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we are interested in

• The finite part Wfin is the generating functional of current correlators, so is nonlocal.

In odd dimensions, it is invariant under CHS transformations (
CHS transfCHS transf
2.8), but in even

dimensions it has anomalies in the Weyl part of the transformation: �

↵

Wfin 6= 0 . In

particular, under the dilatation with a constant ↵(0) = �, its anomaly reproduces the

log part as in the usual case: �
�

Wfin = �Wlog .

More generally, we consider that HS dynamics is induced by M -copies of complex massless

scalar � = (�1
, . . . ,�

M ) . Then, we get

SHS[h] = M Sind[h] , (2.20){29} 29

where Sind is the regularization-scheme independent part of W and its quadratic part reads

(see [] for the details)

Sind[h] =

Z
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d

p k
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� d�4

2
G(P,Q) h̃(p, u1) h̃(�p, u2)

���
u

i

=0
+O(h3) , (2.21){Induced action} Induced action

with

k

d

(p) = # log
�
p

2
/⇤2

�
+# . (2.22){30} 30

As one can notice easily, the only di↵erence between SCHS and Sind in the quadratic part

lies on the spin-independent factor k
d

(p) . This simple fact enables us to study two models

at the same time.

One can interpret this induced action as an e↵ective action arising in the double trace

deformation of all HS current operators:

SDT[�] =

Z
d

d

x

�

s

s!
J

µ1···µs

[�] Jµ1···µs [�] . (2.23){31} 31

By introducing auxiliary fields h
µ1···µs

, the partition function can be recast into
Z

D� e

i(Sfree[�]+SDT[�]) =

Z
Dh e

iM W [h]+
P1

s=0
1
s!

h

µ1···µs h

µ1···µs
, (2.24){32} 32

and in the large M limit, the h

2-term can be neglected and the above reproduces the

induced dynamics.

3 Tree-level amplitude: four-scalar scattering

Given the system of dynamical HS fields and massless scalar (
HS scalarHS scalar
2.9), we can now study

four-scalar scattering process through the exchanges of HS field of any spins.

This would give another instance where we can see the e↵ect of summing over all spins. In

[] analyzed was a similar process where the exchange particles are massless HS particles.

There, the scattering amplitude was obtained as a function of (infinitely many) coupling

constants between massless HS fields and scalar. In the current examples, all the ����h

(s)

coupling constants are fixed up to overall factor g , that is the unique coupling constant of

the theory. Therefore, the amplitude will be given by a particular series in spins.
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• Summation over Spins

s = #s > 0
X

s
0

Giombi, Klebanov (et al), Tseytlin, …  (2013~)

magic of zeta fn regularization
because of free CFT

Other simple example of spin sum !!
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• Summation over Spins

• Conformal HS Theory / Induced HS Theory

• Some HS Theory

✦ Generic Massless HS

✦ Effective HS Theory

Bekaert, EJ, Mourad (2009)

`` (2010)



Massless HS Exchanges
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• Current Coupling: fixed up to coupling constant

gs

• Propagator: massless one  

We next consider tree level scattering amplitudes which can be easily calculated in our

framework. The model gives rise to cubic vertices, which together with the propagators

of the higher-spin fields allow the calculation of the tree amplitudes for the scattering of

two scalar particles. The propagators which are suitable for our purposes were found in [9]

where no assumption about the vanishing of the double trace of the fields were made. One

may ask about the coupling constants of the theory. In fact, there is an infinite number of

them, which are hidden in the correspondence between Ĥ and the higher-spin fields h(r) or,

by a field redefinition, in the kinetic terms of h(r). We have one coupling constant � with

dimension of length and a collection of dimensionless couplings a
r

associated with each

spin r. In fact all these dimensionless couplings can be grouped in a generating function

a(z)

a(z) =
1
X

r=0

a
r

r!
zr. (1.6)

We will show that the tree level amplitude of the two-scalar scattering �� ! �� and the

non-relativistic potential can both be expressed simply in terms of this generating function.

Its behavior near the origin determines the static interaction potential and its behavior at

large negative arguments determines the high energy scattering amplitudes. The explicit

expression of the scattering amplitude turns out to be very simple and is given, in terms

of the Mandelstam variables, by

A(s, t, u) = ���2

t



a
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s�p�u
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⌘

� a
0

�

. (1.7)

It can be very soft at high energies if the function a is small for large negative argument.

