# Invariant Functionals 

 in
## Higher-Spin Theory

M.A.Vasiliev

Lebedev Institute, Moscow

Higher Spin Theories and Holography

Moscow, December 10, 2014

Despite significant progress in the construction of actions during last
thirty years: A.Bengtsson, I.Bengtsson, Brink (1983); Berends, Burgers, van Dam (1984);
Fradkin, MV (1987),... Metsaev (2006)... Joung, Tarona (2011),...Boulanger, Sundell (2012) ... construction of the action, generating functional for correlators and BH entropy was lacking

## Plan

HS holographic duality from unfolded formulation

Structure of HS equations and Klein operator as de Rham cohomology

Supertrace versus Lagrangians in the extended HS equations

Invariants of the $A d S_{4} \mathrm{HS}$ theory

Structure of the boundary functional

## Conclusion

## Unfolded dynamics

Covariant first-order differential equations 1988

$$
\mathrm{d} W^{\Omega}(x)=G^{\Omega}(W(x)), \quad G^{\Omega}(W)=\sum_{n=1}^{\infty} f^{\Omega} \wedge_{1} \ldots \wedge_{n} W^{\wedge_{1}} \wedge \ldots \wedge W^{\wedge_{n}}
$$

Geometry is encoded by $G^{\Omega}(W)$ : unfolded equations make sense in any space-time

$$
\mathrm{d} W^{\Omega}(x)=G^{\Omega}(W(x)), \quad x \rightarrow X=(x, z), \quad \mathrm{d}_{x} \rightarrow \mathrm{~d}_{X}=\mathrm{d}_{x}+\mathrm{d}_{z}, \quad \mathrm{~d}_{z}=d z^{u} \frac{\partial}{\partial z^{u}}
$$

$X$-dependence is reconstructed in terms of $W\left(X_{0}\right)=W\left(x_{0}, z_{0}\right)$ at any $X_{0}$
Classes of holographically dual models: different $G$

## Nonlinear HS equations

$$
\begin{aligned}
& \mathcal{W}=(\mathrm{d}+W)+S, \quad W=d x^{n} W_{n}, \quad S=d z^{\alpha} S_{\alpha}+d \bar{z}^{\dot{\alpha}} \bar{S}_{\dot{\alpha}} \\
& \quad \mathcal{W} \star \mathcal{W}=i\left(d Z^{A} d Z_{A}+d z^{\alpha} d z_{\alpha} F(B) \star k \star \kappa+d \bar{z}^{\dot{\alpha}} d \bar{z}_{\dot{\alpha}} \bar{F}(B) \star \bar{k} \star \bar{\kappa}\right),
\end{aligned}
$$

$$
\mathcal{W} \star B=B \star \mathcal{W}
$$

HS star product

$$
(f * g)(Z ; Y)=\frac{1}{(2 \pi)^{4}} \int d^{4} U d^{4} V \exp \left[i U_{A} V^{A}\right] f(Z+U ; Y+U) g(Z-V ; Y+V)
$$

Manifest gauge invariance

$$
\delta \mathcal{W}=[\varepsilon, \mathcal{W}]_{\star}, \quad \delta B=\varepsilon \star B-B \star \varepsilon, \quad \varepsilon=\varepsilon(Z ; Y ; K \mid x)
$$

Vacuum solution with $B=0$

$$
\mathcal{W}_{0}=\mathcal{W}_{0}^{1,0}+\mathcal{W}_{0}^{0,1}, \quad \mathcal{W}_{0}^{1,0}=d Z^{A} Z_{A}, \quad \mathcal{W}_{0}^{0,1}=W_{0}(Y \mid x)
$$

## Klein operators

Klein operator

$$
\begin{gathered}
\kappa=\exp i z_{\alpha} y^{\alpha}, \quad \kappa * \kappa=1 \\
\kappa * f(z, y)=f(-z,-y) * \kappa
\end{gathered}
$$

For the Weyl star product of $z$-independent functions

$$
(f * g)(y)=\frac{1}{(2 \pi)^{2}} \int d^{2} u d^{2} v \exp \left[i u_{\alpha} v^{\alpha}\right] f(y+u) g(y+v)
$$

the Klein operator $\kappa_{y}$ is the $\delta$-function

$$
\begin{gathered}
\kappa_{y}=2 \pi \delta^{2}(y) \\
\delta(y) * g(y)=g(-y) * \delta(y), \quad \kappa_{y} * \kappa_{y}=1 \quad \sim \mathbf{h}^{-2}
\end{gathered}
$$

