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Motivation:
learn about

(1) quantum HS theories
(i1) limits of AdS/CFT



Free Higher Spin theory

Flat space background:

consider collection of free massless spin s = 0, 1, 2, ... fields

with gauge-invariant 0Pmy...ms = Omy €ma...m.)

Fronsdal action S = fd4:1: O™ O Oy m, e

e.g. viewed as formal flat limit of Vasiliev HS theory with no interactions:
massless vector, massless graviton, etc.: for s > 02 d.o.f. ind =4

curious fact: total number of d.o.f. is zero
1+ 2=1+2C(0)=0
s=1

free massless spin s partition function

det Ag_111/2 B (det Ag_1)? 11/2 B 2\1-1/2 2
det A, | } [det A, det AS_J B ([det(_a ) )

A, = —0? on symmetric rank s traceless tensor

ZMHS,s = [



e.g. Maxwell vector:

L= FnpnF™ = S AL (-0°) A,
Z = [[dA]exp|—1 [ d*z AL (—2)AL]
Ay = A+ 09, A? = AT AT + ¢(—07)¢

dA = dALde [det (—02)])Y/2,  [dAe 4 =
[dA] = dA+ = 93

det Ag ]1/2

2= [detAlL

Ag=—-0%, Ay =PLtA



Then total partition function is trivial:

(Zmus )tot = H Z\HS, s
s=0

/ / / /
s s s s

e cf. supersymmetric theory: B/F =1 (e.g. vanishing of vacuum energy)

e here cancellation of physical spin s det and ghost det for spin s + 1 field
e should be reflecting large gauge symmetry of the theory

(cf. topological theory like antisymm tensor of rank d in d 4+ 1 dimensions
or Chern-Simons or 3d gravity)

e cancellation of an infinite number of factors is formal (like 1-1+1-1+...=0):
depends on grouping terms together — oo product requires regularization
and its value may depend on choice

e choice of regularization should be consistent with underlying symmetry:
here with higher spin gauge symmetry



case of d = 4;

1 :|1/2

Zo = [
0 detAo

) ZMHS,S — (ZO)VS ) Vg = 2
ve=(s+1)?+(s—1)% —2s% =2

Ziot = (Zo)"*" Mot =1+ vg=14+) 2=0
s=1 s=1

e d = 4: (-function reg. is equivalent to formal cancellation of factors in 2
e cf. use of (-function regularization in vac energy in bosonic string:
consistent with massless vector in d = 26 — symmetries of critical string

e in d flat dimensions:
det Ay = (det Ag)™s, det A} 4 = (det AO)NSL , Ny = (3+‘3_1) — (‘ifj’)

s+d—>5)!
N =N, Nooy, ve=N = NE =25+ 5(d—4)) 50



in even d one may use regularization (¢ — 0, dropping singular terms)

Viot = 1 + Z vy e €lstz(d=4)] .
s—1 1.

e alternative reg. in any d: cutoff function f(s, ¢) with f(s,0) = 1 for A
Viot = 1 + Zz; [f(S,E) NSJ_ _ f(S — 176) NSJ_—J =0
direct analog of formal cancellation of the determinant factors Z

Regularization vs symmetry:

e d = 4 + n dimensional theory: regularization should preserve
d-dimensional Lorentz symmetry

e if viewed as 4d theory + KK modes {¢,, } requires special regularization
of sum over KK mode number n (cf. no log divergences in 5d vs 4d)

e analogy between higher spins {(s} and KK modes [Fronsdal]:

HS symmetry requires special regularization of sum over s

or doing computation without splitting into 4d fields with fixed s



Conformally-flat case: AdSq

Ziot = 1 holds also in proper vacuum of Vasiliev theory — AdSq4
Fronsdal action in AdSq leads to similar partition function

basic kinetic operator in AdSy; (kK =0,1,....,s — 1)

As(MZ,)=—-V2+ M e MZ,=s—(k—1)(k+d—2)

e = =1 for unit-radius S9 or euclidean AdSy; € = 0 in flat space
Partition function of “partially-massless” field (rank k& gauge parameter)

detAkL(M,iS) 1/2
sk = [det ASL(MSQJC)}

Massless (maximal gauge invariance with rank s — 1 parameter)
spin s field on homogeneous conformally flat space

[Gaberdiel et al 2010; Gupta, Lal 2012; Metsaev 2014]

det Ag_1 J—(Msz—l,s)] 1/2

Z s = Zss—1 = [
MHS, s—1 det AsJ_(Msz,S—l)



