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n-point classical conformal block

In any CFT2 a correlation function of V∆i
(zi ) can be decomposed into conformal blocks

F(z1, ..., zn|∆1, ...,∆n; ∆̃1, ..., ∆̃n−3; c)

which are conveniently depicted as

Pant decomposition

performed not only for correlation functions (representing, of course, our main interest) but also for
more fundamental objects – conformal block functions [7].

In the regime c Ñ 8 we are dealing with the (semi)classical conformal blocks. Recently, the
construction of the classical conformal blocks in the context of the AdS/CFT correspondence was
investigated [8, 9, 10]. There was established a connection between the classical four-point block
on the sphere with two heavy and two light operators and the classical action of some worldlines
combination in asymptotically AdS3 geometry. Conformal blocks represent building blocks in the
construction of the correlation functions. They are holomorphic functions of the coordinates zi of
fields conveniently defined using the dual pant decomposition diagram. In Fig. 1 the dual diagram for
n-point block is given (the meaning of two bold lines is explained later). It represents the contribution
from the states in the Virasoro representations with highest weights r�1, ..., r�n´3 (internal lines) to
the correlation function of the fields with conformal dimensions �i (external lines). We denote the
corresponding n-point conformal block depending on the parameters of the external and internal
conformal dimensions (as well as on the central charge)

Fpz1, ..., zn|�1, ...,�n; r�1, ..., r�n´3; cq . (1.1)

The antiholomorphic block is defined similarly, replacing holomorphic coordinates zk by antiholo-
morphic z̄k. The construction of the correlation functions involves the summation of the products
of the holomorphic and antiholomorphic blocks over all possible intermediate channels r�i weighted
with the structure constants of the operator algebra.

z1,�1

z2,�2 zn´2,�n´2¨ ¨ ¨ ¨ ¨ ¨

zn,�n

zn´1,�n´1

r�1
r�n´3

r�n´2¨ ¨ ¨ ¨ ¨ ¨

Figure 1: The n-point conformal block. In the case of the heavy-light conformal block two bold lines
on the right are heavy fields, while external fields and intermediate fields depicted respectively by
solid lines and wavy lines are light. Using the projective invariance one can fix the coordinates of
three fields as z1 “ 0, zn´1 “ 1, zn “ 8.

There exist many evidences ( see, e.g., [11, 12]) that in the classical limit the conformal blocks
must exponentiate as

lim
cÑ8 Fpz1, ..., zn|�1, ...,�n; r�1, ..., r�n´3; cq „ exp

 
cfpz1, ..., zn|✏1, ..., ✏n;r✏1, ...,r✏n´3q(

, (1.2)

where ✏k “ �k

c
and r✏k “ r�k

c
are called classical dimensions and fpz1, ..., zn|✏1, ..., ✏n;r✏1, ...,r✏n´3q is the

classical conformal block representing our main interest.
There are different possible classical limits of the conformal blocks dependent on the behaviour

of the classical dimensions ✏i and r✏i [13, 8, 10, 14]. If the classical dimension remains finite in the

2

There exist many evidences that in the semiclassical limit c →∞ the conformal blocks
must exponentiate as

lim
c→∞

F(z1, ..., zn|∆1, ...,∆n; ∆̃1, ..., ∆̃n−3; c) ∼ exp
{
cf (z1, ..., zn|ε1, ..., εn; ε̃1, ..., ε̃n−3)

}
where εk = ∆k

c
and ε̃k = ∆̃k

c
are called classical dimensions and f (z|ε, ε̃) is the classical

conformal block representing our main interest.
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Heavy-light conformal blocks

Different classical limits of the conformal blocks depend on the behavior of the classical
dimensions εi and ε̃i .

If ε, ε̃ remain finite in the semiclassical limit, the corresponding field is called heavy.

If ε, ε̃ are vanishing in the semiclassical limit, the corresponding field is called light.

All fields are light — global sl(2) conformal block.

All fields are heavy — proper classical block.

Heavy-light classical blocks can be considered as an interpolation between these
two extreme regimes.

Heavy-light blocks (Fitzpatrick, Kaplan, Walters’ 2014)

The classical conformal dimensions of two fields εn−1 = εn are heavy.

