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Motivation: learn about (1) structure of HS theories; (i1) limits of AdS/CFT



AdS4.+1/CFT; “light”:

free boundary CFTy

(i) “vectorial”: e.g. free scalar in fundamental of U(NN) or O(N)
(ii) “adjoint”:  e.g. free vector in adjoint of U(N) or O(N)

no anomalous dimensions of composite operators

but correlation functions are non-trivial in NV

vectorial:  bilinear “single-trace” operators @7 0...0P;
adjoint: multilinear single-trace operators  tr(®9...090...0P....P)

in general, any d = 3,4, ... and any free conformal field is ok
but restrictons of unitarity, etc.:

d = 3: scalars or spinor [Maldacena, Zhiboedov 11]

d = 4: scalar, spinor or vector [Stanev 12; Alba, Diab 13]

d = 6: scalar,..., tensor — e.g. (2,0) tensor multiplet in susy case



e existence of higher-spin symmetries:
[ Vasiliev 04; Boulanger, Ponomarev, Skvortsov, Taronna 13]

e vectorial AdS/CFT:
originally in d = 3
free or interacting O (V) fixed point theory [Klebanov, Polyakov 02]

e adjoint AdS/CFT:

e.g. ind =14

Gy = 0, fixed N limit of A" = 4 SYM — AdS5 x S° string duality:
A = g2 N =0 limit of standard AdS;/CFT;4

e Dual higher spin theory in AdS:
contains infinite set of (massless and massive) HS fields in AdS
dual to primary operators in boundary CFT



vectorial duality:
e spectrum: Flato-Fronsdal type relation:

O*(x)®(z') — > *0...0P, e.g,ind =14

{0,0} x {0,0} = (2:0,0) + P (2 + ;5. 5)
s=1
corresponding relation for characters same as
AdS/CFT relation for one-particle partition functions
e correlation functions summarised by interaction vertices in Ad.Sg 1
HS theory: Vasiliev-type theory with AdS vacuum

Aim: learn about HS theory in AdS

e match quantum partition functions on both sides of duality
boundary: S x S9!, S9 or Einstein space M¢

bulk: (quotient of) AdSg. 1, or asymptotically AdS;.1 space

e match Casimir energy on R x S?~! to vacuum energy in AdSg41

e match a, c,. conformal anomaly coefficients to AdS;. 1 counterparts



Some background

e consistent interacting massless higher spin gauge theories:

exist in AdS (or dS) background [Fradkin, Vasiliev 88; Vasiliev 92]
e.g. in bosonic 4d case:

infinite set s = 1,2, ..., 00 plus s = 0 with m? = —2

action ~ quadratic Fronsdal action plus higher interactions

e vectorial AdS4/CFT3: [Klebanov, Polyakov 02]

free 3d complex scalar in fundamental representation of U (V)
L=0,9/0,%;, i1=1,..,.N

has tower of conserved higher spin currents

Imy..ms = @jﬁ(ml..ﬁms)@i + ...

singlet sector — U (N) inv “single-trace” CFT primaries:

Js, s=1,2,...,00 with A = s + 1 —dual to spin s field in AdS4

Jo = ®FP; with A = 1 — dual to massive scalar A(A — 3) = m? = —2
same spectrum of states as in HS theory in AdSy



HS theory dual to free CFT is non-trivial:

free-theory correlators of /5 should be reproduced by
HS interactions in Ad.S; with coupling ~ 1/N
checked for tree 3-point functions [Giombi, Yin; Maldacena, Zhiboedov]

S = N/dd+1a:{z ds(=VZ+m?) g, + Z Csr8255 (V) Psy Py Py + }

full classical action S = NS of HS theory for Vasiliev equations not known
quantum corrections: F=NS+T{+ NIy + ..

one-loop I'1(0) can be found as quadratic action for ¢, is known
[Fronsdal 78; Metsaev 94]

e HS theory “summarizes” correlators of bilinear primaries in free theory
e summing up infinite sets of correlators:

partition functions on non-trivial backgrounds should also match



Other similar d = 3 models:

e O(N) model : N real scalars

singlet sector — higher spin conserved currents ®;0,,,...0p, P; + ...
non-trivial for even s = 2,4, 6, ... plus scalar ®;P; with A =1
dual to “minimal” HS theory in AdSy containing even spins only

e “critical vector model”: L = (0®;)? + \(®;D;)?

IR fixed point seen at large NV:

scalar A = 2+ O(5), J; bilinears A = s+ 14 O(%)
dual to (non)minimal HS theory with m? = —2 bulk scalar
with alternative b.c.: A = 2

e free or critical U (N) or O(NNV) fermionic 3d models: [Sezgin, Sundell 02]
dual to “type B” (s = 1/2) HS theories:
scalar of “type A” (s = 0) theory — pseudo-scalar



e higher dimensions: vectorial AdS/CFT duality should apply for d > 3
e singlet sector of U(N) or O(N) free scalar CFTy

dual to (s=1,2,...)0r (s =2,4,..)

HS theory in AdSg,1 + scalar with A = d — 2,i.e. m? = —2(d — 2)
[Didenko, Skvortsov 13; Giombi, Klebanov, Safdi 14]

e “‘non-trivial” interacting critical theory only in d = 3 or also in d = 5?
[Fei, Giombi, Klebanov 14]

e singlet sector may be “dynamically” selected by
gauging U(N) or O(N) symmetry and taking gauge coupling to O
(e.g. couplingto kK = 00 CS in d = 3)

e fest: compare, €.g2., quantum partition functions
of large N CFT on M4 = §¢, S1 x §9-1, ..
and of massless HS theory in AdSg,; with boundary M



Example: M3 = 53 Zerr(S3) = Zus(AdSy)

free complex U(N) scalar CFT: [ d*z,/g @} (—V? + : R)®;

[fee = —InZ = N Indet(—V? + 2)

_NZ n+1)°In[(n+3)(n+3)] =N[3In2— 25((3)]

Bulk HS theory: expand near AdS, vacuum: ds? = dp? + sinh? p d€)3

e vacuum value of (unknown) classical action S = N.S should match
(one-loop) CFT value: remains open problem

e AdS/CFT: all quantum correctionsin I'= N S+T1+ N1y + ...
should then vanish

e check directly that I'y = 0



Free action of massless totally symmetric HS fields in Ad.S;,1 is known;
gauge fixing (05 = Ves_1) leads to 1-loop HS partition function:

det (— V% +mZ,) 1/2
ZS(Ade_|_1) _ |: ( 1)5 l,J_}

det(—vz—l-mg)s’L
m? = (s—2)(s+d—2)—s, m? = (s—1)(s+d—2)

