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Quantum tops

QUANTUM TOPS

Wolfgang Pauli (1900-1958) and Niels Bohr (1885-1962)
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Quantum tops

1. Classical spin as
intrinsic angular momentum
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Classical spin as intrinsic angular momentum

Angular momentum

L = D ∧P

where

D = Distance from the axis

P = M V = �Linear� momentum
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Classical spin as intrinsic angular momentum

Conservation of angular momentum in daily life

Examples:
Spinning tops

Xavier Bekaert, Tours University From quantum tops to elementary particles



Classical spin as intrinsic angular momentum

Conservation of angular momentum in daily life

Examples:
Spinning tops

Biking

Xavier Bekaert, Tours University From quantum tops to elementary particles



Classical spin as intrinsic angular momentum

Conservation of angular momentum in daily life

Examples:
Spinning tops

Biking

Figure skating spins

Xavier Bekaert, Tours University From quantum tops to elementary particles



Classical spin as intrinsic angular momentum

Conservation of angular momentum in daily life

Examples:
Spinning tops

Biking

Figure skating spins

Solar system

Kepler's 2nd law: the law of equal areas
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Classical spin as intrinsic angular momentum

Angular momenta
Total = Orbital + Intrinsic

J = L + S
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Classical spin as intrinsic angular momentum

Example (solar system):
Earth turns around the Sun (orbital angular momentum) but it also turns
on itself (intrinsic angular momentum).
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Quantum tops

2. Quantum spin as
intrinsic angular momentum
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Quantum spin as intrinsic angular momentum

Metaphor (model of Rutherford):
An electron �turns� around the nucleus (orbital angular momentum) but
it also �turns� on itself (intrinsic angular momentum).
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Quantum spin as intrinsic angular momentum

Metaphor (model of Rutherford):
An electron �turns� around the nucleus (orbital angular momentum) but
it also �turns� on itself (intrinsic angular momentum).

Question: How to measure such angular momenta of atomic scale?
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Quantum spin as intrinsic angular momentum

Metaphor (model of Rutherford):
An electron �turns� around the nucleus (orbital angular momentum) but
it also �turns� on itself (intrinsic angular momentum).

Question: How to measure such angular momenta of atomic scale?

Answer: By measuring magnetic moment.
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Quantum spin as intrinsic angular momentum

Electric charges in motion create a magnetic �eld.
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Quantum spin as intrinsic angular momentum

Electric charges in motion create a magnetic �eld.

In particular, electric charges in circular motion create a magnetic dipole
analogous to the one of a magnet.
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Magnetic moment in classical mechanics

Orbital magnetic moment
of a circular electrical wire

~µ
L

= I ~S

where

I = electric current

S = area of the disk
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Magnetic moment in classical mechanics

Orbital magnetic moment
of an electric charge in circular motion

~µ
L

=
Q

2M
~L

where the particle is characterized by

Q = electric charge

M = mass

L = orbital angular momentum
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Magnetic moment of the electron

If the electron was an electrically charged rotating ball, then he would
possess a magnetic moment.
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Magnetic moment of the electron

Intrinsic magnetic moment
of a charged rotating ball

~µ
S

=
Q

2M
~S

where the ball is characterized by

Q = electric charge

M = mass

S = intrinsic angular momentum
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Magnetic moment of the electron

Intrinsic magnetic moment
of a particle

~µ
S

= g
Q

2M
~S

where g = Landé factor.

In quantum mechanics,

g is generically 6= 1

Q = 0 ; µS = 0 (example: neutron)
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Magnetic moment of the electron

Conclusion: The classical model of an electron as a charged rotating ball
is at best a metaphor.
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Magnetic moment of the electron

Conclusion: The classical model of an electron as charged rotating ball
is at best a metaphor.

This is also evidenced by

the Stern & Gerlach experiment (1922)

its explanation in terms of quantised intrinsic angular momentum by
Goudsmit & Uhlenbeck (1925)
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What spin is not

WHAT SPIN IS NOT

Xavier Bekaert, Tours University From quantum tops to elementary particles



What spin is not

In quantum mechanics an elementary particle must be assigned
a certain �intrinsic� angular momentum unconnected with its
motion in space. (...) It would be wholly meaningless to
imagine the �intrinsic� angular momentum of an elementary
particle as being the result of its rotation �about its own axis�.

Evgeny Lifshitz (1915-1985) and Lev Landau (1908-1968)
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What is spin?

WHAT IS SPIN ?
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What is spin?

In both classical and quantum mechanics, the law of
conservation of angular momentum is a consequence of the
isotropy of space. (...) This already demonstrates the relation
between the angular momentum and the symmetry properties
under rotation. In quantum mechanics however, the relation in
question is a particularly far-reaching one, and essentially
constitutes the basic content of the concept of angular
momentum.

