Black Hole Charge from the Unfolded Dynamics Approach

(work to appear, with V.E. Didenko and M.A. Vasiliev)

N.G. Misuna

Lebedev Physical Institute, Moscow Institute of Physics and Technology

Higher Spin Theory and Holography-2, Moscow

03.06.2015

Outline

AdS₄ and Black Holes

2 HS equations

3 HS Black Hole and Charge

Cartan formulation of AdS₄

- AdS_4 vacuum: $\begin{cases} d\Omega^{ab} + \Omega^{ac} \wedge \Omega_c{}^b &= \lambda^2 h^a \wedge h^b; \\ dh^a + \Omega^{ac} \wedge h_c &= 0. \end{cases} g_{\underline{m}\underline{n}}^{AdS} = h_{\underline{m}}^a h_{\underline{n}}^b \eta_{ab}.$
- Vector-spinor dictionary:

$$V_{a} = rac{1}{2} \left(ar{\sigma}_{a}
ight)^{\dot{lpha} lpha} V_{lpha \dot{lpha}} \ A_{[ab]} \sim A_{lpha lpha} \oplus ar{A}_{\dot{lpha} \dot{lpha}} \ C_{[ab],[cd]} \sim C_{lpha(4)} \oplus ar{C}_{\dot{lpha}(4)}.$$

•
$$o(3,2) \approx sp(4)$$
, $\Omega^{AB} := \begin{pmatrix} \Omega^{\alpha\beta} & -\lambda h^{\alpha\dot{\beta}} \\ -\lambda h^{\beta\dot{\alpha}} & \bar{\Omega}^{\dot{\alpha}\dot{\beta}} \end{pmatrix} \Longrightarrow d\Omega^{AB} + \frac{1}{2}\Omega^{A}{}_{C}\Omega^{CB} = 0$.

Killing vectors

• For Killing vector V_m , Killing equation

$$D_{0m}V_n + D_{0n}V_m = 0$$

(D_0 - AdS_4 -derivative) means

$$D_{0m}V_n=\varkappa_{mn}$$

where $\varkappa_{mn} = -\varkappa_{nm}$ - Papapetrou field.

• Introduce
$$sp(4)$$
-tensor $K_{AB} := \left(\begin{array}{cc} \lambda^{-1} \varkappa_{\alpha\beta} & V_{\alpha\dot{\beta}} \\ V_{\beta\dot{\alpha}} & \lambda^{-1} \bar{\varkappa}_{\dot{\alpha}\dot{\beta}} \end{array} \right)$

$$D_0K_{AB}=0.$$

• Any solution generates global symmetry of AdS_4 for unfolded system $D_0\Omega = 0$, df + G = 0:

$$\delta\Omega^{AB} = D_0 K_{AB}, \quad \delta f \sim K^{AB} \frac{\partial G}{\partial \Omega^{AB}}.$$

AdS Black Hole

• BH metric in Kerr-Schild form [Carter, 1968]:

$$g_{mn} = g_{mn}^{AdS} + \frac{2M}{r} k_m k_n.$$

- Kerr-Schild vectors k_m : $k_m k^m = 0$, $k_n D_0^n k_m = k_n \mathcal{D}^n k_m = 0$, $\frac{1}{r} = -\frac{1}{2} \mathcal{D}^m k_m = -\frac{1}{2} D_0^m k_m$.
- HS generalization [Didenko, Matveev, Vasiliev, 2008]: $\phi_{m_1...m_s} = \frac{2M}{r} k_{m_1}...k_{m_s} \text{ obeys free spin-} s \text{ equation in } AdS \text{ background.}$
- $k_m = k_m (\varkappa_{ab})$ generic AdS_4 BH is completely determined by global symmetry K_{AB} of empty AdS_4 [Didenko, Matveev, Vasiliev, 2008, 2009]
- BH Weyl tensor $C_{\alpha(4)} \sim M \varkappa_{\alpha\alpha} \varkappa_{\alpha\alpha}$.