It is instructive to introduce a scale factor δ that we call a lightness parameter.
Schematically, provided that all except two dimensions are rescaled as ε→ δε and ε̃→ δε̃
there appear a series expansion

f (z|ε, ε̃) = fδ(z|ε, ε̃) δ + fδ2 (z|ε, ε̃) δ2 + ... .

The leading contribution fδ(z) yields the heavy-light conformal block, while taking into
account sub-leading contributions approximate the proper conformal block on the left
hand side.
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The AdS/CFT correspondence
The heavy operators with equal conformal dimensions εn = εn−1 ≡ εh produce an
asymptotically AdS3 geometry identified either with an angular deficit or BTZ black hole
geometry parameterized by

α =
√

1− 4εh
The metric reads

ds2 =
α2

cos2 ρ

(
− dt2 + sin2 ρdφ2 +

1

α2
dρ2
)

Here

α2 < 0 for an angular deficit

α2 > 0 for the BTZ black hole w2, ✏2

w1, ✏1

wn�2, ✏n�2

.
.

.

.

.
.

.
.

.
.

Figure: Multi-particle graph embedded into a constant time slice of a
conical defect geometry. Solid lines represent external particles, wavy lines
represent intermediate particles. The original heavy fields produce the
background geometry with the singularity placed in the center representing
a cubic vertex of two heavy fields and a light intermediate field.
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The light fields are realized via particular graph of worldlines of n − 3 classical point
probes propagating in the background geometry formed by the two boundary heavy fields.
Points wi are boundary attachments of the light operators. The lightness parameter δ
measures a backreaction of the background on a probe.

The identification

Sbulk
cl = zγ fδ(z|ε, ε̃) , Sbulk

cl =

n−2∑
i=1

εi Li +

n−3∑
i=1

ε̃i L̃i ,

and Li and L̃i are lengths of different geodesic segments on a fixed time slice.
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AGT representation

Using SL(2) invariance we fix three points z1 = 0, zn−1 = 1, zn =∞, and replace

zi+1 = qiqi+1 . . . qn−3 for 1 ≤ i ≤ n − 3

The conformal block is given by the following series expansion

F(q|∆, ∆̃, c) = 1 +
∑

k1,...kn−3

qk1
1 qk2

2 . . . q
kn−3
n−3 Fk (∆, ∆̃, c)

Using the standard Liouville parametrization,

∆i =
Q2

4
− P2

i , ∆̃j =
Q2

4
− P̃2

j , c = 1 + 6Q2 , Q = b +
1

b
,

the AGT representation of the n-point conformal block is given as

F(q|∆, ∆̃, c) =

n−3∏
r=1

n−3∏
s=r

(1− qr . . . qs)2(Pr+1− Q
2

)(Ps+2+ Q
2

) Z(q|∆, ∆̃, c),

where
Z(q|∆, ∆̃, c) = 1 +

∑
k1,...kn−3

qk1
1 qk2

2 . . . q
kn−3
n−3 Zk1,...kn−3

(∆, ∆̃, c)
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The diagrammatic coefficients

The Nekrasov functions

Zk1,...kn−3
=

∑
~λ1,...,~λn−3

Z(P2|P1,∅; P̃1, ~λ1)Z(P3|P̃1, ~λ1; P̃2, ~λ2) · · ·Z(Pn−1|P̃n−3, ~λn−3;Pn,∅)

Z(Q
2
|P̃1, ~λ1; P̃1, ~λ1) · · ·Z(Q

2
|P̃n−3, ~λn−3; P̃n−3, ~λn−3)

Here, the sum goes over (n − 3) pairs of Young tableaux ~λj = (λ
(1)
j , λ

(2)
j ) with the total

number of cells |~λj | ≡ |λ
(1)
j |+ |λ

(2)
j | = kj . The explicit form of functions Z reads

Z(P′′|P′, ~µ;P, ~λ) =

2∏
i,j=1

∏
s∈λi

(
P′′ − Eλi ,µj

(
(−1)jP′ − (−1)iP

∣∣s)+
Q

2

)
×

×
∏
t∈µj

(
P′′ + Eµj ,λi

(
(−1)iP − (−1)jP′

∣∣t)− Q

2

)
where

Eλ,µ
(
x
∣∣s) = x − b lµ(s) + b−1(aλ(s) + 1)

