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Motivation:
learn about
(i) quantum HS theories
(ii) limits of AdS/CFT



Free Higher Spin theory
Flat space background:
consider collection of free massless spin s = 0, 1, 2, ... fields
with gauge-invariant δϕm1...ms

= ∂(m1
εm2...ms)

Fronsdal action S =
∫
d4x ∂nϕm1...ms∂nϕm1...ms

+ ...

e.g. viewed as formal flat limit of Vasiliev HS theory with no interactions:
massless vector, massless graviton, etc.: for s > 0 2 d.o.f. in d = 4

curious fact: total number of d.o.f. is zero

1 +
∞∑
s=1

2 = 1 + 2ζR(0) = 0

free massless spin s partition function

ZMHS,s =
[det ∆s−1⊥

det ∆s⊥

]1/2
=
[ (det ∆s−1)2

det ∆s det ∆s−2

]1/2
=
(

[det (−∂2)]−1/2
)2

∆s = −∂2 on symmetric rank s traceless tensor



e.g. Maxwell vector:

L = 1
4FmnF

mn = 1
2A
⊥
m(−∂2)A⊥m

Z =
∫

[dA] exp[− 1
2

∫
d4x A⊥m(−∂2)A⊥m]

Am = A⊥m + ∂mφ, A2 = A⊥A⊥ + φ(−∂2)φ

dA = dA⊥dφ [det (−∂2)]1/2 ,
∫
dA e−A

2

= 1

[dA] = dA⊥ = dA
dφ

Z =
[ det ∆0

det ∆1⊥

]1/2
∆0 = −∂2 , ∆1⊥ = P⊥∆0



Then total partition function is trivial:

(ZMHS)tot =

∞∏
s=0

ZMHS,s

=
[ 1

det ∆0

]1/2[ det ∆0

det ∆1⊥

]1/2[det ∆1⊥

det ∆2⊥

]1/2[det ∆2⊥

det ∆3⊥

]1/2
... = 1

• cf. supersymmetric theory: B/F =1 (e.g. vanishing of vacuum energy)
• here cancellation of physical spin s det and ghost det for spin s+ 1 field
• should be reflecting large gauge symmetry of the theory
(cf. topological theory like antisymm tensor of rank d in d+ 1 dimensions
or Chern-Simons or 3d gravity)
• cancellation of an infinite number of factors is formal (like 1-1+1-1+...=0):
depends on grouping terms together –∞ product requires regularization
and its value may depend on choice
• choice of regularization should be consistent with underlying symmetry:
here with higher spin gauge symmetry



case of d = 4:

Z0 =
[ 1

det ∆0

]1/2
, ZMHS,s = (Z0)νs , νs = 2

νs = (s+ 1)2 + (s− 1)2 − 2s2 = 2

Ztot = (Z0)νtot , νtot = 1 +

∞∑
s=1

νs = 1 +

∞∑
s=1

2 = 0

• d = 4: ζ-function reg. is equivalent to formal cancellation of factors in Z
• cf. use of ζ-function regularization in vac energy in bosonic string:
consistent with massless vector in d = 26 – symmetries of critical string
• in d flat dimensions:

det ∆s = (det ∆0)Ns , det ∆⊥ s = (det ∆0)N
⊥
s , Ns =

(
s+d−1
s

)
−
(
s+d−3
s−2

)
N⊥s = Ns −Ns−1, νs = N⊥s −N⊥s−1 = 2[s+ 1

2 (d− 4)] (s+d−5)!
s!(d−4)!



in even d one may use regularization (ε→ 0, dropping singular terms)

νtot = 1 +

∞∑
s=1

νs e
−ε[s+ 1

2 (d−4)]
∣∣∣
fin.