V? on symmetric transverse traceless tensors (curvature radius r = 1)
d = 2, s > 2: [Gaberdiel, Gopakumar, Saha 10]; d > 3: [Gupta, Lal 12]

physical and ghost “mass” terms m? = A(A —d) — s
A=s+d—2and A"=s+d—-1 - dimensions of J, and 0.J,
scalar s = 0: —V? — 2(d — 2) and no ghost numerator

Compute determinants using AdS heat kernel [Camporesi, Higuchi 92]
spectral (-function in non-compact case

C(2) = Xndndy® = [ du p(u) Ay



Fl (AdSCH_l) —

2

e cven d + 1: log UV divergence — IR divergence in CFT on S*
must be absent — UV finiteness: ) | (5(0) =0

e odd d + 1: (5(0) = O but need to show that > _(’(0) =0
For (-V?+m?),;, m?=A(A-d) —s
Cas(2) = ca gs/ du ps(u) [u® + (A — 1d)?] -
0

d = 3:
d—1 Vol(AdS
ca= %5 Ov(ol<sj)+l) Y ars s =25+1

s = T2 [u? + (s + 3)?| tanh 7u

L¢(0) In(r*A®) — 2¢'(0) A= (g4y) " = 0



UV finiteness of HS theory in Ad.S, vacuum [Giombi, Klebanov 13]

ZCS(O) = (1,000 +Z Cs11,5(0) — Csp2.5— 1(0)]
s s=1
= st (F—5+5s") =0
s=1

if regularized with Riemann ¢-function: {(0) = —3, ((—2n) =0

(same 1f add cutoff e™“®, ¢ — 0 and drop singular terms)

e this regularization should be required by symmetries of theory

e finiteness is automatic if ) _ done for fixed UV cutoff A and then A — oo
can be demonstrated by first summing ((z) for arbitrary 2z

one-loop UV finiteness applies to all bosonic massless HS theories in AdSg1



Vanishing of finite part of I'y (AdS,) [Giombi, Klebanov 13]

F1 — 2C1 0 ) Z s—l—l s o ;—I—Z,s—l(o)}

A-3
Cho(0) = —1(25+ 1) / dovlv? — (s + 12 (o + 1)

oo|+—s

HS tower part contribution exactly cancels against scalar part
Ci,o(o) — _%52 Qééo In2 — 871T2C(3) + %C/(_l) + %C/(_B)

1-loop partition function in non-minimal HS theory in AdS, vanishes:
consistent with no N° term in T of free U(N) CFT on S3

In minimal (even spin) HS theory — non-zero one-loop result:

I'1 min = %IHQ — 1637r2C(3)

dual to O(N) real scalar CFT where no N correction ?!

Dfree O(N) — N[% In2 — m%C(S)}



Assume: minimal HS theory coupling V — 1 not NV [Giombi, Klebanov 13]:

52 C(3)]

Lomin=(N—-1)S=(N—-1)[sIn2—

I'o min + 't min = I'free O(N)

evidence for g = N — 1 found also in M?¢ = S x S9 case

e same /N — 1 in minimal type B theory (dual to free Majorana fermions)
¢ in minimal “type C theory” (dual to real N vectors)
coupling should be N — 2 [Beccaria, AT 14]

open questions:;
e true meaning of N — N — 1
(quantum shift, analogy with CS theory, cf. quantization of HS coupling,...)

e why classical action S(AdSs) = £ In2 — —25((3)

or there is some interpretational subtlety ?



General d:  free scalar CFT on M? = S§¢ <+ HS theory in AdSq.1

e Vasiliev theory in AdS, : totally symm. ¢ plus m? = —2(d — 2) scalar
same spectrum as bilinear primaries in scalar CFT

e similar results about matching of partition functions as in d = 3, e.g.,
UV divergences vanish for any d: > _(s(0) =0

e use of spectral zeta-function

Cae(2) = ca go [ du i) [u? + (A - 1d)?]

suggests natural regularization: [Giombi, Klebanov, Safdi 14]
first sum over spins for fixed z and then analytically continue in z;
equivalent to cutoff e, 5= s+ 2(d—3)

(same as Riemann zeta-function reg. in d = 3 only)

I“1 — _%Ci,O(O) o %Z:il 6_65[ .;—I—l,s(o) N é+2,s—1(0)]

e—0, finite



Odd d: AdS4, AdS@', Ang,
[ cpr(S%)=finite ~ N, should be equal to I'q(AdSz11) = NS

e [y = NS is finite:
regularized Vol(AdSy11) = 7¥/2T'(—1d) (drop power IR c0)

e non-minimal theory (s = 1,2,3,...): T['1(AdSgy11)=0

e minimal theory (s = 2,4, 0, ...): find non-trivial identity (as in d = 3)
Fl min (Adsd—i—l) — Fconf. Scalar(Sd)

e consistent with AdS/CFT if minimal HS theory coupling1s NV — 1



Even d: AdS5, AdS7, Ang,

e I'crr(S%) has UV divergence = —2 N((0) In(A?r?)

¢(0) = B4(S%) = —4a4, aq = conformal anomaly of scalar in S¢
Ba~ [(ag€a+ >, ckC....C) — —2a4x(S?)

_ 1 _ 1 _ 23
A4 = 3600 6 = T Ix7560 A8 T Ix113400°

e corresponds to log IR divergence of regularized AdS;,1 volume:

Vol(AdSy 1) = 2G0T 2 R R=¢, ' o

I'(143d)
e In R term in classical HS action 'y = NS ~ NVol(AdSg1)
should matchIn A = Ine ! termin Tepr(S?) : g, =&y, =¢

e non-minimal theory: 1-loop correction indeed vanishes I';(AdS;11)=0
e minimal theory: need again N — N — 1 in classical HS action since

F1 min (Ade—l—l) — F(:onf. scalar(Sd)



Scalar theory in d = 4 or symmetric HS theory in AdS5:

Fl (AdS5) = —aln EIRr

¢ in non-minimal theory:
- %Z (s + 1)2[14s(s + 1) + 3] = —£¢(—3) — 51
¢ in minimal theory:

fmin = — 725 Y 5°(s +1)*[14s(s + 1) + 3]

agrees with NV — N — 1 coupling shift



CFT in M? = Sj x S%! <+ HS theory in thermal AdSq 4
[Giombi, Klebanov, AT 14]

e CFT, in radial quantization: operators in R% — states in R; x S9~1
spectrum of dimensions / energies — in finite 7' = 3~ ! partition function

e dual theory on thermal quotient of (AdS,1)s with boundary Sé x §d-1

e check matching of thermal partition functions = free energies
also: Casimir energy in R; x S9~1 — vacuum energy in AdSg,1

e matching implied by equivalence of the spectra but non-trivial:
(1) singlet constraint in CFT; (11) summation over spins in AdS

e singlet constraint: O(N?) term in CFT free energy no longer =0;
one-loop correction in HS theory in (AdS;11)s no longer =0

e HS vacuum energy in AdS;1: vanishes after sum over spins



Standard relations: CFT4 in R; x S9!

one-particle or canonical partition function
Z(B) =tre P = Z d,, e Pwn
mn

“energy” zeta-function

1 oo
= dpw, * = / dB 3=t Z(B)
zn: I'(z) Jo
Casimir or vacuum energy

C—QZdnwn_QCE )

multi-particle or grand canonical partition function Z and free energy

InZ(6) = trln (1 — e_BH)_l = —> d,In(1l — e Fun)

Fy=-nZ(B) =~ LZ(mp)



Free conformal scalar in Sé x gd—1.

P=-InZ=jlndetdy,  Ag=-V>+ @R
Ag = _8752 + Aga-1, Agi1 = —V%d_l + i(d — 2)2

spectrum of Aga—1

M=l wa=ntid-2),  dy=20n+ 5 - 2) G
eigenvalues of Ag: N = (%)2 + w?

Cao(2) = ZZO:—OO Zf,io:o dp (Akn) ™"

In general:
T'=—Cag(0)InA — 1¢A (0)=F = Fy + F. + Fj
ﬁoo:a/dlnAa ﬁczﬁEczéﬁzdnwn
n=0



AN

Explicitly:  Foe =0, ag=0, x(S! x84 1)=0

d=odd>3: F=Fs; d=even>4: F=pE.+Fj

. >0 s 3(d=2)(1 _ 42

By==3 w2o(mB),  Zo(f) =3 dne o =T—q _(q)d9>
m=1 n=0

Casimir energy: FE. = %C e(—1)

n-+d 3' —2z
L % Z dp (wn)™ — Z ((d 2)'n)' %(d B 2)} z——1
n=0
%d—Z
Bl=edd) = pl=even) = Nk ¢(2¢+1—d),
q=0



Interpretation of one-particle partition function Zy(3) in R?
e counts conf. operators Oy, ..m,. = Omy...Op, P in R modulo 0?®=0
[Cardy 91; Kutasov, Larsen 00]

A(P) = %(d —2), AOmy..m,) =n+ %(d —2), dp = (nﬁil) — (njl_ilzg)

o 1. 1(d-2)q_ 2
Zo=Y0 o = S d, qn—l—é(d 2) _ 4 (1_q()1d q~)

e.g [I0_,(1+0x+82+...) gives (1 — )~ and 1 — ¢ is subtr. of e.0.m.)
e also: character of scalar (singleton) representation of SO(d, 2) [Dolan 05]

e AdS/CFT: need to count U (/V) invariant or singlet operators ®70,,,, ...0p,, ®;+...
e Singlet constraint can be implemented in path integral by integrating over
flat U (V) gauge field with non-trivial holonomy in S*

e Partition function counting singlet operators turns out to be square of Zj:

q“*(1+q)? B
(1—g)2¢=2 " 0

Z0(8) = Zup(8) = [20(8)]” =

e scalar partition function ~ IN; singlet partition function ~ N



CFT partition function with singlet constraint
e general relation: [Skagerstam 84]

Z=expy o 2(q™) = Zg= [ldglexpd 5 i o5 x(9™) 2(¢™)

X — character of corresponding rep. of symmetry group G
e Direct derivation from scalar partition function on S x 59~
[Sundborg 00; Aharony et al 03; Schnitzer 04]

couple complex U (N) scalars ®; to gauge field with const holonomy in S*

02 = O+ Ao)?,  Ag=g '%g, 9= diag( e
N
ZU(N):/HdOék e~ FleB) Zln|sm 2|+ F(a, B)
k=1 1#£]
N oo
— mhk+a;)?
F=lndet[— (3 +40)* + A, ] = > dpIn [ @Rl 2]
1=1 k,n

o0 N
Z L (@) Zo(mpB) , Cm(a) = QZCOS mao;
i=1

=1



Large N limit:
{o;} — p(a); measure ~ N2, '~ N
saddle point p(a) = 5= + ~p(a); integrate over p: [Shenker, Yin 11]

ﬁU(N) = —IDZU(N) p— QNBEC —|— F\ﬁ —|— O(N_l) .

Fp=-Y L2zZyymB),  Zum(B) = [20(8)]’

e in real scalar O(N) case: [Giombi, Klebanov, AT 14; Jevicki et al 14]

¢ *(1+q)? 100+

Zoo (8) = 3[Z0(8))" + 3 2028) = 3" = yaas + 27— gy

O(N?) terms in CFT free energy should match 1-loop terms
in free energies of corresponding HS theories in AdSy11



Higher spin partition function in thermal AdS,,; with S x S%~! bndry

7 =112, =et® F=Y%_F® ) = _InZ,

det| = V> + (s —1)(s+d 2)]3—1,L H/2
Zs = (det[_v2+(8—2)(5+d_2)_S]S’L)

Fis UV finite as in 4 bndry case: ag11 = 0 (local property of AdS;.1)
F=F,+Fjs, — BE, , Fjy = BF(B)

To compute non-trivial part ﬁg:

e Hamiltonian approach [Allen, Davis 83; Gibbons, Perry, Pope 06]

and group theory to determine energy spectrum of spin s in global AdS;

with reflective boundary conditions [Avis et al; Breitenlohner, Freedman 82]

e path integral approach — heat kernel for H ! [Camporesi, Higuchi 92]
and method of images — thermal Ad Sy, as quotient H41/Z
[Gopakumar, Gupta, Lal 11]



