
Monodromic vs geodesic computation
of Virasoro classical conformal blocks

Konstantin Alkalaev

I.E.Tamm Theory Department, P.N.Lebedev Physical Institute

K.Alkalaev, V.Belavin, arXiv:1504.05943
K.Alkalaev, V.Belavin, arXiv:1510.06685

Moscow 2015

Konstantin Alkalaev Monodromic vs geodesic computation



Outline

Monodromy approach

Zamolodchikovs’ 1994

Fitzpatrick, Kaplan, Walters’ 2014

Geodesic approach

Hijano, Kraus, Snively’ 2015

Alkalaev, Belavin’ 2015

Conclusions and outlooks

Konstantin Alkalaev Monodromic vs geodesic computation



5-point classical Virasoro conformal block

The five-point correlation function of V∆i
(zi ), i = 1, ..., 5 can be decomposed into conformal

blocks
F(z1, ..., z5|∆1, ...,∆5; ∆̃1, ∆̃2; c)

which are conveniently depicted as

Fishbone graph

Using the super-light expansion method we find a perturbative solution to the bulk equations on
angular parameters up to the third order. In Section 6 we compute the 5-point classical conformal
block and the geodesic length up to the third order in the superlight dimension and find out exact
match of two answers. Section 7 contains our conclusions.

2 Classical conformal block and monodromy problem

An n-point conformal block function Fpzi,�i, r�jq is a holomorphic contribution to the correlation
function of n primary fields in points zi coming form a given set of Virasoro representations in the
intermediate channels. In addition to the central charge c and conformal weights �i of the external
operators the conformal block depends on conformal weights r�j in the intermediate channels. For
the spherical topology the fusion channel is represented by the corresponding fishbone diagram.

In the classical limit c Ñ 8 the conformal blocks are exponentiated (see, e.g., [17, 18]) as

Fpzi,�i, r�jq “ exp
“ ´ c

6
fpzi, ✏i,r✏jq

‰
, (2.1)

where ✏i “ �i{c and r✏j “ r�j{c are called respectively external and intermediate classical conformal
dimensions and fpzi, ✏i,r✏jq is the main object of our study – classical conformal block. To compute
the classical conformal block in the 5-point case we apply the monodromy method (see, e.g., [19, 20]
for a general discussion). From now on, a function fpziq denotes the 5-point classical block related
to the quantum block with the diagram presented on the Fig. 1 (we omit conformal dimensions as
they always remain the same).

0,�1

z2,�2 z3,�3 1,�h

8,�h

Figure 1: The 5-point classical heavy-light conformal block. Two bold lines on the right represent
heavy operators. As usual the projective invariance is used to fix three insertion positions as z1 “ 0,
z4 “ 1, z5 “ 8.

The 5-point conformal block can be obtained by considering an auxiliary 6-point correlation func-
tion xV12pzqV1pz1q ¨ ¨ ¨ V5pz5qy, where Vipziq are primary operators with dimensions �i, i “ 1, ..., 5 and
V12pzq is the second level degenerate operator. Below we use the standard Liouville parametrization
c “ 1 ` 6pb ` b´1q2 [8]. Because of the decoupling condition pb´2L2´1 ` L´2qV12pzq “ 0 the 6-point
correlation function obeys the following second order differential equation [1]

” 1

b2

B2

Bz2
`

5ÿ

i“1

´ �i

pz ´ ziq2
` 1

z ´ zi

B
Bzi

¯ı
xV12pzqV1pz1q ¨ ¨ ¨ V5pz5qy “ 0 . (2.2)

3

There exist many evidences that in the semiclassical limit c →∞ the conformal blocks must
exponentiate as

F(zi ,∆i , ∆̃j ) = exp
[
−

c

6
f (zi , εi , ε̃j )

]
,

where εk = ∆k
c

and ε̃k = ∆̃k
c

are classical dimensions and f (z|ε, ε̃) is the classical conformal block.
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Auxiliary Fuchsian equation

Auxiliary 6-point correlation function 〈V12(z)V1(z1) · · ·V5(z5)〉, where V12(z) is the second level
degenerate operator. The decoupling condition is[

c
∂2

∂z2
+

5∑
i=1

( ∆i

(z − zi )2
+

1

z − zi

∂

∂zi

)]
〈V12(z)V1(z1) · · ·V5(z5)〉 = 0 .