= 0

• alternative reg. in any d: cutoff function f(s, ε) with f(s, 0) = 1 for ∆⊥,s
νtot = 1 +

∑∞
s=1

[
f(s, ε) N⊥s − f(s− 1, ε) N⊥s−1

]
= 0

direct analog of formal cancellation of the determinant factors Ztot

Regularization vs symmetry:
• d = 4 + n dimensional theory: regularization should preserve
d-dimensional Lorentz symmetry
• if viewed as 4d theory + KK modes {φn} requires special regularization
of sum over KK mode number n (cf. no log divergences in 5d vs 4d)
• analogy between higher spins {ϕs} and KK modes [Fronsdal]:
HS symmetry requires special regularization of sum over s
or doing computation without splitting into 4d fields with fixed s



Conformally-flat case: AdSd

Ztot = 1 holds also in proper vacuum of Vasiliev theory – AdSd

Fronsdal action in AdSd leads to similar partition function
basic kinetic operator in AdSd (k = 0, 1, ...., s− 1)

∆s(M
2
s,k) ≡ −∇2

s +M2
s,kε M2

s,k = s− (k − 1)(k + d− 2)

ε = ±1 for unit-radius Sd or euclidean AdSd; ε = 0 in flat space
Partition function of “partially-massless” field (rank k gauge parameter)

Zs,k =
[det ∆k⊥(M2

k,s)

det ∆s⊥(M2
s,k)

]1/2
Massless (maximal gauge invariance with rank s− 1 parameter)
spin s field on homogeneous conformally flat space
[Gaberdiel et al 2010; Gupta, Lal 2012; Metsaev 2014]

ZMHS,s = Zs,s−1 =
[det ∆s−1⊥(M2

s−1,s)

det ∆s⊥(M2
s,s−1)

]1/2



ZMHS,s =
[ (

det ∆s−1(M2
s−1,s)

)2
det ∆s(M2

s,s−1) det ∆s−2(M2
s+2,s+1)

]1/2
ZMHS,0 = [det (−∇2 +M2

0 )]−1/2, M2
0 = 2(d− 3)ε

Ztot =
∏∞
s=0 ZMHS,s

here no immediate cancellation of factors: different for ε 6= 0

Using spectral ζ-function (Λ is UV cutoff, r is curvature radius)

ln det ∆s = −ζ∆s
(0) ln(Λ2r2)− ζ ′∆s

(0)

Computing ζtot(z) =
∑∞
s=0 ζ∆s

(z) and then taking z → 0:
ζtot(z) = 0 + 0× z +O(z2) [Giombi, Klebanov, Safdi: 2014](

ZMHS(AdSd)
)

tot
= 1

Equivalent regularization:

ln
(
ZMHS(AdSd)

)
tot

=
∞∑
s=0

lnZMHS,s e
−ε[s+ 1

2 (d−4)]
∣∣∣
ε→0, fin.

= 0



Remarks:
• proper-time cutoff for each s: power divergences Λn sum up to 0 too
(cf. supersymmetric theories)
•
(
ZMHS

)
tot

= 1 need not apply to quotients of flat or AdSd space
e.g. ZMHS on thermal quotient of AdSd is non-trivial

• conjecture: exact vacuum partition function of Vasiliev theory =1
i.e.
(
ZMHS(AdSd)

)
tot

= 1 to all orders in coupling
(analogy with supersymmetric or topological QFT)

• This is the consistency requirement of vectorial AdS/CFT duality:
log of partition function of dual free U(N) scalar theory
has only O(N) term that should match classical action of Vasiliev theory
while all gHS = 1/N corrections should be absent



Conformal higher spins
Flat space
free CHS field in d dimensions

Ss =
∫
ddx ϕsPs∂

2s+d−4ϕs
Ps = projector to transverse traceless totally symmetric rank s field
Partition function in d = 4 ( ∆s = −∂2 ) [AT 13]

ZCHS,s =
[ (det ∆s−1)s+1

(det ∆s)s

]1/2
=

s−1∏
k=0

[det ∆k⊥

det ∆s⊥

]1/2
CHS fields of dim ∆ = 2− s:
• sources or “shadow fields” for spin s conserved bilinear currents Js(φ)

built out of free U(N) scalar field φ
• boundary values for the corresponding dual MHS theory in AdSd+1

• interacting CHS theory may be defined as induced one
[AT 02; Segal 02; Bekaert, Joung, Morad 10]
integrating out φ in path integral with S =

∫
d4x
[
∂φ∗∂φ+

∑
s Js(φ)ϕs

]
• resulting interacting CHS theory contains all fields with spins s = 0, 1, 2, ....