Lagrangian extension

- HS fields: 0-form $B(Z, Y, \mathcal{K}|x)$, 1-form $\mathcal{W} = d_x + dx^n W_n(Z, Y, \mathcal{K}|x) + dZ^A S_A(Z, Y, \mathcal{K}|x)$.
- Star product:

$$f * g = \frac{1}{(2\pi)^4} \int d^4 U d^4 V e^{iU_A V^A} f(Z + U; Y + U) g(Z - V; Y + V)$$

Nonlinear HS equations [Vasiliev, 1990]:

$$W*W = -i\left(dZ_AdZ^A + \frac{\eta}{2}dz_\alpha dz^\alpha B * k * v + \frac{\bar{\eta}}{2}d\bar{z}_{\dot{\alpha}}d\bar{z}^{\dot{\alpha}}B * \bar{k} * \bar{v}\right)$$

$$\left[\mathcal{W},B\right]_*=0$$

Lagrangian extension [Vasiliev, 2015]:

$$W*W = L-i\left(dZ_AdZ^A + \frac{\eta}{2}dz_\alpha dz^\alpha B * k * \upsilon + \frac{\bar{\eta}}{2}d\bar{z}_{\dot{\alpha}}d\bar{z}^{\dot{\alpha}}B * \bar{k} * \bar{\upsilon}\right)$$

• In our case: L(x, dx) is a space-time 2-form, closed by virtue of these equations; $\delta L = d\chi$; L is assumed to support BH charge via integration over space infinity.

Linear Higher Spins

- AdS_4 vacuum solution: $W_0 = \Omega_{AB} Y^A Y^B$, $B_0 = 0$, $S_0 = Z_A dZ^A$
- Linear order: $B_1(Z, Y, \mathcal{K}|x) = C(Y, \mathcal{K}|x)$,

$$\begin{cases} D_0\omega(Y|x) = \eta \overline{H}^{\dot{\alpha}\dot{\alpha}} \frac{\partial^2}{\partial \overline{y}^{\dot{\alpha}} \partial \overline{y}^{\dot{\alpha}}} C(0, \overline{y}|x) + \overline{\eta} H^{\alpha\alpha} \frac{\partial^2}{\partial y^{\alpha} \partial y^{\alpha}} C(y, 0, |x) + L \\ \widetilde{D}_0 C \equiv dC + W_0 * C - C * \widetilde{W}_0 = 0 \end{cases}$$

where $H^{\alpha\alpha}=h^{\alpha}{}_{\dot{\alpha}}h^{\alpha\dot{\alpha}}$ and $\widetilde{f}\left(y,\overline{y}\right)=f\left(-y,\overline{y}\right)$.

HS BH in linear analysis

- If $D_0\epsilon(Y|x) = 0$, then $\widetilde{D}_0(\epsilon * \delta^2(y)) = 0$.
- HS BH Weyl tensors should be constructed from Papapetrou field of empty space (generalizing s = 2 case), representing linear corrections in M: D₀ (K_{AB}Y^AY^B) = 0⇒

$$C(Y|x) = Mexp\left\{\frac{1}{2}K_{AB}Y^{A}Y^{B}\right\} * \delta(y) =$$

$$= \frac{M}{r}exp\left\{\frac{1}{2r^{2}}\varkappa_{\alpha\beta}y^{\alpha}y^{\beta} + \frac{1}{2r^{2}}\bar{\varkappa}_{\dot{\alpha}\dot{\beta}}\bar{y}^{\dot{\alpha}}\bar{y}^{\dot{\beta}} - \frac{1}{r^{2}}\varkappa_{\alpha\gamma}v^{\gamma}{}_{\dot{\alpha}}y^{\alpha}\bar{y}^{\dot{\alpha}}\right\}$$

where $r^2 = -\frac{1}{2}\varkappa_{\alpha\beta}\varkappa^{\alpha\beta}$.