In the classical limit c →∞ the 6-point auxiliary correlation function behaves as

〈V12(z)V1(z1) · · ·V5(z5)〉
∣∣∣
c→∞

→ ψ(z) exp(−
c

6
f (zi , ε, ε̃)) ,

where f (zi ) is the classical block and ψ(z) is governed by Fuchsian equation

d2ψ(z)

dz2
+ T (z)ψ(z) = 0 , T (z) =

5∑
i=1

( εi

(z − zi )2
+

ci

z − zi

)
.

Here T (z) is the classical stress-energy tensor and ci are the accessory parameters

ci (z) =
∂f (z)

∂zi
, i = 1, ..., 5 .

The asymptotic behaviour T (z) ∼ z−4 at infinity implies the constraints

5∑
i=1

ci = 0 ,
5∑

i=1

(cizi + εi ) = 0 ,
5∑

i=1

(ciz
2
i + 2εizi ) = 0 .

Only two accessory parameters are independent, c2 and c3.
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Heavy-light approximation: Fitzpatrick, Kaplan, Walters’ 2014

Let ε4 = ε5 ≡ εh be the dimension of two heavy fields, while fields with dimensions ε1, ε2, ε3 be
light. It means that the dimension of heavy operators is fixed in the semiclassical limit while those
of light operators tend to zero. The Fuchsian equation can then be solved perturbatively:

ψ(z) = ψ(0)(z) + ψ(1)(z) + ψ(2)(z) + ... ,

T (z) = T (0)(z) + T (1)(z) + T (2)(z) + ... ,

ci (z) = c
(0)
i (z) + c

(1)
i (z) + c

(2)
i (z) + ... ,

where expansion parameters are light conformal dimensions. In the case of the heavy-light
conformal blocks it is sufficient to consider just the first order corrections( d2

dz2
+ T (0)(z)

)
ψ(0)(z) = 0 ,

( d2

dz2
+ T (0)(z)

)
ψ(1)(z) = −T (1)ψ(0)(z) ,

where the stress-energy tensor components are directly read off from the main expression.
The two branches in the zeroth order are given by

ψ
(0)
± (z) = (1− z)

γ± , γ± =
1± α

2
, α =

√
1− 4εh .

Using the method of variation of parameters we find the first order corrections

ψ
(1)
+ (z) =

1

α
ψ

(0)
+ (z)

∫
dz ψ

(0)
− (z)T (1)(z)ψ

(0)
+ (z)−

1

α
ψ

(0)
− (z)

∫
dz ψ

(0)
+ (z)T (1)(z)ψ

(0)
+ (z) ,

ψ
(1)
− (z) =

1

α
ψ

(0)
+ (z)

∫
dz ψ

(0)
− (z)T (1)(z)ψ

(0)
− (z)−

1

α
ψ

(0)
− (z)

∫
dz ψ

(0)
+ (z)T (1)(z)ψ

(0)
− (z) .

Corrections ψ
(1)
± (z) has branch points identified with punctures at z2 and z3.
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Contour integration and monodromy

To find the monodromy we evaluate the following integrals

I
(k)
++ =

1

α

∮
γk

dz ψ
(0)
− (z)T (1)(z)ψ

(0)
+ (z) , I

(k)
+− = −

1

α

∮
γk

dz ψ
(0)
+ (z)T (1)(z)ψ

(0)
+ (z) ,

I
(k)
−+ =

1

α

∮
γk

dz ψ
(0)
− (z)T (1)(z)ψ

(0)
− (z) I

(k)
−− = −

1

α

∮
γk

dz ψ
(0)
+ (z)T (1)(z)ψ

(0)
− (z)

over two contours γ2 and γ3 enclosing points {0, z2} and {0, z2, z3}. For instance, we find

I
(2)
+− =

2πi

α

[
αε1 + c2(1− z2)− ε2 + c3(1− z3)− ε3 − (1− z2)α[c2(1− z2)− ε2(1 + α)]

]
where c2 ≡ c

(1)
2 and c3 ≡ c

(1)
3 . Two monodromy matrices M = {Mij , i , j = ±} associated with

contours γ2 and γ3 are(
ψ+(z)
ψ−(z)

)
→
(
M++ M+−
M−+ M−−

)(
ψ+(z)
ψ−(z)

)
M = M0 + M1 + M2 + ...