Total free CHS partition function in flat background

(ZCHS)tot =

∞∏
s=1

ZCHS,s =
[det ∆0

det ∆1

]1/2[ (det ∆1)3

(det ∆2)2

]1/2[ (det ∆2)4

(det ∆3)3

]1/2
...

Formally cancelling similar factors

(ZCHS)tot → (ZCHS)′tot =

∞∏
s=0

det ∆s

Alternative form (different regularization) (d = 4):

ZCHS,s = (Z0)νs = [det ∆0]−νs/2 , νs = s(s+ 1)

(ZCHS)tot =

∞∏
s=0

(Z0)νs = (Z0)νtot , νtot =

∞∑
s=0

νs

Special regularization

∞∑
s=0

F (s) →
∞∑
s=0

F (s) e−ε(s+
d−3

2 )
∣∣∣
fin.



• implied by relation to MHS theory in AdSd+1

• should be the one that is consistent with symmetries of CHS theory
• implies vanishing of conformal a-anomaly [Giombi, Klebanov13; AT 13]
• implies vanishing of total number of CHS d.o.f. (e.g. in d = 4)

νtot =
∞∑
s=0

s(s+ 1) e−ε(s+
1
2 )
∣∣∣
fin.

= 0 , i.e. (ZCHS)tot = 1

in general d even dimensions [AT 13]

ZCHS,s =
[( 1

det ∆s⊥

) d−4
2

s−1∏
k=0

det ∆k⊥

det ∆s⊥

]1/2
= (Z0)νs

νs = (d−3)(2s+d−4)(2s+d−2)(s+d−4)!
2(d−2)! s!

νtot =
∞∑
s=0

νs e
−ε(s+ d−3

2 )
∣∣∣
fin.

= 0 → (ZCHS)tot = 1

• ambiguity of regularization: if start with rearranged form + same cutoff
(ZCHS)′tot = (Z0)−2Ntot , Ntot =

∑∞
s=0(s+ 1)2 = 1

24 6= 0



Ricci-flat space
• CHS theory expected to admit a Ricci-flat (in general Bach) solution
• each CHS field should have proper gauge invariance on such space
• free CHS partition function in Rmn = 0 background
should be well-defined, i.e. gauge-independent
• Conjecture: CHS operator∇2s + ... can be factorized
into product of s 2-derivative spin s Lichnerowicz operators

ZCHS,s =
[ (det ∆L s−1)s+1

(det ∆L s)s

]1/2
∆L s = −∇2

s +Xs , (Xs ϕ)µ1···µs = −s(s− 1)Rν
(µ1

λ
µ2ϕµ3···µs)νλ

known to be true for s = 1, 2 but not for s = 3 [Nutma, Taronna 14]
ok if ignore DmRnklp terms (not giving conformal anomaly in d = 4)
• then same rearrangement is possible:

(ZCHS)tot =
∞∏
s=1

ZCHS,s → (ZCHS)′tot =
∞∏
s=0

det ∆L s



• conformal anomaly [AT 13]
Tmm = −aR∗R∗ + cC2 = (a− c)R∗R∗ + 2cW , W = R2

mn − 1
3R

2

cs − as = 1
720νs(4− 45νs + 15ν2

s ) , νs = s(s+ 1)

• if use same regularization
∑∞
s=0 F (s) e−ε(s+

d−3
2 )

∞∑
s=1

(cs − as) = 0

while from computation on S4

∞∑
s=1

as = 0

implies 1-loop quantum consistency of CHS theory



Conformally-flat space: S4

• no conformal anomaly – Ztot of CHS theory on conformally-flat space
simply related to one in flat space?
Ztot(S

4) in same regularization is again =1? Yes!
• consistent with relation to massless HS partition function in AdS5