” _ (detAS 1( 5— 13))2 1/2
WIS, {d tA( ss 1) detAS 2( s—|—2s—|—1)}

Zyms,o = [det (V2 + MH]7Y2, M2 =2(d-3)e

Lot = H:i() ZMHS,S
here no immediate cancellation of factors: different for ¢ # 0
Using spectral (-function (A is UV cutoff, r is curvature radius)

Indet Ay = —(a, (0) In(A%r?) — C5_(0)

Computing Ciot(2) = > .o 5 Ca, (2) and then taking z — 0:
Ciot(2) = 0+ 0 x 2+ O(2?) [Giombi, Klebanov, Safdi: 2014]

(ZMHS(Ade)) —1

tot
Equivalent regularization:

In (ZMHS Ade ) Z In ZMHS S [S+%(d_4)]

tot



Remarks:

e proper-time cutoff for each s: power divergences A™ sum up to 0 too
(ct. supersymmetric theories)

° (ZMHS) ot = 1 need not apply to quotients of flat or AdSq4 space
e.g. Zyus on thermal quotient of AdSy is non-trivial

e conjecture: exact vacuum partition function of Vasiliev theory =1
i.e. (ZMHS(Ade))tOt = 1 to all orders in coupling
(analogy with supersymmetric or topological QFT)

e This is the consistency requirement of vectorial AdS/CFT duality:

log of partition function of dual free U (V) scalar theory

has only O(NV) term that should match classical action of Vasiliev theory
while all g, = 1/N corrections should be absent



Conformal higher spins
Flat space
free CHS field in d dimensions

Ss = [dx psP,0*5 T4,
P, = projector to transverse traceless totally symmetric rank s field
Partition functionind =4 (A, = —0%) [AT 13]

s—1

(det Ag_y)°ttq1/2 det Ay | 71/2
(det Ay)® } _H [detAsL]

ZCHS,S — [

CHS fields of dim A = 2 — s:

e sources or “shadow fields” for spin s conserved bilinear currents .J,(¢)
built out of free U (V) scalar field ¢

e boundary values for the corresponding dual MHS theory in AdSg1 1

e interacting CHS theory may be defined as induced one

[AT 02; Segal 02; Bekaert, Joung, Morad 10]

integrating out ¢ in path integral with S = [ d*z|0¢*0¢ + Y, J(¢)ps]
e resulting interacting CHS theory contains all fields with spins s = 0, 1, 2, ....



Total free CHS partition function in flat background

det Ao} 1/2 [(det Al)?’} 1/2 [(det A2)4} 1/2.“

(ZCHS)tot — H ZCHS,S — {det Al (det A2)2 (det A3)3

s=1
Formally cancelling similar factors
(Zcns)tot — (Zcus)ior = H det Ag
s=0

Alternative form (different regularization) (d = 4):

ZCHS,S = (Zo)ys = [det Ao]_ys/Q , Vg = S(S + 1)
(Zcus)tot = H(ZO)VS = (Zp)"tr Viot = Z Vs
s=0 s=0

Special regularization

f:F(s) N iF(s) e (s +57)
s=0 s=0

fin.



e implied by relation to MHS theory in AdS;11

e should be the one that 1s consistent with symmetries of CHS theory

e implies vanishing of conformal a-anomaly [Giombi, Klebanov13; AT 13]
e implies vanishing of total number of CHS d.o.f. (e.g. in d = 4)

Vtot — SZ% S(S + 1) 6_6(8—‘_%) . =0 , 1.e. (ZCHS)tot =1
in general d even dimensions [AT 13]
s—1
1 d—4 det AkJ_ 1/2
Z s — |: N 2 :| — Z Vg
CHS, <det ASJ_> - det A | (Zo)
(d—3)(2s+d—4)(2s+d—2)(s+d—4)!
Vs = 2(d—2)! s!
> d—3
Vtot — ;Vs B_G(S-I-T) . =0 — (ZCHS)tot =1

e ambiguity of regularization: if start with rearranged form + same cutoff
(Zems)ior = (Zo) 2Nt s Nyow = 3o020(s + 1) = 5; # 0



Ricci-flat space

e CHS theory expected to admit a Ricci-flat (in general Bach) solution
e cach CHS field should have proper gauge invariance on such space
e free CHS partition function in R,,,,, = 0 background

should be well-defined, 1.e. gauge-independent

e Conjecture: CHS operator V¢ + ... can be factorized

into product of s 2-derivative spin s Lichnerowicz operators

7 . [(det ALs_l)S-l-l 1/2
OSs  |7 (det Ar )°
Aps =—-Vi+ X, (X )P He = —g(s — 1) R, (F1 yH2pHarHe)VA

known to be true for s = 1, 2 but not for s = 3 [Nutma, Taronna 14]
ok if ignore D,, R, 1, terms (not giving conformal anomaly in d = 4)
e then same rearrangement is possible:

(Zeus)tot = | | Zenss = (Zoms)ion = | | det Ars
s=1 s=0



e conformal anomaly [AT 13]
T = —aR*R* + cC? = (a—c)R*R* +2cW, W = ann — %RQ

Cs — a5 = =55Vs(4 — 455 + 1502) | v, = s(s+1)

1 ; . d—3
e if use same regularization Z;io F(s) e—€(s+5572)

oo

Z(CS —ag) =0

s=1
while from computation on S4
©.@)
S0
s=1

implies 1-loop quantum consistency of CHS theory



Conformally-flat space: S*

e no conformal anomaly — Z;,+ of CHS theory on conformally-flat space
simply related to one in flat space?

Ziot(S%) in same regularization is again =1? Yes!

e consistent with relation to massless HS partition function in Ad.S5
[Giombi et al 13; AT 13; Becaria, AT 14] (also [Barvinsky 05,14])

Zl\_/IHS,s (AdS5)

Zoms. < (S%) =
oHs,»(57) Znins,s(AdSs)

Indeed, (ZﬁHS(AdSQ)tot = 1 [Giombi, Klebanov, Safdi 14]

Cuvms (0) = 0 automatic in Ad.Ss and (¢ (0) = 0 for both D and N b.c.
e subtle issue of coordinating UV regularization in S* with IR in AdS5
e verified for leading log A term on both sides

and then for full result in IR reg. where AdSs volume factorizes

e same 1n systematic dimensional regularization [Dorn, Diaz 07]:
non-trivial transcendental parts match (sum to 0) [Beccaria, AT 15]



Zcons.s(SY) = H Zs k

|:detAkJ_( 13)}1/2
*F T Ldet A, (M2))

Fy ——anCHSS S*) =4dasIn A + F,

)

(
as = —552(s + 1)?(14s* + 14s + 3)
Fy=—2s(s+1)(5s* +5s+1) In A — 2s(s + 1) ¢'(—3) +

CoME| =s— (=) +2)

A=Glaisher constant=— 55 ¢’(2) + &5 In(27) + 57
In A and ¢’(—3) terms match similar terms on Ad.Ss5 side

coeffs. sumto 0: >~ a,=0, ..., in same regularization of 3 _

(Zcns),, () = H Zcus,s(S%) =1



Conformal symmetric tensor theory

Generic (non)unitary free conformal field in d = 4:

(A; 1, J2) of SO(2,4) vs corresponding dual field in AdS5:
general formulae for partition functions on S*, S3 x S;
conformal anomaly coefficients a, c

Aim: test general expressions on

non-trivial example — (1; 5, 5):

conformal symmetric tensor (CST)

e described by 2-derivative action

e Weyl-invariant in curved background like CHS field

e lacks proper gauge invariance of massless HS (non-unitary):
only scalar gauge invariance in conf-flat space:

“maximal depth” — minimal gauge invariance— representative

of family of conformal fields [Bekaert, Grigoriev 13]

[CHS dual to MHS in AdS5 is maximal gauge invariance member]

e corresponds to “maximal depth” partially massless field in AdS5



Generalized “triple” (d = 4): [Bekaert, Grigoriev 13]

e higher-order conformal scalar operators in R* (higher-order singletons)
S = fd437 ¢f(a2)£¢z‘

— partially conserved currents of spin s and depth ¢, 1<t <s:

amlmmt Jmi--ms — ()

Verma module V (A, s) = V(3 + s — t, s) reducible for t < s

irreducible module D(3+ s —t,s) =V(3+s—t,s)/V(3+s,s — 1)

[Dolan, Nappi, Witten O1; Shaynkman, Typunin, Vasiliev 04]

e sources for currents or “shadow” fields — primary conformal depth ¢ fields:

totally symmetric traceless ¢y, .m, of dimA =1+¢ —s

with (9?)1*5~% action

e partially massless fields in AdS5 with V2 action
0Pur.s = Vs Vy€pyiv..ps + (guw — terms)

dual to Jy,, . ..m. Or have ¢,,, . as boundary values

e minimal depth case ¢t = 1: 0?2 scalar, conserved currents, CHS, MHS

e maximal depth case ¢ = s: CST instead of CHS



field content of dual to (9?)* scalar theory:
generalized Flato-Fronsdal theorem [Bekaert, Grigoriev 13]