The static potential due to the exchange of a spin r particle between two mass m particles

with interdistance ~x can be deduced and is given by

(r)

V (~x) =
a
r

4 r!

⇣

� (m�)2

2

⌘

r�1 1

4⇡ |~x| . (1.8)

If � is of the order of the Planck length and m of the proton mass, then (m�) ⌧ 1 and

the potentials for higher spins are negligible with respect to the Newtonian one provided

the coe�cients a
r

do not grow fastly with r. Unitarity leads to positive coe�cients a
r

but

otherwise the generating function is arbitrary within our framework. We expect higher

order consistency to further constrain this function.

The plan of the paper is as follows: Section 2 presents a concise reformulation of the

so-called Noether method for introducing consistent interactions between matter and gauge

fields in terms of various generating functions. This formalism together with Weyl calculus

is applied in Section 3 to the construction of the cubic vertices that are bilinear in a complex

scalar field and linear in a tensor gauge field. Section 4 is devoted to the four-scalar elastic

scattering tree amplitude due to the exchange of a single tensor gauge field. It is expressed

in terms of Chebyshev’s or Gegenbauer’s polynomials. The high-energy behaviour of their

sum, corresponding to an infinite tower of exchanged tensor gauge fields, is discussed in

Section 5. The non-relativistic interaction potential is obtained and discussed in Section 6.
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Massless HS Exchanges

• Coupling Constants are Arbitrary

• Various No-Go’s for Massless HS  
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Conformal HS Action
Fradkin-Tseyltin, Segal, Vasiliev, Shaynkman

Effective HS Action
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• Coupling Constants are fixed up to a factor g

• HS Theory : 
I) Conformal HS  
II) Induced HS Theory
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Conformal HS Exchanges
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induced dynamics.

3 Tree-level amplitude: four-scalar scattering

Given the system of dynamical HS fields and massless scalar (
HS scalarHS scalar
2.9), we can now study

four-scalar scattering process through the exchanges of HS field of any spins.

This would give another instance where we can see the e↵ect of summing over all spins. In

[] analyzed was a similar process where the exchange particles are massless HS particles.

There, the scattering amplitude was obtained as a function of (infinitely many) coupling

constants between massless HS fields and scalar. In the current examples, all the ����h

(s)

coupling constants are fixed up to overall factor g , that is the unique coupling constant of

the theory. Therefore, the amplitude will be given by a particular series in spins.
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• For a fixed z, the series is divergent

• We need to regularize it somehow



so that the original series can be obtain by F
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The radius of convergence of the series is not greater than 1,4 so F

d

(z, 1) would lead to a

diverging series. We can nevertheless perform an analytical continuation on w to get

F
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where �

[n] is the n-th derivative of delta distribution.

In the following, we shall provide other two regularization methods and show that their

results coincide to each others.
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For simplicity, let us focus the d = 4 case where the function F4(z) reduces to
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where we have also used an analytic continuation since for any value of t 2 [0,⇡] , there

exists z such that the series is divergent. For z = 1 , the analytic continuation does not

render the sum finite and we get an infinity. For the other values of z , we can perform the

t-integral and get
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4 The radius of convergence is 1 when |z| < 1, while e

�x when |z| = coshx � 1 .
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F

d

(z, w) =
1X

s=0

(s+ ↵

d

) ws

C

(↵
d

)
s

(z) , (3.14){reg sum} reg sum
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regul. parameter

so that the original series can be obtain by F

d

(z) = F

d

(z, 1) . Then, the above series can

be recast into

F

d

(z, w) = w

1�↵

d

d

dw

 
w

↵

d

1X

s=0

w

s

C

(↵
d

)
s

(z)

!
. (3.15){45} 45

The radius of convergence of the series is not greater than 1,4 so F

d

(z, 1) would lead to a

diverging series. We can nevertheless perform an analytical continuation on w to get

F

reg

d

(z, w) = ↵

d

1� w

2

(1� 2z w + w

2)↵d

+1
. (3.16)

This formula provides a regularization F

reg

d

(z) = F

reg

d

(z, 1) of the initial sum F

d

(z) . Notice

that F reg

d

(z, 1) happens to vanish exactly for z 6= 1, while for z = 1 , we get

F

reg

d

(1, w) = ↵

d

1 + w

(1� w)d�2
, (3.17){46} 46

which diverges as w ! 1 . Therefore we see that F reg

d

(z) is a distribution whose support is

localized at z = 1 :

F

reg

d

(z) =
(�1)d�4

(d� 4)!
�

[d�4](z � 1) , (3.18){47} 47

where �

[n] is the n-th derivative of delta distribution.