[Giombi et al 13; AT 13; Becaria, AT 14] (also [Barvinsky 05,14])

ZCHS,s(S
4) =

Z−MHS,s(AdS5)

Z+
MHS,s(AdS5)

Indeed, (Z±MHS(AdS5))tot = 1 [Giombi, Klebanov, Safdi 14]
ζMHS(0) = 0 automatic in AdS5 and ζ ′MHS(0) = 0 for both D and N b.c.
• subtle issue of coordinating UV regularization in S4 with IR in AdS5

• verified for leading log Λ term on both sides
and then for full result in IR reg. where AdS5 volume factorizes
• same in systematic dimensional regularization [Dorn, Diaz 07]:
non-trivial transcendental parts match (sum to 0) [Beccaria, AT 15]



ZCHS,s(S
4) =

s−1∏
k=0

Zs,k

Zs,k =
[det ∆k⊥(M2

k,s)

det ∆s⊥(M2
s,k)

]1/2
, M2

s,k

∣∣∣
d=4

= s− (k − 1)(k + 2)

Fs = − lnZCHS,s(S
4) = 4as ln Λ + Fs

as = 1
720s

2(s+ 1)2(14s2 + 14s+ 3)

Fs = − 1
6s(s+ 1)(5s2 + 5s+ 1) lnA− 1

3s(s+ 1) ζ ′(−3) + . . .

A=Glaisher constant=− 1
2π2 ζ

′(2) + 1
12 ln(2π) + 1

12γE

lnA and ζ ′(−3) terms match similar terms on AdS5 side

coeffs. sum to 0:
∑∞
s=1 as=0, ..., in same regularization of

∑
s(

ZCHS

)
tot

(S4) =

∞∏
s=1

ZCHS,s(S
4) = 1



Conformal symmetric tensor theory
Generic (non)unitary free conformal field in d = 4:
(∆; j1, j2) of SO(2, 4) vs corresponding dual field in AdS5:
general formulae for partition functions on S4, S3 × S1;
conformal anomaly coefficients a, c

Aim: test general expressions on
non-trivial example – (1; s2 ,

s
2 ):

conformal symmetric tensor (CST)
• described by 2-derivative action
•Weyl-invariant in curved background like CHS field
• lacks proper gauge invariance of massless HS (non-unitary):
only scalar gauge invariance in conf-flat space:
“maximal depth” – minimal gauge invariance– representative
of family of conformal fields [Bekaert, Grigoriev 13]
[CHS dual to MHS in AdS5 is maximal gauge invariance member]
• corresponds to “maximal depth” partially massless field in AdS5



Generalized “triple” (d = 4): [Bekaert, Grigoriev 13]
• higher-order conformal scalar operators in R4 (higher-order singletons)

S =
∫
d4x φ∗i (∂

2)`φi

→ partially conserved currents of spin s and depth t, 16 t6 s:
∂m1...mt

Jm1...ms = 0

Verma module V (∆, s) = V (3 + s− t, s) reducible for t6 s

irreducible module D(3 + s− t, s) = V (3 + s− t, s)/V (3 + s, s− t)
[Dolan, Nappi, Witten 01; Shaynkman, Typunin, Vasiliev 04]
• sources for currents or “shadow” fields – primary conformal depth t fields:
totally symmetric traceless ϕm1...ms

of dim ∆ = 1 + t− s
with (∂2)1+s−t action
• partially massless fields in AdS5 with∇2 action

δφµ1..µs
= ∇µ1

...∇µt
εµt+1...µs

+ (gµν − terms)

dual to Jm1...ms or have ϕm1...ms as boundary values
• minimal depth case t = 1: ∂2 scalar, conserved currents, CHS, MHS
• maximal depth case t = s: CST instead of CHS



field content of dual to (∂2)` scalar theory:
generalized Flato-Fronsdal theorem [Bekaert, Grigoriev 13]

D(2− `, 0)⊗D(2− `, 0) = ⊕∞s=0 ⊕`k=1 D(4 + s− 2k, s)

sum over PM fields of different odd depths t = 1, ..., 2`− 1

maximal depth t = s fields do not form “closed subset”
in contrast to MHS in minimal depth case



