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Goal

Despite significant progress in the construction of actions during last

thirty years: A.Bengtsson, I.Bengtsson, Brink (1983); Berends, Burgers, van Dam (1984);

Fradkin, MV (1987),... Metsaev (2006)... Joung, Tarona (2011) ,...Boulanger, Sundell (2012) ...

construction of the action, generating functional for correlators and BH

entropy was lacking

Plan

HS holographic duality from unfolded formulation

Structure of HS equations and Klein operator as de Rham cohomology

Supertrace versus Lagrangians in the extended HS equations

Invariants of the AdS4 HS theory

Structure of the boundary functional

Conclusion
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Unfolded dynamics

Covariant first-order differential equations 1988

dWΩ(x) = GΩ(W (x)) , GΩ(W ) =
∞∑
n=1

fΩ
Λ1...ΛnW

Λ1 ∧ . . . ∧WΛn

Geometry is encoded by GΩ(W ): unfolded equations make sense in any

space-time

dWΩ(x) = GΩ(W (x)) , x→ X = (x, z) , dx → dX = dx + dz , dz = dzu
∂

∂zu

X-dependence is reconstructed in terms of W (X0) = W (x0, z0) at any X0

Classes of holographically dual models: different G 2012
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Nonlinear HS equations

W = (d +W ) + S , W = dxnWn , S = dzαSα + dz̄α̇S̄α̇

W ?W = i(dZAdZA + dzαdzαF (B) ? k ? κ+ dz̄α̇dz̄α̇F̄ (B) ? k̄ ? κ̄) ,

W ? B = B ?W

HS star product

(f ∗ g)(Z;Y ) =
1

(2π)4

∫
d4U d4V exp [iUAV

A] f(Z + U ;Y + U)g(Z − V ;Y + V )

Manifest gauge invariance

δW = [ε,W]? , δB = ε ? B −B ? ε , ε = ε(Z;Y ;K|x)

Vacuum solution with B = 0

W0 =W1,0
0 +W0,1

0 , W1,0
0 = dZAZA , W0,1

0 = W0(Y |x)
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Klein operators

Klein operator

κ = exp izαy
α , κ ∗ κ = 1

κ ∗ f(z, y) = f(−z,−y) ∗ κ

For the Weyl star product of z-independent functions

(f ∗ g)(y) =
1

(2π)2

∫
d2u d2v exp [iuαv

α] f(y + u)g(y + v)

the Klein operator κy is the δ-function

κy = 2πδ2(y)

δ(y) ∗ g(y) = g(−y) ∗ δ(y) , κy ∗ κy = 1 ∼ h−2

The HS Klein operator can be defined as

κ = κy ∗ κz
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Supertrace

str(f(z, y)) =
1

(2π)2

∫
d2u d2v exp [−iuαvβ] f(u, v)

str(f ∗ g) = str(g ∗ f)

For z-independent f(z, y) = f(y)

str(f(y)) = f(0) =⇒ str(κy) =∞ ∼ δ2(0)

Since supertrace is insensitive to the choice of basis of the star-product

algebra

str(κ) ∼ δ4(0)

In our construction invariant functionals have divergent supertrace.

Klein operators are well-defined with respect to the star product.
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HS equations from de Rham cohomology in the
twistor space

The star-commutator with W1,0
0 = dZAZA gives de Rham derivative

dZAZA ∗ f − (−1)pf ∗ dZAZA = −2idZf , dZ = dZA
∂

∂ZA

The right-hand side of the HS equations has the structure

W ∗W = −i(dZAdZA + δ2(dz)δ2(z) ∗ φ+ δ2(dz̄)δ2(z̄) ∗ φ̄)

φ and φ̄ commute with W.

δ2(dz)δ2(z) is the De Rham cohomology of dz.

As a result, the interaction terms form a consistent source that cannot

be removed by a local field redefinition.

In the Moyal star product, the equations admit no solution at all.

The HS star-product makes the system solvable in terms of Z, Y .
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Extended system

HS equations seemingly leave no room for an invariant action as a space-

time p-form built from W and B since str(W ∗ f(B) ∗W ∗ g(B)) = 0.

Zero-forms str(f(B)) suffer from divergencies of the supertrace

suggested to be regularized by Colombo, Iazeolla, Sezgin and Sundell.

−×− = +

The new proposal is to consider Lagrangians that are not of the form

str(L) via the following extension of the HS unfolded equations

W ∗W = F (c,B) + Li ci , W ∗ B = B ∗W , dL = 0

W = d +W and B are differential forms of odd and even degrees, respec-

tively (both in dx and dZ).

c are x- and dx-independent central elements like dZAdZ
A, δ2(dz)k ∗ κ . . .