The HS Klein operator can be defined as

$$
\kappa=\kappa_{y} * \kappa_{z}
$$

## Supertrace

$$
\begin{aligned}
\operatorname{str}(f(z, y))= & \frac{1}{(2 \pi)^{2}} \int d^{2} u d^{2} v \exp \left[-i u_{\alpha} v^{\beta}\right] f(u, v) \\
& \operatorname{str}(f * g)=\operatorname{str}(g * f)
\end{aligned}
$$

For $z$-independent $f(z, y)=f(y)$

$$
\operatorname{str}(f(y))=f(0) \quad \Longrightarrow \quad \operatorname{str}\left(\kappa_{y}\right)=\infty \sim \delta^{2}(0)
$$

Since supertrace is insensitive to the choice of basis of the star-product algebra

$$
\operatorname{str}(\kappa) \sim \delta^{4}(0)
$$

In our construction invariant functionals have divergent supertrace. Klein operators are well-defined with respect to the star product.

## HS equations from de Rham cohomology in the twistor space

The star-commutator with $\mathcal{W}_{0}^{1,0}=d Z^{A} Z_{A}$ gives de Rham derivative

$$
d Z^{A} Z_{A} * f-(-1)^{p} f * d Z^{A} Z_{A}=-2 i \mathrm{~d}_{Z} f, \quad \mathrm{~d}_{Z}=d Z^{A} \frac{\partial}{\partial Z^{A}}
$$

The right-hand side of the HS equations has the structure

$$
\mathcal{W} * \mathcal{W}=-i\left(d Z_{A} d Z^{A}+\delta^{2}(d z) \delta^{2}(z) * \phi+\delta^{2}(d \bar{z}) \delta^{2}(\bar{z}) * \bar{\phi}\right)
$$

$\phi$ and $\bar{\phi}$ commute with $\mathcal{W}$.
$\delta^{2}(d z) \delta^{2}(z)$ is the De Rham cohomology of $\mathrm{d}_{z}$.
As a result, the interaction terms form a consistent source that cannot
be removed by a local field redefinition.
In the Moyal star product, the equations admit no solution at all.
The HS star-product makes the system solvable in terms of $Z, Y$.

## Extended system

HS equations seemingly leave no room for an invariant action as a spacetime $p$-form built from $\mathcal{W}$ and $B$ since $\operatorname{str}(\mathcal{W} * f(B) * \mathcal{W} * g(B))=0$.

Zero-forms $\operatorname{str}(f(B))$ suffer from divergencies of the supertrace suggested to be regularized by Colombo, Iazeolla, Sezgin and Sundell.

$$
-x-=+
$$

The new proposal is to consider Lagrangians that are not of the form $\operatorname{str}(L)$ via the following extension of the HS unfolded equations

$$
\mathcal{W} * \mathcal{W}=F(c, \mathcal{B})+\mathcal{L}_{i} c^{i}, \quad \mathcal{W} * \mathcal{B}=\mathcal{B} * \mathcal{W}, \quad \mathrm{~d} \mathcal{L}=0
$$

$\mathcal{W}=\mathrm{d}+W$ and $\mathcal{B}$ are differential forms of odd and even degrees, respectively (both in $d x$ and $d Z$ ).
$c$ are $x$ - and $d x$-independent central elements like $d Z_{A} d Z^{A}, \delta^{2}(d z) k * \kappa \ldots$

Lagrangians $\mathcal{L}$ are $x$-dependent space-time differential forms of even degrees valued in the center of the algebra. In this talk: $c_{i}=I i=1$

$$
\mathcal{L}_{i} c^{i}=\mathcal{L} I
$$

## Symmetries

The system is consistent because $\mathcal{B}$ commutes with itself and with all and $\mathcal{L}$. The gauge transformations are

$$
\begin{array}{cc}
\delta \mathcal{W}=[\mathcal{W}, \varepsilon]_{*}, \quad \delta \mathcal{B}=[\mathcal{B}, \varepsilon]_{*}, & \varepsilon=\varepsilon(d x, x, d Z, \ldots) \\
\delta \mathcal{B}=\{\mathcal{W}, \xi\}, \quad \delta \mathcal{W}=\xi^{A} \frac{\partial F(c, \mathcal{B})}{\partial \mathcal{B}^{A}}, & \xi=\xi(d x, x, d Z, \ldots) \\
\delta \mathcal{L}=d \chi, \quad \delta \mathcal{W}=\chi I, & \chi(d x, x)
\end{array}
$$