Temperature-dependent part of AdS free energy

s+d—2 s+d—1

_ds— q

F(s):_ - iZS ZS :dsq
; mZ:lm (mB) (8) o

ds = 2[s + 3(d — 2)] (('SC;”;,S),! — STT tensors in d dimensions
de|,_,=254+1, ds| _, = (s +1)2
From CFT, side: Z, is character of S O(d, 2) rep. containing spin s

primary of dim A = s + d — 2 and its descendants
[Dolan 05; Gibbons, Perry, Pope 06]

e for HS theory with A = d — 2 scalar with Z (&) L

- -9
Fﬁziong)zil?}lzm

2(8) = 25" +3_Z(8) = (1_i(;)§£f

matches NV term in singlet-sector free energy of complex U (V) scalar




e Non-trivial consistency check: bulk and boundary have same spectrum
e Interpretation: one-particle partition function as character Z,(q) of SO(d, 2):
matching implied by group-theoretic Flato-Fronsdal type relation

{0,0} x {0,0} = (d — 2;0,0) +@d 2 +5;5,%)

s=1

20(8)]" = 252 (8) + Y 2.(8)

e For minimal Vasiliev theory in AdSg.1:

FB min — Z FB(S) - = Z_l %Zmin(mﬁ)

s=0,2.4,..

o0 d—2 2 d—2 2

L (d=2) 197 (1+q)” | 1 ¢ (1+q7)

Zmin(ﬁ) — ZO + Z ZS(B) _ (1 . q)2d—2 + 2 (1 . q2)d—1
s=2,4,...

N

matches order N term in free energy of O(N) singlet-sector CFT
group-theoretic interpretation?



Casimir energy
similar pattern of matching: order NV in CFT to match classical HS part
no 1-loop correction in non-minimal case: HS AdS vacuum energy vanishes

w6 = [ dBFT20), 2(69) -

E. = %CE(_l) — Z;x;() Ec,s =0

Z(B) = Z(— ) property implies vanishing of (g (—1) for all d

e—(d—2)6(1 4+ 6—6)2
(1 — e—F)2d—2

individual spin contributions:

E.,=13" (") [dsn+s+d—3)—d8_1(n+s+d—2)
n=1
d=3: EC,S:%s‘l—l—lzs + 550

AdS,: E.s computed using standard ¢-function in n [Allen, Davis 83]



e F,,. = 0in N > 4 extended gauged supergravities from susy sum rules
S (=1)*%d(s) s? =0, p<N=1,..,8 s=0,1,1322
E.=0in N > 4 extended gauged supergravities [Allen, Davis 83]

and also at each KK level of spectrum of 11-d supergravity on S”
[Gibbons, Nicolai 84; Inami, Yamagishi 84|

e cancellation in purely bosonic HS theory:
E.(AdS,) _480+Z % 12 ﬁ):()
since ((0) = —3, ((~2) =((-4) =0

E.(AdSs) = — i S s(s +1) [1832(3 +1)2 — 14s(s +1) — 11} — 0
s=0

e instead of susy here (-function regul. (consistent with symmetries):

no need to use special prescription to sum over s in each d:

automatically get zero if sum over spins is done first for finite z in (g(2)



Non-minimal vs minimal HS theory:

odd d: in CFT E. = 0 and in AdS 1 sum overs spins gives
E. = 0 both in non-minimal (all s) and minimal (even s) HS theory
even d: 1n CFT E. ~ N and should match classical HS action
1-loop E. = 0 in non-minimal case but F. # 0 in minimal HS case:
using (g (z) find that

Bt = N B =) W4 Ld-2)

5=0,2,4,... n=0

i.e. same as Casimir energy of single real conformal scalar in R x S¢~!
e again consistent with N — N — 1 shift of coupling constant
in minimal HS theory dual to O(N) real scalar CFT

e equivalence of scalar Casimir energy in R x S?~! and minimal HS energy
in AdS,1 requires use of same (zeta-function) regularization of sum over
radial quantum number n on both sides of AdS/CFT duality



Conclusions
e quantum tests of vectorial — higher spin AdS/CFT

e massless HS theories in AdS;11 at one loop:
UV finite partition function; vanishing vac energy; matching free energies

e importance of definition / regularization of sum over infinite set of spins

Questions:

e leading large NV term — classical action of Vasiliev theory?
e meaning of NV — N — 1 shift in minimal HS theory?

e correlation functions:

sum over spins prescription in intermediate channel;
consistency with V. — N — 1; etc



AdS5;/CFT4:  mixed SO(2,4) representations

e type A HS theory dual to U(N) or O(N) scalars:

bilinear currents are totally symmetric traceless tensors

e d > 4: conformal fields and dual HS in AdS not only totally symmetric
e d = 4: mixed-symmetry reps — SO(4) Young tableau with two rows
lengths h1 = j1 +jo = s, ho = j1 — jo, SU(2) x SU(2) weights (j1, j2)
conformal fields in SO(2,4) reps.  (A; j1, j2)

jJ1 = Jo: totally symmetric case

e such mixed-symmetry fields appear in e.g. d = 4 free fermion

or free Maxwell vector theory and dual type B and C HS theories in AdS5
and thus also in /' = 4 Maxwell multiplet (superdoubleton) theory

e important for understanding (limits of) adjoint AdS/CFT

Aim:
e compute boundary conformal anomalies a and c;

partition function and Casimir energy for generic (4; j1, jo) field
e check AdS/CFT in type B and type C theories in AdSs;



AdSs CFT4 (singlet sector)

non-minimal type A theory N complex scalars : U(N)
(2:0,0) + B2, (2+ 555, 5)
minimal type A theory N real scalars : O(N)

(2;0,0) + @zi2,4,...(2 +8:5:3)

non-minimal type B theory
2(3;0,0)+ N Dirac fermions : U(N)
221 (2+55,5) + D2, 2+ 575, 5.

minimal type B theory
2(3;0,0)+ N Majorana fermions : O(N)

D, (2+s5.5)+ @i2,4,...(2 + 55 8;17 551)6

non-minimal type C theory
2(4;0,0) + (4;1,0).+ N complex Maxwell vectors : U(N)
2752+ 5:5,5) + Do (245 52, 552

minimal type C theory
2(4;0,0)+ N real Maxwell vectors : O(N)

Do o(2+s:5,5) + @:22,4,...(2 + 5; 8327 852)6




4d conformal anomaly
A=—-a&+cC?+gD*R
Casimir energy on S° [Cappelli, Coste 89]
Ee= i (a+38)

g and E. both depend on regularization (natural: (-function or heat kernel)
N > 3 supersymmetric case (e.g. N' = 4 SYM)

N >3 susy : E. = 32a, a=c, g=0

e cxtract 4d conformal anomaly from bulk description:
(ctf. “tree-level” 5d derivation of conf. anom. [Henningson, Skenderis 98])

1-loop correction:
O = —D? + X for 5d field ¢ dual to 4d field (A; j1, j2) [Metsaev]

O=-D>+X, X =A(A—4)—hi— |ha| = (A—2)> -2

on asymptotically AdS; space ds* = 272 [dz? + g, (x, 2) dzt dxV]



(13

1-loop partition function with Dirichlet-type “+” or Neumann-type

7= = (det0)['/?