Weyl invariant action for totally symmetric traceless tensor ϕs∫
ddx
√
g ϕs(∇2)nϕs + ... , n = 1, 2, ....

g′µν = Ω2 gµν , ϕ′µ1...µs
= Ωγ ϕµ1...µs

, γ = s+ n− 1
2d

conformal operators with n = 1, 2, ... generalise scalar s = 0 GJMS family
• CHS case: n = s+ 1

2 (d− 4) and γ = 2s− 2

• CST case: n = 1 and γ = s− 1
2 (d− 2)

Conformally flat space:
• larger n – more gauge symmetries consistent with locality of action:
CHS case maximal gauge symmetry with rank s− 1 tensor parameter
CST n = 1 case – only δϕs = ∂sσ scalar gauge symmetry
• less than maximal gauge symmetry:
no unitary gauge to eliminate time-like components
• 2-derivative Fronsdal massless (maximally gauge-invariant ) HS
is unitary but not conformally invariant
while n = 1 CST is conformally invariant but not unitary



Weyl-covariant CST n = 1 Lagragrangian in d dim [Erdmenger, Osborn 97]

Ls(d) = ∇λϕµ1···µs∇λϕµ1···µs
− 4s

2s+d−2 ∇ρϕ
ρµ1···µs−1∇λϕλµ1···µs−1

+ 2s
d−2Rρλϕ

ρµ1···µs−1ϕλµ1···µs−1
− 4s−d2+4d−4

4(d−1)(d−2) Rϕ
µ1···µsϕµ1···µs

+ ω Cαβρλ ϕ
αρµ1···µs−2 ϕβλµ1···µs−2

C is Weyl tensor and ω is arbitrary const

d = 4 case: flat background: δϕµ1···µs
= ∂{µ1

...∂µs}σ

LCST,s = ∂λϕµ1···µs∂λϕµ1···µs
− 2s

s+1 (∂λϕµ1···µs−1λ)2

ϕs: (1; s2 ,
s
2 ) representation of SO(2, 4)

unitary (∆> 2 + j1 + j2) only for s = 0, 1 (scalar and Maxwell)
gauge parameter σ is in representation (1− s; 0, 0)

thus CST describes “short” representation
[1; s2 ,

s
2 ] = (1; s2 ,

s
2 )− (1− s; 0, 0)

(particular degenerate module of conformal group
[Shaynkman, Typunin, Vasiliev 04; Bekaert, Grigoriev 13])



s = 2, d = 4: “conformal spin 2” (not to confuse with PM field)

LCST,2 =∇λϕµν ∇λϕµν − 4
3 (∇µϕµν)2 + 2Rρλ ϕ

µρ ϕ λ
µ

− 1
6 Rϕ

µν ϕµν + ω Cµνρλ ϕ
µρ ϕνλ , ϕµνg

µν = 0

compare: Einstein graviton in generic background
gµν → gµν + hµν , ϕµν = hµν − 1

4gµνh, h = hµµ

LE = ∇λϕµν ∇λϕµν − 2
[
∇µ(ϕµν − 1

2 g
µν h)

]2
+ 1

4h∇
2h

+ 5
3 Rϕ

µν ϕµν − 2Cµανβ ϕ
µν ϕαβ

with standard (vector-parameter) gauge invariance on Rµν = 0 backgr.
• in contrast to massless spin 0 and spin 1 Einstein graviton
does not represent conformal theory in flat space [Grishchuk 80]
• scale invariance but no special conformal invariance for all
2-derivative massless higher spin s> 2 fields in flat space



cf. Partially massless spin 2:
dSd or AdSd background: R = 2d

d−2Λ

L = ∇λhµν ∇λhµν − 2(∇µhµν)2 + 2∇µhµν∇νh−∇µh∇µh
+ 1

dR(hµνhµν − 1
2h

2)− 1
2m

2(hµνhµν − h2)

m2 = d−2
d(d−1)R , δhµν = (∇µ∇ν + m2

d−2gµν)ε



• flat space: conformally inv. e.o.m. [Drew, Gegenber 80; Barut, Xu 82]