The first order M0 defines the monodromy of ψ(0)(z). In the linear order the monodromy
matrices are given by

M(γ2) =

(
1 + I

(2)
++ I

(2)
+−

I
(2)
−+ 1− I

(2)
++

)
, M(γ3) =

(
1 I

(3)
+−

I
(3)
−+ 1

)
.
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On the other hand, the monodromy matrices over contours γ2 and γ3 are defined by the
conformal dimensions of the fields in the intermediate channels

M̃(γ2) = −
(
e+πiΛ1 0

0 e−πiΛ1

)
, M̃(γ3) = −

(
e+πiΛ2 0

0 e−πiΛ2

)
,

where Λ1 =
√

1− 4ε̃1 and Λ2 =
√

1− 4ε̃2 parametrize intermediate dimensions.

Monodromic equations√
I

(2)
++I

(2)
++ + I

(2)
+−I

(2)
−+ = 2πi ε̃1 ,

√
I

(3)
+−I

(3)
−+ = 2πi ε̃2 .

Accessory parameters are uniquely defined by 5 algebraic equations which are 3 linear equations
and 2 irrational equations.

Superlight expansion

ci = c
(0)
i + ε3c

(1)
i + ε2

3c
(2)
i + ε3

3c
(3)
i + · · · ,

where the zeroth-order c
(0)
i is the 4-point accessory parameter while c

(k)
i are corrections,

k = 1, 2, ... .
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Solving the monodromic equations: ε1 = ε2 and ε̃1 = ε̃2
Introducing notation

x = (1− z2)c2 , y = (1− z3)c3 and a = (1− z2)α , b = (1− z3)α

and

x =
∞∑
n=0

εn3xn , y =
∞∑
n=1

εn3yn ,

we find all corrections up to the third order

x0 = ε1 + ε1α
(a + 1)

(a− 1)
+ ε̃1α

√
a

a− 1
, x1 =

α

2

a + b2

a− b2
,

x2 =
α

2ε̃1

[
b
√
a(a− 2ab + b2)(a− 2b + b2)

(a− b2)3
+

(a− 1)(a + b2)2

4
√
a(a− b2)2

]
,

x3 =
α

2ε̃2
1

[
ab(b − 1)(a− 2ab + b2)(a− 2b + b2)(a− 3ab + 3b2 − b3)

(a− b2)5

]
,

and

y1 = 1− α
a + b2

a− b2
, y2 =

α

ε̃1

[
b
√
a(−a + 2ab − b2)(a− 2b + b2)

(a− b2)3

]
,

y3 =
α

2ε̃2
1

[
b(a− 2ab + b2)(a− 2b + b2)(a2 + a3 − 8a2b + 6ab2 + 6a2b2 − 8ab3 + b4 + ab4)

(a− b2)5

]
.
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Classical conformal block

The power series expansion of the 5-point classical conformal block f (z) is given by

f (z) = f (0)(z) + ε3f
(1)(z) + ε2

3f
(2)(z) + ε3

3f
(3)(z) + ... .

Using explicit expressions for the accessory parameters and integrating ci = ∂f /∂zi we find that
the expansion coefficients are given by

f (0) = −ε1 ln
[
i
a− 1

2
√
a

]
+
ε1

α
ln a + ε̃1 ln

[
i

√
a− 1
√
a + 1

]
, f (1) = − ln

[
− i

a− b2

2
√
ab

]
+

1

α
ln b ,

f (2) = −
1

ε̃1

(a + b2)(a + a2 − 4ab + b2 + ab2)

4
√
a(a− b2)2

,

f (3) =
1

ε̃2
1

(b − 1)b(a− b)(a + b2)(a + a2 − 4ab + b2 + ab2)

2(a− b2)4
,

where a = (1− z2)α and b = (1− z3)α. The leading contribution f (0) is the 4-point classical
heavy-light conformal block.
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The AdS/CFT correspondence

The heavy operators with equal conformal dimensions εn = εn−1 ≡ εh produce an asymptotically
AdS3 geometry identified either with an angular deficit or BTZ black hole geometry
parameterized by

α =
√

1− 4εh
The metric reads

ds2 =
α2

cos2 ρ

(
− dt2 + sin2 ρdφ2 +

1

α2
dρ2
)

Here

α2 < 0 for an angular deficit

α2 > 0 for the BTZ black hole
w2, ✏2

w1, ✏1

wn�2, ✏n�2

.
.

.

.

.
.

.
.

.
.

Figure: Multi-particle graph embedded into a constant time slice of a
conical defect geometry. Solid lines represent external particles, wavy lines
represent intermediate particles. The original heavy fields produce the
background geometry with the singularity placed in the center representing
a cubic vertex of two heavy fields and a light intermediate field.