+

boundary conformal anomaly A¥ as variation of Z*:

Slog Z+ = — (471)2 f d*x Voo A*, 0Guy =200 g

early attempt [Mansfield, Nolland, Ueno 03]: A" = (A —2) A

in general A = A~ — AT = —2A% and A is function of (A, j1, j2)
now found explicitly in case of S* boundary; conjectured for R, =

Partition function on S* x S° and Casimir energy

—” b.c.

0

one-particle partition functions same as conformal characters [Dolan 03]

“massive” conformal rep. (4A; ji,j2): A > 24 j1 + Jo

long representation of SO(2,4) — massive AdS5 HS field partition function

qA

ZT(A; j1,j2) = (241 +1)(2j2 + 1) (1— gt

“massless” rep: A = 2 + j; + jo corresponds to conserved current in CFT



massless HS gauge field in AdS5 (subtract ghost in 5d or cons. cond. in 4d)

ZH(A; j1,d2) = ZT(A; g1, d2) — ZH(A+ 15 51— Lo — 1),
A

(1—q)*

ZT(A g1, J2) = Z24(A; g1, J2) = (271 +1)(272 +1) —4qjs j2}

Casimir energy on S°
compute from Z :

massive rep:

Eo(A; i1, j2) = — =35 (—1)%17%92 (251 + 1)(2j2 + 1)(A - 2)
x {6(A—2)4—20(A—2)2+11}



massless rep. A = 2 + j1 + jo
Ee(D; ju,d2) = Be(A; 1, j2) — B (A+1; j1 = 5,52 — 3)

Conformal anomaly a-coefficient
euclidean AdSs with S* boundary

log ZT = —logdety O = 1 ('(0) = —4a™ logR + ...

((z) from H® heat kernel for “massive” 5d operator O
gives for a = —2a™ in massive case

A(A; j1, j2) == (—1)201H32) (24 +1)(242 + 1)(A — 2)
x [—3(A—z)4+1o(j%+j§+j1 + o + 1) (A = 2)2
—15(j1 = j2)2(j1 + j2 +1)?|
1n massless case:

a(A; j1,72) =a(A; j1,72) —a(A+1; j1 — 5,j2 — 3)



Conformal anomaly c-coefficient
if a is known, to find ¢ compute ¢ — a on Ricci flat 4d space: A = (¢ — a)&
for low-spin massive fields ¢ = —2c* [Mansfield et al 03; Ardehali et al 13]

¢t —at = — 55 (12Ut (A = 2) d(j1, j2) [1+ f(1) + f(j2)]
d(j1,J2) = (2j1 +1)(2j2 + 1), f) =70+ [65(+1) 7]

proposal in general case:
C(A; j1,J2) = =5 (=1)201+52) (251 + 1)(242 + 1) (A — 2)
X | = 6(A—2)" +20(A - 22+ 6} +j3) + 20523 + 12 (5} + 33)
+20 (32 + j153) = 6 (G + 33) + 201z — 12 (s + j2) — 8

Thus: E., a and c are (5-th order) polynomials in A — 2, and in j1, jo



E., a, ¢ for superconformal SU (2, 2|\') multiplets

e \ = 1 superconformal multiplets

N = 1 multiplets containing (A; j1, j2) as lowest dim member

(1) long massive multiplets; (i1) shortened ones

(11a) chiral/anti-chiral; (11b) right-handed/left-handed semi-long (SLII/SLI)
SO(2,4) representation content of massive long A/ = 1 multiplet

[A; j1, J2liong = (A5 J1.J2) + (A + 35 51+ 2,72) + (A+ 35 41 — 5.J2)
+(A+%;j1,j2+%) (A+3; 71,02 — 5) +2 (A+ 15 41, ja)

o )+ (84155 + - )

—I—(A+1;]1 JQ-I- S)+(A+1 51— 35,j2—3)

+( (A+2,]1]2—l)

+ ( + (

A+%’]1—§,]2> A+27]1+27j2+ )+(A+27]1732)
1

dlong — Clong — O; Ec long — _1_6 (—1)2 (51+72) (2]1 + 1)(2]2 + 1) (A — 1)

E, not proportional to a: g of the D?R is non-zero in A = 1 case



chiral short multiplet:

[A; 7, 0chiral = (A3 5,0) + (A+ 537+ 35,0) + (A + 355 —35,0) + (A+1; 5,0)
Achiral = o5 (—1)%7 (2§ + 1) (2A = 3) (—2A? + 6 A + 652 + 65 — 3)
Cehiral = — 35 (—1D¥ (27 +1) (2A = 3) (A* =3A + 5%+ 5+ 1)
Ee chiral = — 357 (—1)% (25 + 1) (16A®% — T2A% + 94A — 33)



N ¢ v V,|E. | a]|c
7 | 3 |1
1 - 1 1 |5 13 |3
13 | 5 |1
2 2 1 355|555
3 |1 |1
3,416 4 1 | 55| 7|3
N > 1 superconformal multiplets
Maxwell supermultiplets
N =3,4: EC:%a, a=c, g=0

N = 4 Maxwell multiplet same as N' = 4 superdoubleton of PSU(2,2|4)
{N =4} ={1,0}. +4{ 5,0} + 6{0,0}

K{N =4}) = K(N = 4 Maxwell) , K = (E.,a,c)



47 17
1 |- - - - - 1 1 1 || 34
2 |- - 2 - 1 4 2 1 |8 44113

N —
N

Conformal supergravity multiplets
short multiplets with highest spin 2 — 4d conformal supergravity multiplets

N =3,4: E. = 3a, a=c



E. a
1 1
240 360
_3 | -7
40 90
17 | 11
960 720
_29 | _3
960 80
1 _ 19
10 60
11 | 31
120 180
141 | 137
80 90
593 87
120 20




e N =4 CSG + four N' = 4 Maxwell is anomaly free [Fradkin, AT 81]