LCST,2 = ∂λϕµν ∂λϕµν − 4
3 (∂µϕ

µν)2 , δϕµν =
(
∂µ∂ν − 1

4 gµν ∂
2
)
σ

∂2ϕµν − 4
3

(
∂α∂(µ ϕ

α
ν) −

1
4 gµν ∂α∂β ϕ

αβ
)

= 0

ϕµν : (∆; j1, j2) = (1; 1, 1) representation of SO(2, 4)

non-unitary [Fang, Heidenrich, Xu 83]
• describes combination of spin 2 and two spin 1 massless on-shell fields
with (9− 1)− 2 = 6 physical d.o.f.

ϕµν = ϕ⊥µν + ∂(µ V
⊥
ν) +

(
∂µ∂ν − 1

4 gµν ∂
2
)
σ

• flat-space partition function

ZCST,2 =
[ (det ∆0)3

det ∆2

]1/2
=
[det ∆1⊥

det ∆2⊥

]1/2 det ∆0

det ∆1⊥
= Z2(Z1)2

• attempts of curved space generalizations:
on eqs of motion, with ∇µ ϕµν = 0, non-Lagrangian [Grischuk, Yudin 80]



• consistent d = 4 Lagrangian:
ω = 0 [Deser, Nepomechie 83]; ω = −2 version [Leonovich 84]
general form with arbitrary ω [Erdmenger, Osborn 97]
• scalar gauge invariance present in conf. flat space
extends to Einstein background δϕµν =

(
∇µ∇ν − 1

4 gµν ∇
2
)
σ

provided ω = −2 (as in Lichnerowitz operator);
suggests possibility of consistent coupling to Einstein gravity
• ω = −2 case is special: for Rµν = 0

kinetic operator factorizes on spin 2 and 1 parts (i.e. becomes diagonal)

LCST,2 = ∇λϕµν ∇λϕµν − 4
3 (∇µϕµν)2 − 2Cµνρλ ϕ

µρ ϕνλ

= ϕ⊥µν ∆L 2 ϕ
⊥µν + 2

3V
⊥
µ (∆L 1)2 V ⊥µ

where ϕµν = ϕ⊥µν +∇(µ V
⊥
ν) +

(
∇µ∇ν − 1

4 gµν ∇
2
)
σ

ZCST,2 =
[ (det ∆0)2

det ∆L 2⊥ det ∆L 1⊥

]1/2
=
[ (det ∆0)3

det ∆L 2

]1/2
(∆L 2)µν,αβ = −gµ(αgβ)ν∇2−2Cµανβ , (∆L 1)µν = −gµν∇2, ∆0 = −∇2



Partition function on S4

unit-radius S4, i.e. R = 12, ∆s⊥(M2) = −∇2 +M2

LCST,2(S4) = ϕ⊥µν ∆2⊥(4)ϕ⊥µν + 2
3 V
⊥
µ ∆1⊥(3)∆1⊥(−3)V ⊥µ

ZCST,2 = Z2,0 Z1,0 , Z1,0 =
[ det ∆0(0)

det ∆1⊥(3)

]1/2
, Z2,0 =

[det ∆0(−4)

det ∆2⊥(4)

]1/2
Z1,0= Maxwell partition function
Z2,0= partition function of s = 2 partially massless field
• Compare to ZCHS,2 = Z2,1Z2,0 = Weyl graviton partition function

Z2,1 = Einstein graviton partition function =
[det ∆1⊥(−3)

det ∆2⊥(2)

]1/2
ZCST,2 =

ZCHS,2 Z1,0

Z2,1

• partition function on S1
β × S3 has interpretation

in terms of counting of conformal operators in spin 2 CFT in R4

for “shortened” representation with shadow counterpart (3; 1, 1)− (5; 0, 0)