Konstantin Alkalaev Classical conformal blocks via AdS/CFT correspondence

The light fields are realized via particular graph of worldlines of n − 3 classical point probes
propagating in the background geometry formed by the two boundary heavy fields. Points wi are
boundary attachments of the light operators.

The identification

Sbulk
cl ∼ fδ(z|ε, ε̃) + ... , Sbulk

cl =

n−2∑
i=1

εi Li +

n−3∑
i=1

ε̃i L̃i ,

and Li and L̃i are lengths of different geodesic segments on a fixed time slice.
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Geodesic approach

The worldline action of a single massive particle with m ∼ ε is

S = ε

∫ λ
′′

λ
′

dλ
√

gtt ṫ2 + gφφφ̇2 + gρρρ̇2 , ds2 =
α2

cos2 ρ

(
− dt2 + sin2 ρdφ2 +

1

α2
dρ2
)

where the overall sign depends on the direction of the � flow. The minimal radial distance between

the particle path and the singularity is therefore given by tan2 ⇢min “
´

p�
↵

¯2

. Obviously, the maximal
radial distance corresponds to the point ⇢max “ ⇡{2 located on the boundary. Changing variables as
y “ cot2 ⇢ at 9⇢ • 0, and introducing notation

s “ |p�|
↵

, (3.8)

equation (3.6) can be directly integrated to yield the on-shell action

S “ ln

?
⌘?

1 ` ⌘ ` a
1 ´ s2⌘

ˇ̌
ˇ̌
ˇ

⌘
2

⌘1
, (3.9)

where ⌘1 “ cot2 ⇢
1 and ⌘

2 “ cot2 ⇢
2 are initial/final radial positions. Parameter s is an integration

constant that defines a particular form of the geodesic segment.

0w

⇢2

⇢1

Figure 4: Radial and arc segments. The graph corresponds to the classical conformal block with two
heavy fields, two light fields of equal dimensions (the arc), and one extremely light intermediate field
(the radial line) [10].

The simplest case of a geodesic segment is the radial line starting (or ending, depending on the
� flow direction) at the singularity point ⇢2 “ 0, see Fig. 4. In this case, the angular momentum
p� vanishes so that s “ 0. After some simple algebra, one finds from (3.9) the radial length Srad “
´ ln tanp⇢1

2
` ⇡

4
q. We see that Srad is finite implying that a particle reaches the singularity within a

finite time period. One interprets the falling into the singularity as a cubic vertex of the two heavy
operators and a light operator represented by a probe. For the further purpose we find a length of
the radial line for ⇢1 “ arccos sinp↵w{2q:

Srad “ ´ ln tan
↵w

4
. (3.10)

For the geodesic arc connecting two boundary points � “ 0 and � “ w t11he angular momentum
p� is not vanishing s “ cot ↵w

2
. From (3.9) it follows [23, 9, 10] that the length of the arc is given by

Sarc “ ln
”
sin

↵w

2

ı
` ln 2⇤ . (3.11)

11

Coordinates t and φ are cyclic — a constant time disk (ρ,φ).

Changing variables as η = cot2 ρ and introducing notation s =
|pφ|
α

we find the on-shell action

S = ε ln

√
η

√
1 + η +

√
1− s2η

∣∣∣∣∣
η
′′

η
′

Parameter s is an integration constant that defines a particular form
of a geodesic segment.

The radial line has s = 0. For ρ1 = arccos sin(αw/2): Lrad = − ln tan αw
4

The arc has s = cot αw
2

. The length Larc = ln
[

sin αw
2

]
+ ln 2Λ

The 4-pt block: f ∼ ε1̃Lrad + 2ε1Larc
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Five-line configuration

The multi-particle action reads

S(w) = ε1L1 + ε2L2 + ε3L3 + ε1̃L1̃ + ε2̃L2̃

In particular, Sarc diverges at ⇤ Ñ 8 so that it takes an infinite time to reach the boundary. Note
that ⇢1 “ arccos sin ↵w

2
chosen to compute (3.10) corresponds to the zero value of the radial velocity,

or the minimal distance according to formula (3.7). From the graph in Fig. 4 it is clear that the
minimal distance is given by (3.10).

4 Five-particle configuration

Consider now the five-line graph on Fig. 5 which is the n “ 5 case of the general graph in Fig. 2.

1

2

3
r2

r1
w3

w2

w1

Figure 5: Five-particle graph. Solid lines 1, 2, 3 represent external particles, wavy lines r1,r2 represent
intermediate particles. The angles are measured clockwise. In practice, we set w1 “ 0.