KN =4CSG) + 4 K(N =4 Maxwell) =0, K = (E.,a,c)

e N/ = 4 CSG multiplet: isomorphic to supercurrent multiplet

of N' = 4 Maxwell theory and to short massless multiplet

of 5d NV = 8 sugra with AdS5 vacuum isometry PSU (2,2|4)

e 5d expressions for conf anomaly and Casimir energy for N' = 4 CSG
are directly related to 1-loop contribution of A/ = 8 5d supergravity

KN =4CSG) = 2K (N =85dSQG)

this 1s 1-loop generalization of tree-level relation [Liu, AT 98]
e implies that

KT (N =85dSG) = 2K (N = 4 Maxwell)

e this may be interpreted as expressing the fact that
states of N/ = 8 5d supergravity are in product of
two N = 4 superdoubletons [Gunaydin, Minic, Zagerman 98]



SU(4) spin (jr,jr)

1 (JrsJe — 2) + (1 — %,72)

4+ 47 (145,02 — 1)+ (1 — 1,52 4
1+15 (j1— 3.J2 — 3)

6+ 6 (J1,92 = 1) + (h — 1, 72)
444 4+20+20" || (j1— 3.2 — 1)+ (J1 — 1,42 -
4+ 4 (J1— 1,752 — 1)

1+ 15420

6+6+ 10+ 10"

1+1




General long higher spin massless supermultiplet of PSU(2,2|4)

general long massless N/ = 4 superconformal multiplet [Gunaydin et al 98]
has spin range 4: 8 supercharges

conformal representations are massless: A = 2 + j1 + o

are of [j1, j2] @ [j2,71] ([J1,J2] in table)

representing massless higher spin fields in AdSs

or corresponding 4d conformal higher spin fields for all choices of j1, j2

N =4: E.=a=c=0



Applications to AdS/CFT

Adjoint AdS5/CFT,: 1-loop correction in IIB 10d supergravity on S°
type IIB superstring on AdS5xS® and N' = 4 SU(N) SYM theory
Zsym on M* = Zgine on asymptotically AdSs with bndry M*
implies matching of conformal anomalies and Casimir energies

direct comparison possible due to non-renormalization: on SYM side
K(N =4SUN)SYM) = (N - 1)k, K = (E.,a,c)

k = (5%, 7, 7) for single N = 4 Maxwell multiplet

at N2 order (string tree level — classical type IIB supergravity)
demonstrated in [Henningson, Skenderis 98] (conformal anomalies)

and [Balasubramanian, Kraus 99] (vacuum energy)

string one-loop order: assume contributions of massive string modes vanish
(i) string modes: long PSU (2, 2|4) multiplets, should not contribute

(i) masses depend on ’t Hooft coupling (m? ~ o/~ ~ v/))

contribution would contradict expectred non-renormalization



(A; 71, 72) SU(4) (A; 71,72) SU(4)
(p+§; %,0) (2,p—3,1).
(p; 070) (U,p,O) (p_|_ §; 1570) (Ovp_gal)c
(p_i_%; %70) (Oap_lal)c ng (p+2; 57%) <1ap_371)c
(p+1;1,0) | (0,p—1,0) (p+2;1,0) | (2,p—3,0)c
p=>2| (p+1;0,0) | (0,p—2,2) (p+3;1,0) | (0,p—3,0)
(p+2; 070) (07]9_2,0)0 (p+g; 17%) (17p_370)c
(p—|— %; 1%’0) (O7p_ 271)0 (p+2; 070) (2,]7—4, 2)
(p+1; 57%) (1,p—2,1) (p+3;0,0) | (0,p—4,2),
(p+3:1,3) | (Lp—2,0). | p=4| (p+4;0,0) | (0,p—4,0)
(p+2;1,1) | (0,p—2,0) (p+§; %70) (2,p—4,1).
(p_|_ 59 1570) (Ovp_471)c
(p+3§ 57%) (1,]9—4,1)

Table 1: Field content of compactification of type IIB supergravity on S°




O(N"Y) term should come from loop of massless string modes:

one-loop correction in 10d type 1IB supergravity compactified on S°

sum of contributions of massless AN/ = 8 5d supergravity multiplet

and tower of massive KK multiplets [Kim, Romans, van Nieuwenhuizen 835]
thus should find

1-loop 10d IIB SG on S°: Ef=—32 at=—-1 c¢t=-1
[contributions of 5d fields with standard (“Dirichlet”) b.c.: KT = — %K ]
KT(10dIIBSGon S°) = —K (N = 4 Maxwell)

vacuum energy does not vanish in 1-loop type IIB supergravity on S°
different from N > 4 gauged SG in 4d [Allen 83]

and 11d SG on S” [Gibbons, Nicolai 84]

but similar to 11d SG on S* [Beccaria, AT]

use general expressions for a, ¢, F/. and table of KK states to compute
massless level: states of 5d A/ = 8 SG give (p = 2)

p=2: E. = :

29

colw
N

: a = c=



e same up to -1/2 as of N' = 4 4d conformal supergravity multiplet
p = 3 and p > 4 massive KK multiplets give

p=>3: Ec:i)_ga a =

s

Y C =

s

e K = (E.,a,c) are thus universally described by (p = 2, 3,4, ...)

K+ (KK level p of 10d IIB SG on S°) = p K (N = 4 Maxwell)

e applies also for p = 1:

N = 4 superdoubleton multiplet = Maxwell multiplet

linearity in p: F., a and c are 5th order polynomials in A — 2 (and thus in p)
e non-linearity in p cancels out after multiplying by dimensions of SO(6)
reps and summing over the members of each supermultiplet

cf. 5d states at level p appear in product of p A/ = 4 doubletons [Gunaydin]
e how to sum over p: corect prescription

ip:(), i.e. ip:—l
p=1 p=2



interpretation: p = 1 term — N = 4 Maxwell multiplet = superdoubleton
should not to be included — gauged away
cf. decoupled U (1) D3-brane contribution or SU(N') vs U(N) on SYM side

true if use sharp cutoff 25:1 p=3P*+iP =0
can be justified for F/. by (-function regularization directly in 10d
regularization consistent with symmetries of theory

should be applied directly in 10d rather than in 5d:
should be based on spectrum of original 10d operators