Lagrangians L are x-dependent space-time differential forms of even

degrees valued in the center of the algebra. In this talk: ci = I i = 1

Li ci = L I
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Symmetries

The system is consistent because B commutes with itself and with all c

and L. The gauge transformations are

δW = [W , ε]∗ , δB = [B , ε]∗ , ε = ε(dx, x, dZ, . . .)

δB = {W , ξ} , δW = ξA
∂F (c,B)

∂BA
, ξ = ξ(dx, x, dZ, . . .)

δL = dχ , δW = χI , χ(dx, x)

χ- transformation implies equivalence up to exact forms

allowing to choose canonical gauge WI := πW = 0

π is the projection to I

π(f(Y, Z|x))) = f(0,0|x) , π(f ? g) 6= π(g ? f)

Gauge transformation preserving canonical gauge

δL = dχ , χ = −π
(

[W , ε]∗ + ξA
∂F (c,B)

∂BA

)

L is on-shell closed and gauge invariant modulo exact forms
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Actions versus supertrace

Gauge invariant action

S =
∫

Σ
L

Since L is closed, it should be integrated over non-contractible cycles

For AdS/CFT the singularity is at infinity

BH invariants (entropies) are associated with (d− 2)-forms

If the HS algebra possesses a supertrace

L = str(dW +W ∗W)
∣∣∣∣
dZ=0

This suggests that the second term vanishes and hence L is exact.

Not applicable if str(W ∗W) is ill-defined:

L with well-defined str(W ∗W) are exact.

L with ill-defined str(W ∗W) have a chance to be nontrivial.
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Invariants of the AdS4 HS theory

W(dZ, dx;Z;Y ;K|x) contains all one- and three-forms in dZ and dx

B(dZ, dx;Z;Y ;K|x) contains all zero- and two-forms in dZ and dx

Lagrangians L(dx|x) depend on space-time coordinates and differentials.

Lagrangian relevant to the generating functional of correlators in

AdS4/CFT3 HS holography is a four-form L4

Lagrangian relevant to BH entropy is a two-form L2 ?!

Extended HS system is

iW∗W = dZAdZ
A+δ2(dz)F∗(B)k∗κ+δ2(dz̄)F̄∗(B)k̄∗κ̄+G(B)δ4(dZ)k∗k̄∗κ∗κ̄+LI

L = L2 + L4 , G = g +O(B)

The g-dependent term represents de Rham cohomology in the Z-space.

Klein operators give rise to divergent traces and, hence, to nontrivial L
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Holography at complex infinity

For manifest conformal invariance introduce

y+
α =

1

2
(yα − iȳα) , y−α =

1

2
(ȳα − iyα) , [y−α , y

+β]∗ = δβα

AdS4 foliation: xn = (xa, z) : xa are coordinates of leaves (a = 0,1,2,)

Poincaré coordinates z is a foliation parameter

W =
i

z
dxαβy−α y

−
β −

dz

2z
y−α y

+α

eαα̇ =
1

2z
dxαα̇ , ωαβ = −

i

4z
dxαβ , ω̄α̇β̇ =

i

4z
dxα̇β̇

Vacuum connection can be extended to the complex plane of z with all

components containing dz̄ being zero.

AdS infinity is at z = 0

Generating functional for the boundary correlators

S =
1

2πi

∮
z=0

L(φ)

An on-shell closed (d+ 1)-form L(φ) for a d-dimensional boundary

dL(φ) = 0 , L 6= dM
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Structure of the functional

The residue at z = 0 gives the boundary functional of the following

structure

SM3(ω) =
∫
M3
L , L =

1

2
ω
α1...α2(s−1)
x e

α2s−1
x βe

α2s
x

β(aCα1...α2s(ω)+āCα̇1...α̇2s
(ω))

Using that

aCα1...α2s(ω) + āCα̇1...α̇2s
(ω) = a−T−α1...α2s(ω) + a+T+α̇1...α̇2s

(ω)

T− describes local boundary terms

T+ describes nontrivial correlators via the variation of SM3
over the HS

gauge fields ω
α1...α2(s−1)
x

〈J(x1)J(x2) . . .〉 =
δnSM3(ω,C(ω))

δω(x1)δω(x2) . . .

∣∣∣∣
ω=0

Computation of a+: work in progress
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Conclusions

Formulation of holographic duality at the level of the generating func-

tional from the unfolded formulation of HS equations

The proposed formulation is coordinate-independent and applicable to

any boundaries and bulk solutions

Invariant functionals for singular solutions BH entropy(?!) follow from

the same construction via the L2-form

AdS3/CFT2: Invariant functional is a two-form: boundary functional is an

integral of a one-form: holomorphicity of CFT2
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HS AdS/CFT correspondence

General idea of HS duality Sundborg (2001), Witten (2001)

AdS4 HS theory is dual to 3d vectorial conformal models

Klebanov, Polyakov (2002), Petkou, Leigh (2005), Sezgin, Sundell (2005); Giombi and Yin (2009);

Maldacena, Zhiboedov (2011,2012); MV (2012); Koch, Jevicki, Jin, Rodrigues (2011-2014);

Giombi, Klebanov; Tseytlin (2013,2014) ...