The corresponding particle action reads

S “
ÿ

I

✏ISI , I “ 1, 2, 3,r1,r2 , (4.1)

where each component is given by (3.2). Initial/final positions �1 and �2 correspond to various nodes
in Fig. 5 including the singularity point, two vertices, three boundary attachments. It is supposed
that the singularity point and boundary attachments are fixed parameters of the theory. There is no
loss of generality in supposing that w1 “ 0. From the boundary perspective it is achieved doing a
conformal map that moves a position of the first external operator z1 Ñ 1. Positions of the vertices
are floating according to the minimal action principle.

From the normalization condition (3.4) it follows SI “ S
2
I ´ S

1
I , and final/initial lengths are

functions of the boundary points w2, w3, classical dimensions ✏1, ✏2, ✏3 and r✏1,r✏2, and the metric
parameter ↵ , i.e., S

1
I “ S

1
Ipw|↵, ✏q and S

2
I “ S

2
I pw|↵, ✏q. The total action (4.1) is then S “ Spw|↵, ✏q.

Let us consider each of two vertices. In these points proper parameter � can be chosen to be
increasing away from the vertex. Then, denoting the vertex coordinates as xµ

1 and xµ
2 along with the

corresponding deviation �xµ
1 and �xµ

2 which are the same for all incoming lines, and using variation

12

Vertex equilibrium equations

1st vertex
(
ε̃1p̃1

µ + ε1p1
µ + ε2p2

µ

) ∣∣∣
x=x1

= 0

2nd vertex
(
ε̃1p̃1

µ + ε̃2p̃2
µ + ε3p3

µ

) ∣∣∣
x=x2

= 0

Angular equations

∆φ1 + ∆φ2 = w2 − w1 , ∆φ1 + ∆φ3 + ∆φ̃1 = w3 − w1
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Geodesic equation system

Three linear equations

s̃2 = 0 , ε3s3 − ε̃1 s̃1 = 0 , ε1s1 − ε2s2 − ε̃1 s̃1 = 0 ,

and

Two irrational equations

Vertex eqs

ε3

√
1− s2

3η2 + ε̃1

√
1− s̃2

1η2 = ε̃2 , ε1

√
1− s2

1η1 + ε2

√
1− s2

2η1 = ε̃1

√
1− s̃2

1η1

Angular eqs

e iαw2 =

(√
1− s2

1 η1 − is1
√

1 + η1

)(√
1− s2

2 η1 − is2
√

1 + η1

)
(1− is1)(1− is2)

e iαw3 =

(√
1− s2

3η2 − is3
√

1 + η2

)(√
1− s̃2

1η2 − i s̃1
√

1 + η2

)(√
1− s2

1η1 − is1
√

1 + η1

)
(1− is3)

(√
1− s̃2

1η1 − i s̃1
√

1 + η1

)
(1− is1)

5-pt case: a complicated higher order algebraic equation

4-pt case: an exact solution (Hijano, Kraus, Snively, 2015)
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Monodromy vs geodesic approach

Computing the geodesic length vs integrating canonical momenta in the attachment points.

There are three boundary attachments w1 = 0 and w2,w3 so that

αε2s2(w2,w3) =
∂S(w2,w3)

∂w2
, αε3s3(w2,w3) =

∂S(w2,w3)

∂w3

The accessory parameters are defined in much the same way as

c2(z2, z3) =
∂f (z2, z3)

∂z2
, c3(z2, z3) =

∂f (z2, z3)

∂z3

The two systems above define potential vector fields in two dimensions which can be related to
each other.

Coordinates
wm = i ln(1− zm) , m = 1, 2, 3

Potentials
f (z2, z3) = S(w2,w3) + iε2w2 + iε3w3

It follows that the accessory and angular momenta parameters are related as

cm = εm
1± iαsm(w)

1− zm
, m = 1, 2, 3

The above map can be considered as an AdS/CFT correspondence.

The differential equations are easy to integrate while parameters satisfy complicated equations.
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A physical root

Within the monodromy approach there are five variables c1, ..., c5 (accessory parameters)
subjected to three linear and two irrational equations

Mα(c) = 0 , α = 1, ..., 5

Within the geodesic approach there are seven variables s1, s2, s3, s̃1, s̃2

(external/intermediate angular momenta) and η1, η2 (radial vertex positions) subjected to
three linear and four irrational equations

GI (s, s̃, η) = 0 I = 1, ..., 7

In principle, one might expect that eliminating the vertex position variables the residual two
geodesic equations match exactly with the monodromic equations. Instead, a weaker version of
the equivalence turns out to be true – the systems are required to have at least one common root.
It is instructive to have both monodormic and geodesic equations expressed in the same notation.