$\chi$ - transformation implies equivalence up to exact forms
allowing to choose canonical gauge $\mathcal{W}_{I}:=\pi \mathcal{W}=0$
$\pi$ is the projection to $I$

$$
\pi(f(Y, Z \mid x)))=f(0,0 \mid x), \quad \pi(f \star g) \neq \pi(g \star f)
$$

Gauge transformation preserving canonical gauge

$$
\delta \mathcal{L}=\mathrm{d} \chi, \quad \chi=-\pi\left([\mathcal{W}, \varepsilon]_{*}+\xi^{A} \frac{\partial F(c, \mathcal{B})}{\partial \mathcal{B}^{A}}\right)
$$

$\mathcal{L}$ is on-shell closed and gauge invariant modulo exact forms

## Actions versus supertrace

Gauge invariant action

$$
S=\int_{\Sigma} \mathcal{L}
$$

Since $\mathcal{L}$ is closed, it should be integrated over non-contractible cycles
For $A d S / C F T$ the singularity is at infinity
BH invariants (entropies) are associated with ( $d-2$ )-forms

If the HS algebra possesses a supertrace

$$
\mathcal{L}=\left.\operatorname{str}(\mathrm{d} \mathcal{W}+\mathcal{W} * \mathcal{W})\right|_{d Z=0}
$$

This suggests that the second term vanishes and hence $\mathcal{L}$ is exact. Not applicable if $\operatorname{str}(\mathcal{W} * \mathcal{W})$ is ill-defined:
$\mathcal{L}$ with well-defined $\operatorname{str}(\mathcal{W} * \mathcal{W})$ are exact.
$\mathcal{L}$ with ill-defined $\operatorname{str}(\mathcal{W} * \mathcal{W})$ have a chance to be nontrivial.

## Invariants of the $A d S_{4}$ HS theory

$\mathcal{W}(d Z, d x ; Z ; Y ; \mathcal{K} \mid x)$ contains all one- and three-forms in $d Z$ and $d x$ $\mathcal{B}(d Z, d x ; Z ; Y ; \mathcal{K} \mid x)$ contains all zero- and two-forms in $d Z$ and $d x$
Lagrangians $\mathcal{L}(d x \mid x)$ depend on space-time coordinates and differentials.
Lagrangian relevant to the generating functional of correlators in $A d S_{4} / C F T_{3}$ HS holography is a four-form $\mathcal{L}^{4}$
Lagrangian relevant to BH entropy is a two-form $\mathcal{L}^{2}$ ?!

Extended HS system is

$$
\begin{gathered}
i \mathcal{W} * \mathcal{W}=d Z_{A} d Z^{A}+\delta^{2}(d z) F_{*}(\mathcal{B}) k * \kappa+\delta^{2}(d \bar{z}) \bar{F}_{*}(\mathcal{B}) \bar{k} * \bar{\kappa}+G(\mathcal{B}) \delta^{4}(d Z) k * \bar{k} * \kappa * \bar{\kappa}+\mathcal{L} I \\
\mathcal{L}=\mathcal{L}^{2}+\mathcal{L}^{4}, \quad G=g+O(\mathcal{B})
\end{gathered}
$$

The $g$-dependent term represents de Rham cohomology in the $Z$-space. Klein operators give rise to divergent traces and, hence, to nontrivial $\mathcal{L}$

For manifest conformal invariance introduce

$$
y_{\alpha}^{+}=\frac{1}{2}\left(y_{\alpha}-i \bar{y}_{\alpha}\right), \quad y_{\alpha}^{-}=\frac{1}{2}\left(\bar{y}_{\alpha}-i y_{\alpha}\right), \quad\left[y_{\alpha}^{-}, y^{+\beta}\right]_{*}=\delta_{\alpha}^{\beta}
$$