For a cell s = (m, n) such that m and n label a respective row and a column, the
arm-length function aλ(s) = (λ)m − n and the leg-length function lλ(s) = (λ)Tn −m,
where (λ)m is the length of m-th row of the Young tableau λ, and (λ)Tn the height of the
n-th column, where T stands for a matrix transposition.
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The five-point classical conformal block

F(q1, q2) = (1−q1)2(P2− Q
2

)(P3+ Q
2

)(1−q1q2)2(P2− Q
2

)(P4+ Q
2

)(1−q2)2(P3− Q
2

)(P4+ Q
2

)Z(q1, q2),

where
Z(q1, q2) = 1 +

∑
k1,k2

qk1
1 qk2

2 Zk1,k2
,

and

Zk1,k2
=

|~λ1,2|=k1,2∑
~λ1,~λ2

Z(P2|P1,∅; P̃1, ~λ1)Z(P3|P̃1, ~λ1; P̃2, ~λ2)Z(P4|P̃2, ~λ2;P5,∅)

Z(Q
2
|P̃1, ~λ1; P̃1, ~λ1)Z(Q

2
|P̃2, ~λ2; P̃2, ~λ2)

,

where on the lower levels the pairs of Young tableaux ~λ = (λ(1), λ(2)) with the total

number of cells l = |~λ| are

l = 0 : {(∅,∅)}
l = 1 : {(∅, ), ( ,∅)}
l = 2 : {(∅, ), (∅, ), ( , ), ( ,∅), ( ,∅)}

l = 3 : {(∅, ), (∅, ), (∅, ), ( , ), ( , ),

( , ), ( , ), ( ,∅), ( ,∅), ( ,∅)} .

In what follows 5-pt conformal blocks are with dimensions P4 = P5, P1 = P2, P̃1 = P̃2.
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We find

Z(q1, q2|t) = 1 + (1 + b2 − 2bP3)(1 + b2 + 2bP3)(q1 + q2)(8b2)−1t +O(t2) ,

where tm terms take into account contributions qm1
1 qm2

2 with m = m1 + m2.

The limit c → 0 can be equivalently understood as b → 0. The classical conformal block

F(q1, q2) = e
− f (q1,q2)

b2 or f (q1, q2) = − lim
b→0

b2 lnF(q1, q2)

Fields with P4 = P5 are heavy. Recall that the lightness parameter expansion is given

f (q1, q2) = fδ(q1, q2)δ + fδ2 (q1, q2)δ2 + ...

Now, ε3 (or P3) is the new deformation parameter

fδ(q1, q2) = f
(0)
δ (q1, q2) + ε3f

(1)
δ (q1, q2) + ε2

3f
(2)
δ (q1, q2) + ... .

Here, the leading term f
(0)
δ (q1, q2) is identified with the 4-pt classical conformal block,

while the sub-leading terms perturbatively reconstruct the 5-pt classical conformal block

f
(0)
δ (q1, q2) = 2ε1 ln

[
−

2 sinh[α ln[1−q1q2]
2

]

αq1q2

]
− ε̃1 ln

[
−

4 tanh[α ln[1−q1q2]
4

]

αq1q2

]
+ ε1 ln[1− q1q2]

and
f

(1)
δ (q1, q2) = ln sinh[

α(ln[1− q1q2]− 2 ln[1− q2])

2αq2
] + ln[1− q2]
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The world-line approach

The semiclassical limit c →∞. The worldline action (m ∼ ε)

S = ε

∫ λ
′′

λ
′

dλ
√

gtt ṫ2 + gφφφ̇2 + gρρρ̇2 , ds2 =
α2

cos2 ρ

(
−dt2 + sin2 ρdφ2 +

1

α2
dρ2
)

It is convenient to impose the normalization condition

|ẋ | ≡
√

gµν(x)ẋµẋν = 1 : S = ε

∫ λ
′′

λ
′

dλ = ε(λ
′′
− λ
′
) .

where the overall sign depends on the direction of the � flow. The minimal radial distance between

the particle path and the singularity is therefore given by tan2 ⇢min “
´

p�
↵

¯2

. Obviously, the maximal
radial distance corresponds to the point ⇢max “ ⇡{2 located on the boundary. Changing variables as
y “ cot2 ⇢ at 9⇢ • 0, and introducing notation

s “ |p�|
↵

, (3.8)

equation (3.6) can be directly integrated to yield the on-shell action

S “ ln

?
⌘?