In the following, we shall provide other two regularization methods and show that their

results coincide to each others.

Other regularization methods

For simplicity, let us focus the d = 4 case where the function F4(z) reduces to

F4(z) =
1X

s=0

✓
s+

1

2

◆
P

s

(z) . (3.19){48} 48

The second regularization method is the use of integral representation of Legendre poly-

nomials,

P

s

(z) =
1

⇡

Z
⇡

0
dt

⇣
z +

p
z

2 � 1 cos t
⌘
s

. (3.20){49} 49

Now one can perform the summation over s on the integrand to get

1X

s=0

✓
s+

1

2

◆⇣
z +

p
z

2 � 1 cos t
⌘
s

=
z + 1 +

p
z

2 � 1 cos t

2 (z � 1 +
p
z

2 � 1 cos t)2
, (3.21){50} 50

where we have also used an analytic continuation since for any value of t 2 [0,⇡] , there

exists z such that the series is divergent. For z = 1 , the analytic continuation does not

render the sum finite and we get an infinity. For the other values of z , we can perform the

t-integral and get

F

reg
4 (z) =

1

⇡

Z
⇡

0
dt

z + 1 +
p
z

2 � 1 cos t

2 (z � 1 +
p
z

2 � 1 cos t)2
= �(z � 1) , (3.22){51} 51

4 The radius of convergence is 1 when |z| < 1, while e

�x when |z| = coshx � 1 .
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t-channel
z =

u� s

u+ s
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Sum

• same result in a few other regularizations



CHS Exchange AmplitudeFor simplicity, we again focus on the d = 4 case. The �� ! �� scattering of complex

scalar is given by

A

��!��

=
g

2

2

h
�

⇣s
t

⌘
+ �

⇣ s

u

⌘i
=

g

2

2

⇥��

�
csc2 ✓

2

�� �

�
sec2 ✓

2

�⇤
, (3.31){60} 60

and the two delta correspond to the t-channel and the u-channel contributions, respectively.

Each of them separately vanishes and we get

A

��!��

= 0 . (3.32){61} 61

For the � �̄ ! � �̄ scattering, we get

A

��̄!��̄

=
g

2

2

h
�

⇣u
t

⌘
+ �

⇣u
s

⌘i
=

g

2

2

⇥
�

�
cot2 ✓

2

�� �

�
cos2 ✓

2

�⇤
, (3.33){62} 62

and again the two delta correspond to t-channel and the s-channel contributions, respec-

tively. In this case, these two contributions cancel out each other to give

A

��̄!��̄

= 0 . (3.34){63} 63

Finally, in the case of real scalar, only even spins couple to it so the even z part of the

amplitude function is relevant. The amplitude reads

AR =
g

2

4

h
�

⇣s
t

⌘
+ �

⇣u
t

⌘
+ �

⇣u
s

⌘
+ �

⇣ t
s

⌘
+ �

⇣ t

u

⌘
+ �

⇣ s

u

⌘i
(3.35){64}

=
g

2

4

⇥��

�
csc2 ✓

2

�
+ �

�
cot2 ✓

2

�� �

�
cos2 ✓

2

�� �

�
sin2 ✓

2

�
+ �

�
tan2 ✓

2

�� �

�
sec2 ✓

2

�⇤
.

where the first two delta comes from the t-channel, the middle two from the s-channel and

the last two from the u-channel. The contributions from the three channels cancel out each

other and we get

AR = 0 . (3.36){65} 65

Therefore, in all cases we get vanishing results for the total amplitudes.

4 Global CHS symmetry and Regularization

We have seen that the scattering amplitude exactly vanishes when particular regularizations

are used for the final summation over spins. Even though these regularizations seem

to be natural, other regularizations giving rise to inequivalent results may equally exist.

Therefore, in order that our result (of vanishing amplitude) be physically meaningful, there

should exist a physical guideline which privileges the regularizations used above than the

others. In the case of UV regularization, the symmetries do such a role: for instance, the

zeta-function regularization is used in perturbative quantum gravity since it preserves the

reparametrization (and, in particular, Lorentz) symmetry.