D(2—0,00@D(2—1¢,0)=0>2,dt_, D(4+s—2k,s)

sum over PM fields of different odd depths ¢t = 1,...,2¢ — 1

maximal depth ¢ = s fields do not form “closed subset”
in contrast to MHS in minimal depth case



Weyl invariant action for totally symmetric traceless tensor ¢,

/ddaj\fgaps(VQ)”gos—l—... : n=12,...
g:U/ — QQ Juv @Ll...us = Q7 Pui...pms Y=Ss Tn - %d

conformal operators with n = 1, 2, ... generalise scalar s = 0 GIMS family
e CHS case: n:s+%(d—4) and v = 25 — 2

e CSTcase:n=1landy=s— 3(d— 2)

Conformally flat space:

e larger n — more gauge symmetries consistent with locality of action:
CHS case maximal gauge symmetry with rank s — 1 tensor parameter
CST n = 1 case — only 0o, = %0 scalar gauge symmetry

e less than maximal gauge symmetry:

no unitary gauge to eliminate time-like components

e 2-derivative Fronsdal massless (maximally gauge-invariant ) HS

1s unitary but not conformally invariant

while n = 1 CST is conformally invariant but not unitary



Weyl-covariant CST n = 1 Lagragrangian in d dim [Erdmenger, Osborn 97]

L(d) = V)‘SOMMMSVMOm---uS _ 2343% vpgppul---us_lVASO/\MMMS_l

2s PUL s —1 A — 43_d2+4d_4 M1 s
+ g oay P ey T A(d=T)(d—2) 1t Prui-ps

+w Cappx ™ QP L

C' is Weyl tensor and w is arbitrary const

d = 4 case: flat background: 4, ..., = ¢y, ...0, 30

— AA v lbg 2s A 2
Lost,s = MM 0oy e = 557(07Ppuypa_i2)

¢s:  (1; 5, 5) representation of SO(2, 4)
unitary (A > 2 + 51 + j2) only for s = 0, 1 (scalar and Maxwell)
gauge parameter o is in representation (1 — s;0, 0)

thus CST describes “short” representation

1;5,51=(1:5,5) — (1 =50,0)

(particular degenerate module of conformal group
[Shaynkman, Typunin, Vasiliev 04; Bekaert, Grigoriev 13])



s =2,d=4: “conformal spin 2” (not to confuse with PM field)

LcsT,2 :vAQPW Vapur — % (VMSOW)Z + 2 Rpx H? ‘PMA
— % R Sp,ul/ SO,UJV + w Cuyp)x SO'UJP SOVA ) Sp,u,z/g'uy =0

compare: Einstein graviton in generic background

g,lﬂ/ — g,Lu/ + h‘ILLU7 SO,LW — h,uz/ - iguyh, h = hﬁ

v U U 2
Ly = V" Vapuy =2 [Vule"” = 59" W] + {hV2h
+ g Ro!" ¢, —2C,008 M P

with standard (vector-parameter) gauge invariance on I, = 0 backgr.
e in contrast to massless spin 0 and spin 1 Einstein graviton

does not represent conformal theory in flat space [Grishchuk 80]

e scale invariance but no special conformal invariance for all
2-derivative massless higher spin s > 2 fields in flat space



cf. Partially massless spin 2:

dSg or AdS,; background: R = %A

L =V Vahy, —2(V, 02 42V W'V ,h — V*hV b
ARy, — 5h%) = S (W, — 1)
m® = gy R 6w = (ViVo + 59 )€



e flat space: conformally inv. e.0.m. [Drew, Gegenber 80; Barut, Xu 82]

Lcsr2 = 0N N — % (3u90“’/)2 ), 0Py = ((’%3,, - igw 82) o
0Py — %(aaa(u 903) - %QW 9a0p 90%8) =0

o (Ajj1,72) = (1;1,1) representation of SO(2,4)

non-unitary [Fang, Heidenrich, Xu 83]

e describes combination of spin 2 and two spin 1 massless on-shell fields
with (9 — 1) — 2 = 6 physical d.o.f.