$A d S_{4}$ foliation: $x^{n}=\left(\mathrm{x}^{a}, \mathbf{z}\right): \mathrm{x}^{a}$ are coordinates of leaves $(a=0,1,2$, $)$
Poincaré coordinates z is a foliation parameter

$$
\begin{gathered}
W=\frac{i}{\mathbf{z}} d \mathbf{x}^{\alpha \beta} y_{\alpha}^{-} y_{\beta}^{-}-\frac{d \mathrm{z}}{2 \mathrm{z}} y_{\alpha}^{-} y^{+\alpha} \\
e^{\alpha \dot{\alpha}}=\frac{1}{2 \mathrm{z}} d x^{\alpha \dot{\alpha}}, \quad \omega^{\alpha \beta}=-\frac{i}{4 \mathrm{z}} d \mathbf{x}^{\alpha \beta}, \quad \bar{\omega}^{\dot{\alpha} \dot{\beta}}=\frac{i}{4 \mathrm{z}} d \mathbf{x}^{\dot{\alpha} \dot{\beta}}
\end{gathered}
$$

Vacuum connection can be extended to the complex plane of z with all components containing $d \overline{\mathbf{z}}$ being zero.
$A d S$ infinity is at $\mathrm{z}=0$
Generating functional for the boundary correlators

$$
S=\frac{1}{2 \pi i} \oint_{\mathrm{z}=0} L(\phi)
$$

An on-shell closed $(d+1)$-form $L(\phi)$ for a $d$-dimensional boundary

$$
\mathrm{d} L(\phi)=0, \quad L \neq \mathrm{d} M
$$

## Structure of the functional

The residue at $\mathrm{z}=0$ gives the boundary functional of the following structure

$$
S_{M^{3}}(\omega)=\int_{M^{3}} \mathcal{L}, \quad \mathcal{L}=\frac{1}{2} \omega_{\mathrm{x}}^{\alpha_{1} \ldots \alpha_{2(s-1)}} e_{\mathrm{x}}^{\alpha_{2 s-1}}{ }_{\beta} e_{\mathrm{x}}^{\alpha_{2 s} \beta}\left(a C_{\alpha_{1} \ldots \alpha_{2 s}}(\omega)+\bar{a} C_{\dot{\alpha}_{1} \ldots \dot{\alpha}_{2 s}}(\omega)\right)
$$

Using that

$$
a C_{\alpha_{1} \ldots \alpha_{2 s}}(\omega)+\bar{a} C_{\dot{\alpha}_{1} \ldots \dot{\alpha}_{2 s}}(\omega)=a_{-} \mathcal{T}_{-\alpha_{1} \ldots \alpha_{2 s}}(\omega)+a_{+} \mathcal{T}_{+\dot{\alpha}_{1} \ldots \dot{\alpha}_{2 s}}(\omega)
$$

$\mathcal{T}_{-}$describes local boundary terms
$\mathcal{T}_{+}$describes nontrivial correlators via the variation of $S_{M_{3}}$ over the HS gauge fields $\omega_{\mathrm{X}}^{\alpha_{1} \ldots \alpha_{2(s-1)}}$

$$
\left\langle J\left(\mathrm{x}_{1}\right) J\left(\mathrm{x}_{2}\right) \ldots\right\rangle=\left.\frac{\delta^{n} S_{M^{3}}(\omega, C(\omega))}{\delta \omega\left(x_{1}\right) \delta \omega\left(x_{2}\right) \ldots}\right|_{\omega=0}
$$

Computation of $a_{+}$: work in progress

## Conclusions

Formulation of holographic duality at the level of the generating functional from the unfolded formulation of HS equations

The proposed formulation is coordinate-independent and applicable to any boundaries and bulk solutions

Invariant functionals for singular solutions BH entropy(?!) follow from the same construction via the $\mathcal{L}^{2}$-form
$A d S_{3} / C F T_{2}$ : Invariant functional is a two-form: boundary functional is an integral of a one-form: holomorphicity of $\mathrm{CFT}_{2}$

## HS AdS/CFT correspondence

$A d S_{4}$ HS theory is dual to $3 d$ vectorial conformal models
Klebanov, Polyakov (2002), Petkou, Leigh (2005), Sezgin, Sundell (2005); Giombi and Yin (2009)
Maldacena, Zhiboedov (2011,2012); MV (2012); Koch, Jevicki, Jin, Rodrigues (2011-2014);
Giombi, Klebanov; Tseytlin $(2013,2014)$...
$A d S_{3} / C F T_{2}$ correspondence Gaberdiel and Gopakumar (2010)

Analysis of HS holography helps to uncover the origin of $A d S / C F T$ ?!