Coming back to the case of CHS theory coupled to conformal scalars, we have the global

CHS symmetry which play an analogous role of Lorentz symmetry in gravity. Hence, a

natural question is whether the regularized CHS action

S

reg
CHS[h;!] =

Z
d

d

p

�
p

2
� d�4

2
G(!�1

P,!

�2
Q) h̃(p, u1) h̃(�p, u2)

���
u

i

=0
+O(h3) , (4.1)
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Conf. Scalar + CHS Massless HS in AdS

• They have the same symmetry : Vasiliev HS Algebra

CHSd = hs(so(2, d)) = V Ad+1

• Regularizations compatible with the symmetries?



tree

CHS Symmetry and Amplitude
• we know how CHS sym. act

• Tree-level amplitude should be 
invariant under this CHS sym.

4.3 Constraints of CHS symmetry on scalar correlation function

Assuming that CHS symmetry is free from anomalies,6 we would like to analyze how global

CHS symmetry of the scalar action coupled to CHS fields constraines the correlators of

conformal scalars.

Equivalently, this global CHS symmetry should constrain possible interaction terms in

the e↵ective action for scalars (with CHS feilds appearing only on internal lines). In fact,

it should prohibit any non-trivial interaction terms, i.e. should imply the vanishing of the

corresponding S-matrix.

Among infinitely many global CHS transformations let us consider the hyper-translations:7

��

a(x) = "

µ1....µr

@

µ1 · · · @µr

�

a(x) . (4.25){hyper transl} hyper transl

For simplicity, let us consider the case of real scalars, so only odd r . Assuming "

µ1....µr to

be product of vector components yµ we get

��

a(x) = (ey·@x � e

�y·@
x)�a(x) = �

a(x+ y)� �

a(x� y) . (4.26)

Then, the invariance of the scalar four-point function under this symmetry implies

h�a1(x1 + y)�a2(x2)�
a3(x3)�

a4(x4)i+ h�a1(x1)�
a2(x2 + y)�a3(x3)�

a4(x4)i
+ h�a1(x1)�

a2(x2)�
a3(x3 + y)�a4(x4)i+ h�a1(x1)�

a2(x2)�
a3(x3)�

a4(x4 + y)i
+(y $ �y) = 0 . (4.27)

Now let us translate this condition to that in the momentum space where the link to the

amplitude becomes more clear. We get

sin(p12 · y) sin(p13 · y) sin(p14 · y) h�̃a1(p1) �̃
a2(p2) �̃

a3(p3) �̃
a4(p4)i = 0 , (4.28)

where p

ij

= (p
i

+ p

j

)/2 and we have used trigonometric identities and momentum conser-

vation, p1 + p2 + p3 + p4 = 0 . For the amplitude AR(s, t, u) (in real scalar case) the above

condition corresponds to

sin(� s) sin(⌧ t) sin(� u)AR(s, t, u) = 0 , (4.29){cond amp} cond amp

where we have chosen y as

y = 4 (� p12 + ⌧ p13 + � p14) . (4.30)

Since �, ⌧, � are arbitrary parameters, (
cond ampcond amp
4.29) is strong enough to fix the form of the ampli-

tude to

AR(s, t, u) = c �(s t u) , (4.31){hyper A} hyper A

6No anomalies are expected at the tree level (as long as CHS fields do not propagate in loops), and

anomalies in loops may cancel if one sums over all CHS fields.
7Here we ignore trace parts: the trace parts of (

hyper translhyper transl
4.25) correspond to the trivial symmetries so will not give

any non-trivial conditions for correlates. There is no problem in including such symmetries for technical

simplifications.
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since            are arbitrary �, ⌧, �

combining with dilatation sym.

AR(s, t, u) = 0



What we have shown
• Scattering of conf. scalars by exchanges of 

CHS (or induced HS) fields

• The system has CHS symmetry at tree level

• CHS symmetry requires the amplitude to vanish

• However, for a given spin s exchange, 
the amplitude is non-trivial

• we need a regularization of the spin sum 
to recover vanishing amplitude even at classical level !!

1



Next
• Understand spin-sum regularizations 

✦ if no idea about the correct result ?

✦ Study compatibility between    
HS sym and Regularization

• Include loop corrections  (in progress)

1-loop THANK 
YOU