POy = gofw + 0, VVL) + (0,0, — 3 gy 0%) o

e flat-space partition function

(det AO)ST/? _ [det Au}l/Q det Ag

———— = 75(Z1)°
detAQ detAQJ_ detAu_ 2( 1)

ZcsT2 = {

e attempts of curved space generalizations:
on eqs of motion, with V¥ ¢ ,,, = 0, non-Lagrangian [Grischuk, Yudin 80]



e consistent d = 4 Lagrangian:

w = 0 [Deser, Nepomechie 83]; w = —2 version [Leonovich 84]
general form with arbitrary w [Erdmenger, Osborn 97]

e scalar gauge invariance present in conf. flat space

extends to Einstein background oy, = (VM V, — i uv VQ) o
provided w = —2 (as in Lichnerowitz operator);

suggests possibility of consistent coupling to Einstein gravity

e w = —2caseis special: for R,, =0

kinetic operator factorizes on spin 2 and 1 parts (i.e. becomes diagonal)

LcsT,2 = VA pH VaQuw — % (VupH)? = 2C 0 on pH? ¥
=@, AL ot M 4+ 2V (Ap,)? V-

where Py = gpt,/ + Vi VVL) + (VMVV — igw VQ) o

(det Ag)? }1/2 _ {(det A0)3} 1/2

Zosra = |
©5T,2 det AL 2 | det AL 1L det AL 2

(AL 2),&1/,@5 — _g,u(ong)I/VQ_QC,uowBa (AL 1),u1/ — —QWVQ, AO = —V2



Partition function on S*
unit-radius S%,i.e. R =12, A, (M?)= —V? + M?

Lost2(S") = @jn, D1 (4) e + FVEALLB)ALL(-3) VEr

Zost2 = Z2o Z10, Zi10= [ , Lo =

det Au_ (3)

Z1 0= Maxwell partition function
Z> o= partition function of s = 2 partially massless field
e Compare to Zcus,2 = Z2,142,0 = Weyl graviton partition function

L . . . _3)71/2
71 = Einstein graviton partition function = [2*21 ;((Qz;,)} /

Zcus,2 21,0
Z2.1

ZcsT,2 =

e partition function on S}; x 53 has interpretation

in terms of counting of conformal operators in spin 2 CFT in R*

for “shortened” representation with shadow counterpart (3;1,1) — (5;0,0)

det Ap(0) 71/2 ~ rdet Ap(—4)
} { det AQJ_ (4)

}1/2



Conformal anomaly coefficients
d = 4 conformal anomaly

T =0/ R*R* +52(R/2w — %R2) = —aR*R*+cC?, Bi=c—a, =2

can be found by two separate computations:
(i) on conformally-flat space, e.g., S* — a coefficient
(1) on a Ricci-flat space — c-a coefficient

a: follows from S partition function (does not depend on w)
alA | s(M?)] = =5(25+1) 3057 +8552+105s—58—30(s*—2) M2 —15M*|

_ __ 53 31 27
aCST,2 = a2,0 T &1,0 = Zr T 180 — 20

c: Z is non-trivial for generic w — non-diagonal K*”V ,V,, + ...
simplifies for w = —2: then from Z on R,,, = 0 background
using  SBi[Ars] = =5(s+ 1)?[21 —20(s + 1)? + 3(s + 1)*]

_ 31 : 143
(c—a)csT2 = 55 » ie. CCST,2 = “6p



AdS/CFT relation

Aim: check general expressions for conformal anomaly coefficients

of massive SO(2, 4) representations found using [Beccaria, AT 14]
Z~(M?)

Z0M°) = 7oy A=A AT =2

e 4d conformal field (A’; j1, j2): corresponding shadow field (A; j1, j2)
with A = 4 — A’ is associated (as a boundary value) to massive

higher spin in AdS5 with mass m? = (A — 2)? — s, s = j; + js
(kinetic operator for j; > jo is —V? + A(A — 4) — 25, [Metsaev 03])
e massive field in long rep. (A; 3, 5): get via AdS5 [Giombi et al 13]

a(A;2,8) = (s +1)2(A —2)3(— 3A% + 12A + 55% + 10s — 7)
e non-unitary CST 4d field [1;1,1] = (1;1,1) — (—1;0,0)