Despite significant progress in the construction of actions during last thirty years: A.Bengtsson, I.Bengtsson, Brink (1983); Berends, Burgers, van Dam (1984); Fradkin, MV (1987), ... Boulanger, Sundell (2012) ...
construction of the generating functional for correlators and entropies was lacking

Rank-one conformal massless equations

$$
\left(\frac{\partial}{\partial x^{\alpha \beta}} \pm i \frac{\partial^{2}}{\partial y^{\alpha} \partial y^{\beta}}\right) C_{j}^{ \pm}(y \mid x)=0, \quad \alpha, \beta=1,2, \quad j=1, \ldots \mathcal{N}
$$

Bosons (fermions) are even (odd) functions of $y: C_{i}(-y \mid x)=(-1)^{p_{i}} C_{i}(y \mid x)$ Rank-two equations: conserved currents

$$
\left\{\frac{\partial}{\partial x^{\alpha \beta}}-\frac{\partial^{2}}{\partial y^{(\alpha} \partial u^{\beta)}}\right\} J(u, y \mid x)=0
$$

$J(u, y \mid x)$ : generalized stress tensor. Rank-two equation is obeyed by

$$
J(u, y \mid x)=\sum_{i=1}^{\mathcal{N}} C_{i}^{-}(u+y \mid x) C_{i}^{+}(y-u \mid x)
$$

Primaries: $3 d$ currents of all integer and half-integer spins

$$
\begin{gathered}
J(u, 0 \mid x)=\sum_{2 s=0}^{\infty} u^{\alpha_{1}} \ldots u^{\alpha_{2 s}} J_{\alpha_{1} \ldots \alpha_{2 s}}(x), \quad \tilde{J}(0, y \mid x)=\sum_{2 s=0}^{\infty} y^{\alpha_{1}} \ldots y^{\alpha_{2 s}} \tilde{J}_{\alpha_{1} \ldots \alpha_{2 s}}(x) \\
J^{a s y m}(u, y \mid x)=u_{\alpha} y^{\alpha} J^{a s y m}(x) \\
\Delta J_{\alpha_{1} \ldots \alpha_{2 s}}(x)=\Delta \tilde{J}_{\alpha_{1} \ldots \alpha_{2 s}}(x)=s+1 \quad \Delta J^{a s y m}(x)=2
\end{gathered}
$$

Conservation equation: $\frac{\partial}{\partial x^{\alpha \beta}} \frac{\partial^{2}}{\partial u_{\alpha} \partial u_{\beta}} J(u, 0 \mid x)=0$

Infinite set of spins $s=0,1 / 2,1,3 / 2,2 \ldots$
Fermions require doubling of fields

$$
\begin{aligned}
& \omega^{i i}(y, \bar{y} \mid x), \quad C^{i 1-i}(y, \bar{y} \mid x), \quad i=0,1 \\
& \bar{\omega}^{i i}(y, \bar{y} \mid x)=\omega^{i i}(\bar{y}, y \mid x), \quad \bar{C}^{i 1-i}(y, \bar{y} \mid x)=C^{1-i i}(\bar{y}, y \mid x) \\
& A(y, \bar{y} \mid x)=i \sum_{n, m=0}^{\infty} \frac{1}{n!m!} y_{\alpha_{1}} \ldots y_{\alpha_{n}} \bar{y}_{\dot{\beta}_{1}} \ldots \bar{y}_{\dot{\beta}_{m}} A^{\alpha_{1} \ldots \alpha_{n}, \dot{\beta}_{1} \ldots \dot{\beta}_{m}}(x)
\end{aligned}
$$

The unfolded system for free massless fields is MV (1989)