1 ` ⌘ ` a
1 ´ s2⌘

ˇ̌
ˇ̌
ˇ

⌘
2

⌘1
, (3.9)

where ⌘1 “ cot2 ⇢
1 and ⌘

2 “ cot2 ⇢
2 are initial/final radial positions. Parameter s is an integration

constant that defines a particular form of the geodesic segment.

0w

⇢2

⇢1

Figure 4: Radial and arc segments. The graph corresponds to the classical conformal block with two
heavy fields, two light fields of equal dimensions (the arc), and one extremely light intermediate field
(the radial line) [10].

The simplest case of a geodesic segment is the radial line starting (or ending, depending on the
� flow direction) at the singularity point ⇢2 “ 0, see Fig. 4. In this case, the angular momentum
p� vanishes so that s “ 0. After some simple algebra, one finds from (3.9) the radial length Srad “
´ ln tanp⇢1

2
` ⇡

4
q. We see that Srad is finite implying that a particle reaches the singularity within a

finite time period. One interprets the falling into the singularity as a cubic vertex of the two heavy
operators and a light operator represented by a probe. For the further purpose we find a length of
the radial line for ⇢1 “ arccos sinp↵w{2q:

Srad “ ´ ln tan
↵w

4
. (3.10)

For the geodesic arc connecting two boundary points � “ 0 and � “ w t11he angular momentum
p� is not vanishing s “ cot ↵w

2
. From (3.9) it follows [23, 9, 10] that the length of the arc is given by

Sarc “ ln
”
sin

↵w

2

ı
` ln 2⇤ . (3.11)

11

Coordinates t and φ are cyclic — a constant time disk (ρ,φ).
Changing variables as η = cot2 ρ and introducing notation

s =
|pφ|
α

we find the on-shell action

S = ε ln

√
η

√
1 + η +

√
1− s2η

∣∣∣∣∣
η
′′

η
′

Parameter s is an integration constant that defines a particular
form of the geodesic segment.

The radial line has s = 0. For ρ1 = arccos sin(αw/2): Lrad = − ln tan αw
4

The arc has s = cot αw
2

. The length Larc = ln
[

sin αw
2

]
+ ln 2Λ

The 4-pt block: f ∼ ε1̃Lrad + 2ε1Larc
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Five-line configuration

The corresponding particle action reads

S = ε1L1 + ε2L2 + ε3L3 + ε1̃L1̃ + ε2̃L2̃

In particular, Sarc diverges at ⇤ Ñ 8 so that it takes an infinite time to reach the boundary. Note
that ⇢1 “ arccos sin ↵w

2
chosen to compute (3.10) corresponds to the zero value of the radial velocity,

or the minimal distance according to formula (3.7). From the graph in Fig. 4 it is clear that the
minimal distance is given by (3.10).

4 Five-particle configuration

Consider now the five-line graph on Fig. 5 which is the n “ 5 case of the general graph in Fig. 2.

1

2

3
r2

r1
w3

w2

w1

Figure 5: Five-particle graph. Solid lines 1, 2, 3 represent external particles, wavy lines r1,r2 represent
intermediate particles. The angles are measured clockwise. In practice, we set w1 “ 0.

The corresponding particle action reads

S “
ÿ

I

✏ISI , I “ 1, 2, 3,r1,r2 , (4.1)

where each component is given by (3.2). Initial/final positions �1 and �2 correspond to various nodes
in Fig. 5 including the singularity point, two vertices, three boundary attachments. It is supposed
that the singularity point and boundary attachments are fixed parameters of the theory. There is no
loss of generality in supposing that w1 “ 0. From the boundary perspective it is achieved doing a
conformal map that moves a position of the first external operator z1 Ñ 1. Positions of the vertices
are floating according to the minimal action principle.