Conformal anomaly coefficients
d = 4 conformal anomaly

T = β1R
∗R∗ + β2

(
R2
µν − 1

3R
2
)

= −aR∗R∗ + cC2 , β1 = c− a , β2 = 2c

can be found by two separate computations:
(i) on conformally-flat space, e.g., S4 – a coefficient
(ii) on a Ricci-flat space – c-a coefficient

a: follows from S4 partition function (does not depend on ω)
a[∆⊥ s(M

2)] = 1
720 (2s+1)

[
30s3+85s2+10s−58−30(s2−2)M2−15M4

]
aCST,2 = a2,0 + a1,0 = 53

45 + 31
180 = 27

20

c: Z is non-trivial for generic ω – non-diagonal Kµν∇µ∇ν + ...

simplifies for ω = −2: then from Z on Rµν = 0 background
using β1[∆L s] = 1

720 (s+ 1)2
[
21− 20(s+ 1)2 + 3(s+ 1)4

]
(c− a)CST,2 = 31

30 , i.e. cCST,2 = 143
60



AdS/CFT relation
Aim: check general expressions for conformal anomaly coefficients
of massive SO(2, 4) representations found using [Beccaria, AT 14]

Z(∂M5) =
Z−(M5)

Z+(M5)
, A = A− −A+ = −2A+

• 4d conformal field (∆′; j1, j2): corresponding shadow field (∆; j1, j2)

with ∆ = 4−∆′ is associated (as a boundary value) to massive
higher spin in AdS5 with mass m2 = (∆− 2)2 − s2, s = j1 + j2
(kinetic operator for j1 > j2 is −∇2 + ∆(∆− 4)− 2j1 [Metsaev 03])
• massive field in long rep. (∆; s2 ,

s
2 ): get via AdS5 [Giombi et al 13]

â(∆; s2 ,
s
2 ) = 1

720 (s+ 1)2(∆− 2)3
(
− 3∆2 + 12∆ + 5s2 + 10s− 7

)
• non-unitary CST 4d field [1; 1, 1] = (1; 1, 1)− (−1; 0, 0)

→ “partially massless” [3; 1, 1] = (3; 1, 1)− (5; 0, 0) spin 2 in AdS5

(∆′ = 1 for rank 2 field and ∆′ = −1 for scalar gauge parameter)

aCST,2 = â(3; 1, 1)− â(5; 0, 0) = 27
20



• c− a for field associated to (∆; s2 ,
s
2 ) massive field in AdS5

[Beccaria, AT 14] (cf. [Mansfield et al 03, Ardehali et al 13])

(ĉ− â)(∆; s2 ,
s
2 ) = 1

720 (s+ 1)2(∆− 2)
[
− 3(∆− 2)4

− 5(s2 + 2s− 3)(∆− 2)2 + 8s3 + 2s2 − 12s− 8
]

cCST,2 = ĉ(3; 1, 1)− ĉ(5; 0, 0) = 143
60

Agreement with direct computations in 4d



Conformal symmetric tensor of rank s
LCST,s in d = 4 for s > 2:
• flat-space scalar gauge invariance survives in curved space
only in conformally-flat case Cµνλρ = 0

e.g. absent for s > 2 in Ricci flat background for any value of ω
(cf. analogy with standard massless s > 2 HS with ∂2 action)
•Weyl-covariant kinetic operator does not factorize (non-minimal) if C 6= 0

• flat space:

ZCST,s =
[ (det ∆0)s+1

det ∆s

]1/2
=

s∏
k=1

[ det ∆0

det ∆k⊥

]1/2
= (Z0)νs

νs = Ns − (s+ 1) =
[ (2s+d−2)(s+d−3)!

