\
& \sum_{p=1}^{\infty} E_{c, p}=\frac{785}{2048 \epsilon^{3}}-\frac{5}{16 \epsilon^{2}}+0+\mathcal{O}(\epsilon) \rightarrow 0
\end{aligned}
$$

equivalent to ζ-regularization in 11d

Conclusions

- quantum tests of vectorial - higher spin AdS/CFT: general mixed representations in $A d S_{d+1}, d=2,4,6$
- supersymmetric examples: cancellations, simple patterns of contrubutions of KK multiplets;
subleading terms in a-anomaly coefficients:

$$
a_{d=4}=N^{2}-1, \quad a_{d-=6}=4 N^{3}-\frac{9}{4} N-\frac{7}{4}, \quad a_{d=2}=6\left(N_{5} N_{1}+1\right)
$$

- applications: to adjoint AdS/CFT in "zero-tension"" limit