From the normalization condition (3.4) it follows SI “ S
2
I ´ S

1
I , and final/initial lengths are

functions of the boundary points w2, w3, classical dimensions ✏1, ✏2, ✏3 and r✏1,r✏2, and the metric
parameter ↵ , i.e., S

1
I “ S

1
Ipw|↵, ✏q and S

2
I “ S

2
I pw|↵, ✏q. The total action (4.1) is then S “ Spw|↵, ✏q.

Let us consider each of two vertices. In these points proper parameter � can be chosen to be
increasing away from the vertex. Then, denoting the vertex coordinates as xµ

1 and xµ
2 along with the

corresponding deviation �xµ
1 and �xµ

2 which are the same for all incoming lines, and using variation

12

Vertex equilibrium equations

1st vertex
(
ε̃1p̃1

µ + ε1p1
µ + ε2p2

µ

) ∣∣∣
x=x1

= 0

2nd vertex
(
ε̃1p̃1

µ + ε̃2p̃2
µ + ε3p3

µ

) ∣∣∣
x=x2

= 0

Angular equations

∆φ1+∆φ2 = w2−w1 , ∆φ1+∆φ3+∆φ̃1 = w3−w1

Konstantin Alkalaev Classical conformal blocks via AdS/CFT correspondence



The complete equation system

Using pρ = gρρρ̇, pφ = gφφφ̇ along with the normalization condition, and recalling that
the angular momenta are motion constants we find

ρ̇ = cos ρ
√

1− s2 cot2 ρ , iα∆φ = ln

√
1− s2 cot2 ρ′′ − is

√
1 + cot2 ρ′′√

1− s2 cot2 ρ′ − is
√

1 + cot2 ρ′

Equations to be solved:

Vertex eqs

ε3

√
1− s2

3η2 + ε̃1

√
1− s̃2

1η2 = ε̃2 , ε1

√
1− s2

1η1 + ε2

√
1− s2

2η1 = ε̃1

√
1− s̃2

1η1

Angular eqs

e iαw2 =

(√
1− s2

1 η1 − is1
√

1 + η1

)(√
1− s2

2 η1 − is2
√

1 + η1

)
(1− is1)(1− is2)

e iαw3 =

(√
1− s2

3η2 − is3
√

1 + η2

)(√
1− s̃2

1η2 − i s̃1
√

1 + η2

)(√
1− s2

1η1 − is1
√

1 + η1

)
(1− is3)

(√
1− s̃2

1η1 − i s̃1
√

1 + η1

)
(1− is1)

5-pt case: a complicated higher order algebraic equation
4-pt case: an exact solution (Hijano, Kraus, Snively, 2015)
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The 5-pt case as a deformation of the 4-pt case

5 The perturbation theory

Our goal is to find solutions to the second angular equation (4.39). One possibility to solve this
equation is to rid of all radicals. The resulting equation on s2 is a higher order polynomial equation
and it is unlikely to be solved exactly. We propose to use a perturbation procedure that helps to
find solutions to (4.39). We consider the five-line configuration as a deformation of the three-line
configuration corresponding to the 4-point conformal block. Below we recall the 4-pt case [10].

5.1 Three-line configuration

In this case there are two light external fields with dimensions ✏1 and ✏2 and one intermediate light
field with dimension r✏1. The respective graph is depicted on Fig. 6.

1
2

r1

0

w2

Figure 6: Three-line graph. Solid lines represent external particles, wavy lines represent intermediate
particles, [10].

Here, the equilibrium and the angular equations read

✏1

b
1 ´ s2

1 ⌘ ` ✏2

b
1 ´ s2

2 ⌘ “ r✏1 , ✏1s1 ´ ✏2s2 “ 0 , (5.1)

ei↵w2 “ pa
1 ´ s2

1 ⌘ ´ is1

?
1 ` ⌘qpa

1 ´ s2
2 ⌘ ´ is2

?
1 ` ⌘q

p1 ´ is1qp1 ´ is2q , (5.2)

where the radial coordinate of the vertex is

⌘ “ ´⇧p✏1, ✏2,r✏1q
4r✏21 ✏21 s2

1

, (5.3)

and ⇧p✏1, ✏2,r✏1q is the fusion polynomial (4.21). We note that the radial coordinate is

⌘ “ ⌘2r3 Ñ 1,r1 Ñ 2,r2 Ñ r1s . (5.4)

18

For ✏2 “ 0 the second pair of equations trivializes, while the first one goes to that of the 4-pt case
provided rs1 “ 0.