$$
\begin{gathered}
\star \quad R_{1}^{i i}(y, \bar{y} \mid x)=\eta \bar{H}^{\dot{\alpha} \dot{\beta}} \frac{\partial^{2}}{\partial \bar{y}^{\dot{\alpha}} \partial \bar{y}^{\dot{\beta}}} C^{1-i i}(0, \bar{y} \mid x)+\bar{\eta} H^{\alpha \beta} \frac{\partial^{2}}{\partial y^{\alpha} \partial y^{\beta}} C^{i 1-i}(y, 0 \mid x) \\
\star \quad \widetilde{D}_{0} C^{i 1-i}(y, \bar{y} \mid x)=0 \\
R_{1}(y, \bar{y} \mid x)=D_{0}^{a d} \omega(y, \bar{y} \mid x) \quad H^{\alpha \beta}=e^{\alpha} \dot{\alpha} \wedge e^{\beta \dot{\alpha}}, \quad \bar{H}^{\dot{\alpha} \dot{\beta}}=e_{\alpha}^{\dot{\alpha}} \wedge e^{\alpha \dot{\beta}} \\
D_{0}^{a d} \omega=D^{L}-\lambda e^{\alpha \dot{\beta}}\left(y_{\alpha} \frac{\partial}{\partial \bar{y}^{\dot{\beta}}}+\frac{\partial}{\partial y^{\alpha}} \bar{y}_{\dot{\beta}}\right), \quad \tilde{D}_{0}=D^{L}+\lambda e^{\alpha \dot{\beta}}\left(y_{\alpha} \bar{y}_{\dot{\beta}}+\frac{\partial^{2}}{\partial y^{\alpha} \partial \bar{y}^{\dot{\beta}}}\right) \\
D^{L}=d_{x}-\left(\omega^{\alpha \beta} y_{\alpha} \frac{\partial}{\partial y^{\beta}}+\bar{\omega}^{\dot{\alpha} \dot{\beta}} \bar{y}_{\dot{\alpha}} \frac{\partial}{\partial \bar{y}^{\dot{\beta}}}\right)
\end{gathered}
$$

## Field equations at the boundary

## Rescaling

In the limit $z \rightarrow 0$ free $H S$ equations take the form

$$
\left(\mathrm{d}_{\mathbf{x}}+2 i d \mathbf{x}^{\alpha \beta} v_{\alpha}^{-} \frac{\partial}{\partial w^{+\beta}}\right) \Omega^{j j}\left(v^{-}, w^{+} \mid \mathbf{x}, 0\right)=d \mathbf{x}^{\alpha \gamma} d \mathbf{x}^{\beta \gamma} \frac{\partial^{2}}{\partial w^{+\alpha} \partial w^{+\beta}} \mathcal{T}_{-}^{j j}\left(w^{+}, 0 \mid \mathbf{x}, 0\right)
$$

$$
D_{\mathbf{x}} \Omega_{\mathbf{z}}^{j j}\left(v^{-}, w^{+} \mid \mathbf{x}, 0\right)+D_{\mathbf{z}} \Omega_{\mathbf{x}}^{j j}\left(v^{-}, w^{+} \mid \mathbf{x}, 0\right)=-\frac{i}{2} d \mathbf{x}^{\alpha \beta} d \mathbf{z} \frac{\partial^{2}}{\partial w^{+\alpha} \partial w^{+\beta}} \mathcal{T}_{+}^{j j}\left(w^{+}, 0 \mid \mathbf{x}, 0\right)
$$

$$
\left[d_{\mathbf{x}}-i d \mathbf{x}^{\alpha \beta} \frac{\partial^{2}}{\partial w^{+\alpha} \partial w^{-\beta}}\right] \mathcal{T}_{ \pm}^{j 1-j}\left(w^{+}, w^{-} \mid \mathbf{x}, 0\right)=0
$$

$$
\mathcal{T}_{ \pm}^{j j}\left(w^{+}, w^{-} \mid \mathbf{x}, 0\right)=\eta T^{j 1-j}\left(w^{+}, w^{-} \mid \mathbf{x}, 0\right) \pm \bar{\eta} T^{1-j j}\left(-i w^{-}, i w^{+} \mid \mathbf{x}, 0\right)
$$

$$
\begin{aligned}
& C(y, \bar{y} \mid \mathbf{x}, \mathbf{z})=\mathbf{z e x p}\left(y_{\alpha} \bar{y}^{\alpha}\right) T(w, \bar{w} \mid \mathbf{x}, \mathbf{z}), \\
& \mathbf{w}^{\alpha}=\mathrm{z}^{1 / 2} \mathbf{y}^{\alpha}, \\
& \overline{\mathbf{w}}^{\alpha}=\mathbf{z}^{1 / 2} \overline{\mathbf{y}}^{\alpha} \\
& W^{j j}\left(y^{ \pm} \mid \mathbf{x}, \mathbf{z}\right)=\Omega^{j j}\left(v^{-}, w^{+} \mid \mathbf{x}, \mathbf{z}\right), \\
& \mathrm{v}^{ \pm}=\mathrm{z}^{-1 / 2} \mathrm{y}^{ \pm}, \\
& \mathrm{w}^{ \pm}=\mathrm{z}^{1 / 2} \mathrm{y}^{ \pm}
\end{aligned}
$$