Evgeny Lifshitz (1915-1985) and Lev Landau (1908-1968)
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Quantum tops

3. Spin as rotational symmetry
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Spin as rotational symmetry

In quantum mechanics, angular momentum is �quantised�:

Orbital angular momentum (multiple of ~)

Metaphor of a rotating point

Lz = m ~ m ∈ {−`,−`+ 1, · · · ,−1, 0, 1, · · · , `− 1, `}
L2 = `(`+ 1) ~2 ` = 0, 1, 2, 3, · · ·
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Spin as rotational symmetry

The metaphor of an electron as a point rotating around the nucleus is
inconsistent with quantum mechanics since description in terms of
trajectories must be replaced by atomic orbitals.
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Spin as rotational symmetry

Atomic orbital of a single electron

Labelled by two quantum numbers (integers ∈ Z)
azimuthal quantum number ` ∈ N
magnetic quantum number m: 2`+ 1 possible values −` 6 m 6 `

⇔ Spherical harmonic Y `m(θ, φ)
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Spin as rotational symmetry

Orbitals and rotational symmetry around the measurement axis
s (�simple�) ⇔ ` = 0: Arbitrary rotation (m = 0)

p (�principal�) ⇔ ` = 1: Complete rotation (m = ±1)

d (�di�use�) ⇔ ` = 2: Half-turn (m = ±2)

f (�fundamental�) ⇔ ` = 3: Rotation of 120◦ (m = ±3)
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Spin as rotational symmetry

Orbitals and rotational symmetry around the measurement axis
Rotations around di�erent axes permute the orbitals of identical
azimuthal quantum number `:
The orbitals, and all their superpositions, carry a representation of the
rotation group, which is irreducible for �xed `.
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Spin as rotational symmetry

Orbitals and rotational symmetry around the measurement axis
Rotations around di�erent axes permute the orbitals of identical
azimuthal quantum number `:
The orbitals, and all their superpositions, carry a representation of the
rotation group, which is irreducible for �xed `.
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Spin as rotational symmetry

Conclusion:
In quantum mechanics, angular momentum is

quantised (thus the metaphor of the rotating point must be
abandoned)

associated to

the number 2`+ 1 of possible values of the quantum number m
symmetry under rotations of angle 360◦

m
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Spin as rotational symmetry

Photon: spin 1 particle described by the electromagnetic �eld.

The electric and magnetic �elds are vector �elds and belong to the
transverse planes. A vector is left invariant under complete rotations.
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Spin as rotational symmetry

Scalar boson: The Brout-Englert-Higgs boson is of spin 0 and described
by a scalar �eld.

A scalar is left invariant by arbitrary rotations (like a point).
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Symétries de rotation

Graviton: (hypothetical) mediator of the gravitational interaction, spin 2
particle described by a tensor �eld of rank 2, the metric.

Its polarisation modes are left invariant under half-turns.
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Spin as rotational symmetry

Electron: The Stern & Gerlach experiment shows that an electron only
admits two possible values of the intrinsic magnetic momentum along an
axis.
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Spin as rotational symmetry

Electron: The Stern & Gerlach experiment shows that an electron only
admits two possible values of the intrinsic angular momentum along an
axis.

Spin s = 1
2 ↔ two possible values of sz = ± 1

2 (�up� or �down�)

⇒ The rotational symmetry of an electron are rotations of 720◦!
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Spin as rotational symmetry

Leptons and Quarks: spin 1/2 particle are described by spinor �elds

No one fully understands spinors. Their algebra is formally
understood but their general signi�cance is mysterious.
In some sense they describe the �square root� of geometry and,
just as understanding the square root of −1 took centuries, the
same might be true of spinors.

Michael Atiyah, 2007
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Elementary particles

ELEMENTARY PARTICLES
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Elementary particles

1. Elementary particles & symmetries
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Elementary particles
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Elementary particles & symmetries

• Bosons: integer spin, mediators of known fundamental interactions.

• Fermions: half-integer spin, constituents of ordinary matter.

Standard model

Particle Field Spin

Higgs Scalar 0
Leptons & Quarks Spinor 1/2
Gauge bosons Vector 1
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Elementary particles & symmetries

• Bosons: integer spin, mediators of known fundamental interactions.

• Fermions: half-integer spin, constituents of ordinary matter.

Standard model + Gravity

Particle Field Spin

Higgs Scalar 0
Leptons & Quarks Spinor 1/2
Gauge bosons Vector 1

Graviton (?) Tensor 2
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Elementary particles & symmetries

• Bosons: integer spin, mediators of known fundamental interactions.