Vectorial AdS5/CFT},

no supersymmetry, free CFT at the boundary in any d

d = 4 or AdS5 : first non-trivial case where mixed-symmetry representations
appear in type B and type C theories

type C theory: dual to (complex or real) N 4d Maxwell fields

can be obtained by taking the product of two spin 1 doubletons

complex Maxwell field case: F};,(x)Fyp(2') — F*0...0F

dimension 4 states ' F' :

(1) scalar I}, F'*” and pseudoscalar F:,/FVW in rep (4;0,0);

(1) antisymmetric tensor F;[VF,{] — massive selfdual + anti-selfdual

m
rank 2 tensors: (4;1,0). = (4;1,0) + (4;0,1)
(iii) spin 2 conserved stress tensor (4; 1, 1) and its parity-odd counterpart

~

with one F,,, replaced by F,,,
(1v) conserved current with symmetries of Weyl tensor, 1.e. massless state
(4;2,0), described by Young tableu with 2 rows and 2 columns



AdSs5

CFT4 (singlet sector)

non-minimal type A theory
(2:0,0) + D2y (2 + 575, 5)

N complex scalars : U(N)

minimal type A theory
(2;0,0) + @gi2,4,...(2 + 855, 3)

N real scalars : O(N)

non-minimal type B theory
2(3;0,0)+

22 (24555 + D, 2+ s 5,

S

7 )e

N Dirac fermions : U(N)

minimal type B theory
2(3;0,0)+

N Majorana fermions : O(N)

D1 (2+s:5,5) + EB?;2,4,...(2 + 5; Serl’ Sgl)c
non-minimal type C theory
2(4;0,0) + (4;1,0), N complex Maxwell vectors : U (N)
22,2455, 5) + D, (2+ 5 %32, 7).

minimal type C theory
2(4;0,0)+

B2+ 55, 5)+DPn,  (2+ s 542,252

)c

N real Maxwell vectors : O(N)

Table 2: Vectorial AdS5/CFT, dualities. (A; 51, 72)e = (A 71, 52) +(4A; ja, j1)




sum over spins prescription: sum with fixed cutoff
implied by use of spectral (-function

K — —€ (S-l—%) K K — Ec
28: (S) Z © (S) e—0, finite part ’ ( A C)

S

s = j1 + jo 1s total spin and summation over all states

non-minimal type A theory:

D K245 5,5) =0

s=1

minimal type A theory:

Y, KT(2+s5,5) = K(30,0)
s=2,4,...

i.e. AdS5 HS theory 1-loop correction is exactly 1-loop contribution

of single real massless 4d scalar: K(3; 0,0) = (24110, 3é07 1%0)

consistent with AdS/CFT duality if minimal HS theory action N — N — 1




non-minimal type B theory:

2K1(3;0,0)+2) KT(2+s; 52 51 =0

s=1

2 K7(3;0,0) = —K(3;0,0) contribution of two 5d scalars
symmetric representation term vanishes separately

contributions of (A; j1, j2) and (A; js, j1) are equal: doubling

minimal type B theory:

2K*(3;0,00+2 )  KT(2+4s = 51y = K(3; 3,0).
s=2,4,...

r.h.s. 1s same as contribution of single 4d Majorana fermion

5. 1 _ 5. 1 _ (17 11 1
K(§7 29 )c - 2K(§7 570) —_ (%7%7@)



non-minimal type C theory:

2K1(4;0,0)+ K*(4; 1,0).

+2) KY(2+s5,5)+ ) K12+ s 552, 252),
5=2 5=2

= 2K(3 —4K*T(3; %, 1)

72’2) 129 2

sum of all AdS5 1-loop contributions is no longer zero — is twice of

K (3; ;, %) (11210, %, %) — same as of one complex 4d Maxwell field

already in non-minimal type C theory case one needs N — N — 1 ?!

minimal type C theory:

2EH(40,004 Y KF @455, 5)+ D KT (24582, 550),
§=2 s=2/4,...

=2K(3;3,1)=—-4K*(3;3,3)

here boundary vector field is real —
need shift N — N — 2 in the coefficient of the classical HS action



Supersymmetric cases

e supersymmetry not a necessary ingredient in vectorial AdS/CFT duality
but may consider also supersymmetric AdS5;/CFT,4 dual pairs
(supersymmetric AdS4/CFTj cases [Sezgin, Sundell 03,Leigh, Petkou 03])

e N = 1 supersymmetric HS theory in AdS5 [Alkalaev, Vasiliev 02]

1
)
similar susy generalizations of type A, B and C theory examples

boundary theory — NV free spin (0, =) N = 1 supermultiplets

e most supersymmetric case of free unitary boundary CFT:

N free N' = 4 Maxwell supermultiplets

e spectrum of dual AdS5 HS theory: product of two A/ = 4 superdoubletons
[Gunaydin et al 98; Sezgin, Sundell 02]

low-spin s < 2 part same as in type IIB supergravity compactified on S°

e this HS theory should correspond to “leading Regge trajectory” part of
“zero tension” limit of AdSsxS® superstring [Bianchi et al 03]

e particular maximally supersymmetric case of vectorial AAS/CFT duality
as a truncation of g,,,, = 0 limit of the adjoint AdS/CFT



when 5d fields are combined into supermultiplets many cancellations happen

e KT = (EI, a™,c™) for infinite set of HS 5d fields appearing in product
of two superdoubletons { N} each representing N -super Maxwell theory

KT({N} @ {N}) =2 K({N}) = 2 K(N-Maxwell)

r.h.s. is twice the contribution of A/-super Maxwell theory or A/ -superdoubleton
e get direct super-generalization of the relation in type C theory

“anomaly of a product is twice anomaly of a factor”:

may be viewed as analog of relation for the characters or partition functions

Z{N} @ {N}) = [Z{ND]?

e admits the following interpretation:

1-loop contribution of states of A" = 8 5d supergravity is already equal to
that of two N = 4 Maxwell multiplets; thus all other states appearing

in the product {N'} ® {N} should give zero contribution: they indeed
should form massless supermultiplets of PSU (2, 2|4) giving 0 contributions



6d case: tensor multiplet and AdS7 x S?* supergravity
[Beccaria, Macorini, AT]

one-loop computation in 11d supergravity on AdS; x S*:
determine 2nd subleading coeff in conf anomaly of

6d (2,0) theory of NV coincident M5-branes

dual to M-theory on AdS7 x S* conformal anomaly in 6d

A6:a56—|—W6—|—D6, We =c1 11 +cols+c3l3

I, ~CD?C + ..., I,,I3 ~ CCC, Dg~ D?...)
single free 6d tensor multiplet [Bastianelli, Frolov, AT *00]

classical 11d supergravity on S” [Henningson, Skenderis 98]:
large N of (2,0) theory