• HS BH Weyl tensors [Didenko, Vasiliev, 2009]:

$$C_{\alpha(2s)} = \frac{M}{s!2^{s}r} \left(\frac{\varkappa_{\alpha\alpha}}{r^{2}}\right)^{s}, \ \overline{C}_{\dot{\alpha}(2s)} = \frac{M}{s!2^{s}r} \left(\frac{\overline{\varkappa}_{\dot{\alpha}\dot{\alpha}}}{r^{2}}\right)^{s}$$

Lagrangian 2-form

• L is completely determined by spin-1 sector, with C bilinear on Y and Y-independent ω :

$$d\omega(0|x) = 2\eta \bar{H}^{\dot{\alpha}\dot{\alpha}}\bar{C}_{\dot{\alpha}\dot{\alpha}}(x) + 2\bar{\eta}H^{\alpha\alpha}C_{\alpha\alpha}(x) + L.$$

• $\omega(0|x)$ can be shifted to zero by gauge transformation of L, then

$$L = -2\left(\eta \bar{H}^{\dot{\alpha}\dot{\alpha}}\bar{C}_{\dot{\alpha}\dot{\alpha}}\left(x\right) + \bar{\eta}H^{\alpha\alpha}C_{\alpha\alpha}\left(x\right)\right) = -M\left(\cos\varphi\mathcal{F} + \sin\varphi\breve{\mathcal{F}}\right)$$

where $\eta = e^{i\varphi}$.

• BH charge represents integral of L over space infinity. Conjecture - only $sin\varphi$ -term contributes, because $\mathcal F$ is Coulomb field while $\check{\mathcal F}$ is magnetic monopole with ω singular at infinity [Vasiliev, 2015].

Black Hole charge

• Boyer-Lindquist coordinates for empty AdS₄ [Carter, 1973]:

$$ds^2 = -rac{\Delta_r}{
ho^2} \left[dt - rac{a}{\Sigma} sin^2 heta d\phi
ight]^2 + rac{
ho^2}{\Delta_r} dr^2 + rac{
ho^2}{\Delta_{ heta}} d heta^2 +
onumber \ + rac{sin^2 heta \Delta_{ heta}}{
ho^2} \left[adt - rac{\left(r^2 + a^2
ight)}{\Sigma} d\phi
ight]^2,$$

where

$$\begin{split} \rho^2 &= r^2 + a^2 cos^2 \theta, \\ \Delta_r &= \left(r^2 + a^2\right) \left(1 + \frac{1}{3}\lambda^2 r^2\right), \\ \Delta_\theta &= 1 - \frac{1}{3}\lambda^2 a^2 cos^2 \theta, \\ \Sigma &= 1 - \frac{1}{3}\lambda^2 a^2. \end{split}$$

Black Hole charge

- We start with Killing vector $V = \frac{\partial}{\partial t}$, $V^m = (1, 0, 0, 0)$.
- Corresponding Papapetrou field:

$$arkappa_{lphaeta}=rac{2}{3}\lambda^2ig(r- ext{iacos} heta)\left(egin{array}{cc}1&0\0&-1\end{array}
ight)$$
 and

$$\begin{split} L &= -\frac{9M}{\lambda^4 \rho^4} \left\{ \sqrt{\frac{\Delta_\theta}{\Delta_r}} sin\theta \left(cos\varphi \left(r^2 - a^2 cos^2\theta \right) - 2 i sin\varphi racos\theta \right) \cdot \right. \\ & \cdot \left(adr \wedge dt + \frac{r^2 + a^2}{\Sigma} d\phi \wedge dr \right) + \\ & + i sin\theta \left(2 i cos\varphi racos\theta - sin\varphi \left(r^2 - a^2 cos^2\theta \right) \right) \cdot \\ & \cdot \left(adt \wedge d\theta + \frac{r^2 + a^2}{\Sigma} d\theta \wedge d\phi \right) \right\} \end{split}$$

• Integral over $d\theta \wedge d\phi$ with $r \to \infty$ (spatial infinity) gives BH charge:

$$Q=rac{27\pi}{2\lambda^4\left(3-\lambda^2a^2
ight)}$$
Msin $arphi$.

• So indeed only $\breve{\mathcal{F}}$ contributes.

Conclusion

Conserved charge of HS Kerr Black Hole in AdS_4 is evaluated in the linear order. This confirmed that charge is generated by the $sin\varphi$ -term of 2-form L. It would be interesting to calculate BH charge in higher orders to clarify its connection with the problem of BH entropy.