AdS3/CFT2 correspondence Gaberdiel and Gopakumar (2010)

Analysis of HS holography helps to uncover the origin of AdS/CFT ?!

Despite significant progress in the construction of actions during last

thirty years: A.Bengtsson, I.Bengtsson, Brink (1983); Berends, Burgers, van Dam (1984);

Fradkin, MV (1987), ... Boulanger, Sundell (2012) ...

construction of the generating functional for correlators and entropies

was lacking
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3d conformal equations

Rank-one conformal massless equations Shaynkman, MV (2001)

(
∂

∂xαβ
± i

∂2

∂yα∂yβ
)C±j (y|x) = 0 , α, β = 1,2 , j = 1, . . .N

Bosons (fermions) are even (odd) functions of y: Ci(−y|x) = (−1)piCi(y|x)

Rank-two equations: conserved currents{
∂

∂xαβ
−

∂2

∂y(α∂uβ)

}
J(u, y|x) = 0 Gelfond, MV (2003)

J(u, y|x): generalized stress tensor. Rank-two equation is obeyed by

J(u, y |x) =
N∑
i=1

C−i (u+ y|x)C+
i (y − u|x)

Primaries: 3d currents of all integer and half-integer spins

J(u,0|x) =
∞∑

2s=0

uα1 . . . uα2sJα1...α2s(x) , J̃(0, y|x) =
∞∑

2s=0

yα1 . . . yα2sJ̃α1...α2s(x)

Jasym(u, y|x) = uαy
αJasym(x)

∆Jα1...α2s(x) = ∆J̃α1...α2s(x) = s+ 1 ∆Jasym(x) = 2

Conservation equation: ∂
∂xαβ

∂2

∂uα∂uβ
J(u,0|x) = 0
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Free massless fields in AdS4

Infinite set of spins s = 0,1/2,1,3/2,2 . . .

Fermions require doubling of fields

ωii(y, ȳ | x) , Ci1−i(y, ȳ | x) , i = 0,1 ,

ω̄ii(y, ȳ | x) = ωii(ȳ, y | x) , C̄i1−i(y, ȳ | x) = C1−i i(ȳ, y | x)

A(y, ȳ | x) = i
∞∑

n,m=0

1

n!m!
yα1 . . . yαnȳβ̇1

. . . ȳβ̇mA
α1...αn,

β̇1...β̇m(x)

The unfolded system for free massless fields is MV (1989)

? Rii1(y, y | x) = η H
α̇β̇ ∂2

∂yα̇∂yβ̇
C1−i i(0, y | x) + η̄ Hαβ ∂2

∂yα∂yβ
Ci1−i(y,0 | x)

? D̃0C
i1−i(y, y | x) = 0

R1(y, ȳ | x) = Dad
0 ω(y, ȳ | x) Hαβ = eαα̇ ∧ eβα̇ , H

α̇β̇ = eα
α̇ ∧ eαβ̇

Dad
0 ω = DL − λeαβ̇

(
yα

∂

∂ȳβ̇
+

∂

∂yα
ȳβ̇

)
, D̃0 = DL + λeαβ̇

(
yαȳβ̇ +

∂2

∂yα∂ȳβ̇

)

DL = dx −
(
ωαβyα

∂

∂yβ
+ ω̄α̇β̇ȳα̇

∂

∂ȳβ̇

)
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Field equations at the boundary

Rescaling

C(y, ȳ|x, z) = z exp(yαȳ
α)T (w, w̄|x, z) , wα = z1/2yα , w̄α = z1/2ȳα

W jj(y±|x, z) = Ωjj(v−, w+|x, z) , v± = z−1/2y± , w± = z1/2y±

In the limit z→ 0 free HS equations take the form(
dx + 2idxαβv−α

∂

∂w+β

)
Ωjj(v−, w+|x,0) = dxαγdxβγ

∂2

∂w+α∂w+β
T jj− (w+,0 | x,0)

DxΩjj
z (v−, w+|x,0)+DzΩjj

x (v−, w+|x,0) = −
i

2
dxαβdz

∂2

∂w+α∂w+β
T jj+ (w+,0 | x,0)

[
dx − idxαβ

∂2

∂w+α∂w−β

]
T j 1−j
± (w+, w−|x,0) = 0

T jj± (w+, w−|x,0) = ηT j 1−j(w+, w− | x,0)± η̄T1−j j(−iw−, iw+ | x,0)
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