A6:a56+CW6, W659611—|—2412—8]3,
Atens — % y  Ctens — 1 ) a(2,0) = 4N3 T C(2,0) = 4N3 T

same Weyl-invariant combination Wg: related to non-renormalization
of ratio of 2- and 3- points of stress tensor [Bastianelli, Frolov, AT 99]



a in 6d related to 4-point stress correlator — gets non-trivial renormalization
as order /V term in R-symmetry anomaly [Harvey, Minasian, Moore 98]
order N terms in a(3 oy and ¢(q,0y from R* in 11d eff. action [AT *00]

a0 =4N°— 2N +ay, c2.0) =4 N’ —3N +¢;

by analogy with AdSs/CFT, duality with anomaly coeff N2 — 1
vanishing for N = 1 expect boundary singleton

(single M5-brane tensor multiplet)

should decouple and thus the full 6d anomaly should vanish for N = 1:

IR

A1 = —Atens — T 7 C1 = —Ctens — —1

2,00 =4N? —3N —1= (N —1)(2N + 1)° is same as central charge of
Apn_1 Toda theory at the “symmetric” coupling point

[Beem, Rastelli, van Rees 14]: protected sector — prediction that ¢c; = —1
(2d chiral algebra)
show that 1-loop 11d supergravity produces expected a1 = —atens

a0 =4N3>—2N—-I=(N—-1)[(2N +1)? + 2]



1-loop correction in 11d sugra on S7:

(i) boundary of AdS7 is S (gives a-anomaly part of Ag)
(i) S x S° (gives Casimir energy E!~1°0P)

result 1s minus that of single tensor multiplet

a1 —loop sugra — — Adtens; Ec 1—loop sugra — _Ec tens -

(2,0) tensor multiplet in 6d curved space
5 scalars, 4 MW fermions, self-dual tensor

S = [ doeyg( - SHE, - $Vi0"Vie® — HRo0" + i TV )

1 191 221
dp = T woE760 M) T T 14515200 AT T T 10320

dtens — 5a¢+4a¢ +ar = _T752

Single particle thermal partition function

Z(Q):Tre_BH:Zdne_Bwn :ZdnqAna q



on ST x S°: [Kutasov, Larsen 00]

1 & q2—q4
Z, = 1 2)? 3) gt = ——
v =15 ;(n+ J(n+2)*(n+3)q 1 g
] & 4qé 4qZ
n 5 2 — 2
Z¢:6Z(n+1)(n+2)(n+3)(n+4)q t3 = 1=
n=0
] — 103 — 15¢* + 6¢° —
Zr =7 D (n+ D+ 2+ (n+5)¢"t = = —
n=0

Casimir energy on S° [Gibbons, Pope, Perry 06]
Ec:% denwn:% )FCE(_l)

_ 31 _ 367 _ 191
Eiep = 60480 ’ By = 96768’ Eer = ~ 4032
25

Ectens =D Ec,¢ +4 Ec,w + EC,T 384

Ectens — 7—75 does not agree with [Herzog, Huang 13]:

Atens

derivative terms D¢ # 0 in natural scheme



11d supergravity near AdS; x S*

S0O(2,6) x SO(5): conformal group reps (A; h)

h = (h1, ho, h3), h1 > ho > |hs| or Dynkin labels [ry, o, 73]
KK spectrum on S* [van Nieuwenhuizen 85]

character of typical massive representation [Dolan 03]

+(A-h)= ZT(A: h) = 1
Z7(A ) =27 (A h) = d(h) 7

d(h) = 5(1+ hy — h2)(1 + hy — h3)
X (14 ha+ h3)(2+ hy — h3)(24 hi + h3)(3+ hy + h2)
singleton representation h = (h, h, +h)

(2,0) tensor multiplet as singleton [Gunaydin et al 84]

1

partition functions on S! x S° are h = 0, 5, 1 singleton characters

Z%(2;0,0,0) = Z4(q), Z7(2; 3.3.3)=2¢(q), Z7(3;1,1,1) = Zr(q)
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Casimir energy

(_1)2(h1+h2+h3)dh A3
120960 (B) (A =3)

x [12 (A = 3)% — 126 (A — 3)* + 336 (A — 3)* — 191]

E.(A; h) =

a—anomaly

d (h)
2 x 96 x 37800
x [15(A —3)" — 21(A — 3)° (k3 + hy (h1 +4) + ha (ha +2) + 5)
+35(A —3)° ((h1 +2)% (ha + 1) % + (hy (h1 +4) + ha (ha + 2) + 5) h3)
—105(A — 3) (hy +2) 2 (hy + 1) 2h2],

A(Ash) = (1))

for representations saturating unitarity bound need subtractions



One-loop supergravity correction
Casimir energy at level p: summing individual reps contributions

Eep=(6p> —6p+1)Eetens,  D=2,3,4,..

p = 1: singleton —true also forp = 1: E.1 = FE¢ tens
a-anomaly:

a, = (6p° —6p+ 1) atens , p=223,4,...

agaln al — a.ltens and thus Ec’p/EC’tenS — ac’p/acjtens
Total contribution:  use special regularization

> (6p*—6p+1)=0, ie Y (6p°—6p+1)=-1
p=1 p=2

e.g. use sharp cutoff and drop all power divergences:
S (6p?—6p+1)=2A% —A—0



Proper justification: do not sum KK modes, use (-func. reg. directly in 11d
©.@) ©. @)
Z Ec,p — _Ec,tens ) Z dp — —Atens
p=2 p=2

Analytic regularisation for F .
define energy in 11d with cutoff € — 0

E.(AB) = J(=1X ) d(h) 37 (") (A + ) e At
n=0

ZEC’p — 207488563 o 16;562 + 0+ O(€> — 0
p=1

equivalent to (-regularization in 11d



Conclusions

e quantum tests of vectorial — higher spin AdS/CFT:
general mixed representations in AdSyy1, d =2,4,6

e supersymmetric examples: cancellations, simple patterns of
contrubutions of KK multiplets;
subleading terms in a-anomaly coefficients:

agea = N?> =1, ag_—g=4N>—3IN -1 qa4_0=6(NsN; +1)

e applications: to adjoint AdS/CFT in “zero-tension™ limit