(d−2)!s! − s− 1
]
d=4

= s(s+ 1)

• same number of d.o.f. as for CHS field of same spin:
flat-space partition functions match, i.e. (in same regularization)

(
ZCST

)
tot
≡
∞∏
s=1

ZCST,s =
(
ZCHS

)
tot

= 1



• counting conformal gauge-invariant operators→Z(q) =
∑
r dr q

∆r

in agreement with partition function on conformally-flat S1
β × S3

ZCST,s(S
1
β × S3) =

s∏
k=1

[ 1

(det∆k⊥)s−k+1

]1/2
= exp

∞∑
m=1

1
mZCST,s(q

m)

q = e−β and ∆k⊥ defined on 3d tensors in decomposition of ϕs
single-particle partition function

ZCST,s(q) =
s∑

k=1

s−k+1∑
r=1

∞∑
n=r−1

2 (n+ 1) (n+ 2k + 1) qn+s−2r+3

= 2q2[qs+1−(s+1)2 q+s(s+2)]
(1−q)4 = 2q2[s(s+2)−q−q2−...−qs]

(1−q)3

• partition function on S4:

ZCST,s(S
4) =

s∏
k=1

Zk,0 , Zk,0 =
[ det ∆0(M2

0,k)

det ∆k⊥(M2
k,0)

]1/2
M2
k,0 = 2 + k , M2

0,k = 2− k − k2



• a-coefficient of conformal anomaly

aCST,s = 1
720s(s+ 1)2(3s2 + 14s+ 14)

atot =
∑∞
s=1 aCST,s 6= 0 does not vanish in any natural regularization

but no a priori reason why one needs to sum over all s here
in MHS and CHS cases summation was implied, in particular,
by AdS/CFT duality and relation to conserved currents of boundary theory
• c-coefficient: computation on Ricci-flat space is problematic:
(i) lack of scalar gauge inv. – partition function is gauge dependent
(ii) the non-minimal nature (lack of factorization) of kinetic operator
need more complicated methods [Moss, Toms 13; Barvinsky,Vilkovisky 88]
ignoring these problems (as in CHS case this may not affect c)

Z̃CST,s =
[ (det ∆0)s+1

det ∆L s

]1/2
(c− a)CST,s = 1

720s(s+ 1)(3s4 + 15s3 + 10s2 − 30s− 24)



AdS5 connection
• CST field: [1, s2 ,

s
2 ] = (1, s2 ,

s
2 )− (1− s, 0, 0)

associated to spin s field in AdS5 (shadow representation)
[3, s2 ,

s
2 ] = (3; s2 ,

s
2 )− (3 + s; 0, 0)

“maximal-depth” partially massless field in AdS5 [Bekaert, Grigoriev 13]
• one-particle Z of 4d CFT written in terms of AdS5 partition functions
or conformal characters [Beccaria, Bekaert, AT 14; Beccaria, AT 14]

ZCST,s(q) = Z−s (q)−Z+
s (q) = Z+(q−1)−Z+(q) + σ(q)

Z+
s (q) = Ẑ+(3; s

2 ,
s
2 )− Ẑ+(s+ 3; 0, 0) = (s+1)2 q3−qs+3

(1−q)4

Ẑ+(∆; j1, j2) = (2j1 + 1)(2j2 + 1) q∆

(1−q)4 is character of long rep.
“correction term” due to scalar gauge symmetry:
σ(q) = 1

6s(s+ 1)(s+ 2) + 1
6

∑s−1
n=1 n(n+ 1)(n+ 2)(qn−s + qs−n)

• a-anomaly computed using AdS5 relation

aCST,s = â(3; s2 ,
s
2 )− â(3 + s; 0, 0) = 1

720s(s+ 1)2(3s2 + 14s+ 14)

• formal c expression also matches: cCST,s = c(3; s2 ,
s
2 )− c(3 + s; 0, 0)



Conclusions

• remarkable symmetries of (bosonic) higher spin theories
with all spins included:
one-loop vacuum Z = 1; zero effective number of d.o.f.;
cancellation of conformal anomalies (UV divergences)
• importance of regularization of sum over s consistent with symmetries:
crucial part of definition of quantum theory

•MHS and CHS families are special, but CST is not

• interesting example of “conformal spin 2” field:
non-unitary, related to “partially massless” field in AdS5

• check of expressions for partition functions and conformal anomalies
for generic 4d conformal fields:
consistent with “kinematical” AdS5/CFT4