The ✏1 “ 0 case. This configuration does not correspond to 4-pt conformal block because the
equilibrium equation r✏1rs1 ` ✏2s2 “ 0 has no admissible solutions: all sI • 0 so that the only solution
here is rs1 “ s2 “ 0 that corresponds to merging of the lines r1 and 2 into single radial line. Therefore,
the configuration depicted on Fig. 6 can not be reproduced. To have a correct graph of the 4-pt
conformal block we need to modify the initial configuration by changing the slope of line 2.

5.3 Five-line configuration as a deformation

A five-line configuration can be considered as a deformation of the three-line configuration with
respect to one of the external conformal dimensions. In what follows, we explicitly consider the case
where ✏3 is the deformation parameter and other conformal dimensions are

r✏1 “ r✏2 , ✏1 “ ✏2 . (5.12)

The first condition here is required for consistency of the truncation. The second condition is imposed
to simplify our consideration. 2 Since two heavy operators produce the background and other
operators are light, the operator associated to line 3 should be considered as superlight. In other
words, the true deformation parameter is

⌫ “ ✏3
r✏1

. (5.13)

1

2

3
r2

r1
r1

w3

w2

w1

Figure 7: A deformation method. Vertex r1 ´ r2 ´ 3 originates from the seed vertex point attached to
the radial line r1. The deformation produces lines r1 and r2 from the original line r1 by pulling the seed
vertex point using line 3. Solid lines correspond to the 4-pt case, while dotted ones indicate the 5-pt
deformation.

2The same constraints have been used in the boundary computations (2.14).

20

The lines of the resulting five-line configuration are characterized by the deformed angular
momenta

sI = bI + ε3cI +O(ε3
2) , I = 1, 2, 3, 1̃, 2̃ ,

where bI are the angular momenta of the seed three-line configuration and cI are
corrections. Note that s̃2 = b2̃ = 0 remain intact, and the seed line 1̃ is radial so that
b1̃ = 0. By convention, b3 is the seed momentum assigned to line 3. The total action
reads

S(w2,w3) = S0(w2) + ε3S1(w2,w3) +O(ε3
2) ,

where S0 = S0(w2) is the action of the three-line configuration, while S1(w2,w3) is a
correction.
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The total length

We set ε̃1 = ε̃2, ε1 = ε2. Denote

ν = ε3/ε̃1 , κ = ε̃1/ε1 , θi =
αwi

2

The first order solution to the 5-pt configuration reads

s1 = − cot θ2 +
κ

2 sin θ2
−
νκ
2

cot(2θ3 − θ2) +O(ν2) ,

s3 = − cot(2θ3 − θ2) + ν
cos(2θ2 − 4θ3)− 2 cos(2θ2 − 2θ3)− 2 cos 2θ3 + 3

4 sin3(θ2 − 2θ3)
+O(ν2) ,

and
s2 = s1 − νκs3 , s̃1 = νs3 , s̃2 = 0 .

The final action

S(w2,w3) = −2ε1 ln sin θ2 + ε̃1 ln tan
θ2

2
− ε3 ln sin(2θ3 − θ2) +O(ε2

3)

According to the general prescription the action is related to the conformal block as

fδ(q1, q2) ∼ −S(θ1, θ2)

The identification is achieved by the following conformal transformations to the plane

θ2 =
iα

2
ln(1− q1q2) , θ3 =

iα

2
ln(1− q2)
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Conclusions & outlooks

Done:

We have proposed the general identification between the pant decomposition with
n legs on the boundary and the corresponding multi-line graph in the bulk.

We have written down the general system of equations describing the dynamics of
probes in the bulk background.

We have performed explicit computations in the n = 5 case establishing the
correspondence in the first order in the conformal dimension of one of fields while
keeping other dimensions arbitrary.

To be done:

The n-point configurations explicitly. On the boundary side we can use the
monodromic approach.

The heavy-light classical blocks with arbitrary number of heavy operators.

The AdS/CFT semiclassical calculations from the first principles.
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