The 4-point case

Monodromic equation:
(
s + i

(a + 1)−
√
aκ

1− a

)2
= 0 ,

Geodesic equation: (s + i)(s + i
(a + 1)−

√
aκ

1− a
) = 0 ,

where a = (1− z2)α. The above equations do not coincide but have a common root.
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The 5-point case
By analogy with the monodromic equations the geodesic ones have no explicit solution.

All linear geodesic equations are explicitly mapped to linear monodromic equations.
A combination of geodesic irrational equations have a root which is exactly mapped to one
irrational monodoromic equation.
The rest of geodesic irrational equations allows just for a perturbative analysis.

The expansion of angular momenta up to the third order is given by

si = s
(0)
i + νs

(1)
i + ν2s

(2)
i + ν3s

(3)
i + ... , ν = ε3/ε̃1 , i = 2, 3

The expansion coefficients are found to be (here κ = ε̃1/ε1 and θ2,3 = αw2,3/2)

s
(0)
2 = − cot θ2 + κ

1

2 sin θ2
, s

(1)
2 =

κ
2

cot(2θ3 − θ2) ,

s
(2)
2 = κ

[9 cos(2θ3) + 7 cos(2θ2 − 2θ3)− cos(4θ2 − 6θ3) + cos(2θ2 − 6θ3)− 4 cos(2θ2 − 4θ3)− 12]

32 sin3(θ2 − 2θ3)
,

s
(3)
2 = κ

sin θ3[sin(θ2 − 3θ3)− 3 sin(θ2 − θ3)][3 + cos(2θ2 − 4θ3)− 2 cos(2θ2 − 2θ3)− 2 cos(2θ3)]

8 sin5(θ2 − 2θ3)
,

s
(0)
3 = − cot(2θ3 − θ2) , s

(1)
3 =

1

2
csc3(θ2 − 2θ3)[sin2 θ2 + 4 sin2(θ2 − θ3) sin2 θ3] ,

s
(2)
3 = −

1

16
csc5(θ2 − 2θ3))[6 cos θ2 + cos(θ2 − 4θ3) + cos(3θ2 − 4θ3)− 8 cos(θ2 − 2θ3)]×

×[3 + cos(2θ2 − 4θ3)− 2 cos(2θ2 − 2θ3)− 2 cos(2θ3)] .
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Multi-particle action

The power series expansion of the bulk multi-particle action S(w) is given by

S(w) = S(0)(w) + ε3S
(1)(w) + ε2

3S
(2)(w) + ε3

3S
(3)(w) + ... .

Using explicit expressions for the angular momenta and integrating αεi si = ∂S/∂wi we find the
expansion coefficients are given by

S0(θ) = −2ε1 ln sin θ2 + ε̃1 ln tan
θ2

2
, S1(θ) = − ln sin(2θ3 − θ2) ,

S2(θ) = −
cos θ2 + 2 csc2(θ2 − 2θ3) sin(θ2 − θ3) sin θ3

2ε̃1
,

S3(θ) = −
cos θ2 + 2 csc2(θ2 − 2θ3) sin(θ2 − θ3) sin θ3

2ε̃1
×

4 csc2(θ2 − 2θ3) sin(θ2 − θ3) sin θ3

2ε̃1
,

where we switched to θ2,3 = αw2,3/2.

The above expansion coefficients are related to the conformal block according to the
general identification formula.

NB! The same results follow from the explicit geodesic length formula.
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Conclusions & outlooks

Conclusions

We have computed the 5-point heavy-light conformal block in the super-light
approximation up to the third order with respect to the conformal dimension of one of the
three light fields. The computation has been done in two independent ways: using the
monodromy and the geodesic approaches. The resulting expressions coincide.

We observe different aspects of the correspondence between the two methods. In
particular, we find that the boundary variables and equations have their counterparts in the
bulk consideration. There is also a precise relation between the accessory parameters and
the conserved angular momenta of the different geodesic segments.

Outlooks

The similarity between bulk and boundary computations leads to the natural assumption that in
the present context the AdS3/CFT2 correspondence is to be understood in a strong sense, i.e. as
two different descriptions of the same Liouville theory in the semiclassical limit c →∞.
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