— “partially massless” [3;1,1] = (3;1,1) — (5;0,0) spin 2 in Ad.S5
(A’ = 1 for rank 2 field and A’ = —1 for scalar gauge parameter)

acst,2 = a(3;1,1) —a(5;0,0) = Zf



e ¢ — a for field associated to (A; 5, 5) massive field in AdSs

[Beccaria, AT 14] (cf. [Mansfield et al 03, Ardehali et al 13])
(C_a)(Aagvg) (S+1) (A_2)[_3(A_2)4
—5(s% + 25 — 3)(A — 2)% + 8s® + 25 — 125 — §]

cest,2 = €(3;1,1) —¢(5;0,0) = 22

Agreement with direct computations in 4d



Conformal symmetric tensor of rank s

LcosT,sind =4 for s > 2:

e flat-space scalar gauge invariance survives in curved space

only in conformally-flat case C,, 5, = 0

e.g. absent for s > 2 in Ricci flat background for any value of w

(cf. analogy with standard massless s > 2 HS with 92 action)

e Weyl-covariant kinetic operator does not factorize (non-minimal) if C' = 0
e flat space:

(det AO)SHT/? _ ﬁ [ det Ag ]1/2 — (Zo)"

Zost,s = |
C5T, det A, det Ay |

vs =Ny — (s+1) = [(28+Cl(d2)2(;':d 3)v e 1]d L= s(s+1)

e same number of d.o.f. as for CHS field of same spin:
flat-space partition functions match, i.e. (in same regularization)

(Zest),,, = HZCSTS = (Zcns),,, =1



e counting conformal gauge-invariant operators — Z(q) = > d, ¢~"
in agreement with partition function on conformally-flat Sé x S

S

1 1/2 >

k=1 m=1

q = e P and A}, | defined on 3d tensors in decomposition of ¢,
single-particle partition function

s s—k+1 oo
ZCST s Y S‘ Y 2 n +1 n + 2k + 1) qn+s—2r—i—3
=1 r=1 n=r-—1

_ 2¢°[q° T —(s41)% gts(s+2)] _ 2¢°[s(s+2)—q—q¢°~...—¢"]
(1—q)* (1—q)?

e partition function on S*:

det Ak J_(M]?,O)i|

Mio=2+k, Mg,=2—k—k

Zest,s(8Y) =[] Zro . Zyo =



e a-coefficient of conformal anomaly
acsT,s = =555(s + 1)%(3s? + 14s + 14)

Aot = Zgil acsT,s 7 0 does not vanish in any natural regularization

but no a priori reason why one needs to sum over all s here

in MHS and CHS cases summation was implied, in particular,

by AdS/CFT duality and relation to conserved currents of boundary theory
e c-coefficient: computation on Ricci-flat space is problematic:

(1) lack of scalar gauge inv. — partition function 1s gauge dependent

(1) the non-minimal nature (lack of factorization) of kinetic operator

need more complicated methods [Moss, Toms 13; Barvinsky, Vilkovisky 88]
ignoring these problems (as in CHS case this may not affect c)

Z B [(det A0)8+1}1/2
CST,s — det ALS
(¢ —a)osT,s = =555(s + 1)(3s* 4+ 1553 + 10s* — 30s — 24)



AdSs connection

e CST field: 1, 5,5] =(1,5,5) — (1 —5,0,0)

associated to spin s field in AdS5 (shadow representation)

[3737%] (37;7%)_(3+87070)
“maximal-depth” partially massless field in AdS5 [Bekaert, Grigoriev 13]
e one-particle Z of 4d CFT written in terms of AdS5 partition functions

or conformal characters [Beccaria, Bekaert, AT 14; Beccaria, AT 14]
Zosrs(q) = 27(q) — 25 (@) =27 () — 27 (q) + o(q)

~ S 2 3 _s+3
ZHq) = Z27(3;5,5) — 27 (s +3; 0,0) = LHL0

ZH(A; 41, j2) = (251 + 1)(2)2 + 1)& is character of long rep.
“correction term” due to scalar gauge symmetry:
o(q) = §s(s + 1)(s +2) + g Loy n(n+ D(n+2)(¢"° +¢°")
e a-anomaly computed using AdS5 relation

acsT,s =a(3;5,5) —a(3+5;0,0) = —55(s + 1)*(3s* + 14s + 14)

e formal c expression also matches: ccst,s = ¢(3; 5, 5) — ¢(3 + 5;0,0)



Conclusions

e remarkable symmetries of (bosonic) higher spin theories

with all spins included:

one-loop vacuum Z = 1; zero effective number of d.o.f.;

cancellation of conformal anomalies (UV divergences)

e importance of regularization of sum over s consistent with symmetries:
crucial part of definition of quantum theory

e MHS and CHS families are special, but CST is not

e interesting example of “conformal spin 2” field:
non-unitary, related to “partially massless” field in AdS5

e check of expressions for partition functions and conformal anomalies
for generic 4d conformal fields:
consistent with “kinematical” AdS5/CFT4