• Fermions: half-integer spin, constituents of ordinary matter.

Standard model + (Super)gravity

Particle Field Spin

Higgs Scalar 0
Leptons & Quarks Spinor 1/2
Gauge bosons Vector 1

Gravitino (??) Spin-vector 3/2
Graviton (?) Tensor 2
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Elementary particles & symmetries

The spin-two barrier

At quantum level, consistent interactions including the graviton are not
renormalizable by power-counting.

For this reason, for a long time spin 1 has been considered by
theoreticians as the maximal possible spin of an elementary particle in an
interacting QFT and �higher spin� meant spin greater or equal to 3

2 .

Since the surge of research in quantum gravity (in particular string
theory) and the new perspective on power-counting renormalizability
(e.g. Weinberg and asymptotic safety) nowadays �higher spin� refers to
spin greater or equal to 5

2 .
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Elementary particles & symmetries

The modern theoretical description of elementary particles is as quantum
�elds.

More precisely, a free elementary particle is described by (or de�ned as) a
unitary irreducible representation of the maximal isometry group,
either Poincaré for Λ = 0 or (anti) de Sitter for Λ 6= 0.

The latter representations are labelled by two numbers: the mass m and
the spin s.

This fact provides a �nal answer to �what is spin?�
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Elementary particles & symmetries

The modern (group-theoretical) point of view suggests various lessons:

Rather than thinking about spin as the (dimensionful) intrinsic
angular momentum ~ s, spin can also be thought as the
(dimensionless) quantum number s ∈ 1

2N labelling the irreducible
representation of the �little group� (a suitable subgroup of the
isometry group).
⇒ Rather than saying that spin is an intrinsically quantum property
without classical conterpart, it might be better to say that spin is an
intrinsically �eld-theoretical property without analogue in point
particle classical mechanics.
(In fact even classical �elds, such as the electromagnetic �eld at tree
level, possess spin in the above mathematical sense.)
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Elementary particles & symmetries

The modern (group-theoretical) point of view suggests various lessons:

Rather than thinking about spin as the (dimensionful) intrinsic
angular momentum ~s, spin can also be thought as a (dimensionless)
quantum number s ∈ 1

2N labelling the irreducible representation of
the �little group� (suitable subgroup of the isometry group).

There is no mathematical restriction on the value of spin (apart
from s ∈ 1

2N).
⇒ Do higher-spin �elds exist (or at least make sense formally)?
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Elementary particles & symmetries

�There is one lesson which theoretical physicists learnt (...) All
that is consistent is possible, and all that is possible happens.
They recall this lesson each time when a new barrier bars the
way to their ideal. At such a barrier we stand now. This is the
upper bound two on the spin of gauge �elds, imposed by the
existing theory. (...) We claimed that there is nothing that
forbids the existence of such particles with any spin except our
present inability to describe their complete interactions.�

E.S. Fradkin
(Speach for his Dirac medal,

received in 1989)
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Elementary particles

2. History of higher-spin particles
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History of higher-spin particles

Major challenge

The question of the consistency of interactions including massless
higher-spin �elds remains a tantalising open problem in �eld theory,
physically well motivatived and mathematically well posed.

=⇒ One should try to answer it, in case Nature would make use of such
exotic representation of the isometry group.

But even if the answer would turn out to be negative (i.e. if such �elds do
not admit consistent interactions or only under unphysical hypotheses),
this result would provide a theoretical explanation for the experimental
fact that no elementary particles of higher-spin have yet been observed.
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History of higher-spin particles

Well posed problems

Theoretical works on higher-spins can be structured around 4 main
questions, formulated here in terms of mathematical classi�cation
research programs (ordered in logical progression).

- Wigner's programme (1939):
Unitary representations of isometry groups

- Bargmann-Wigner's programme (1948):
Relativistic wave equations

- Fierz-Pauli's programme (1939):
Variational principles
(inverse problem of variational calculus)

- Frønsdal's programme (1978):
Consistent interactions
(Noether method)
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History of higher-spin particles

Slicing history

• 1932-1939: �Birth: generalise Dirac�

• 1939 et 40's: �Foundations: elementary particles as unitary
irreducible representations�

• decades 50-60: �The demographic explosion: the hadronic boom�

• 70's: �Prolongations: the Lagrangian quest�

• 1978: �A well posed problem: the Frønsdal programme�

• decades 80-90: �The hurdle race: bypassing no-go theorems�

• 2001-now: �The holographic lightning: spacetime reconstruction�
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1932-1939 : �Birth: generalise Dirac�

Chronology (retrospective view) of linear relativistic wave equations
describing a free quantum particle:

masseless, spin 0: d'Alembert (1747)
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1932-1939 : �Birth: generalise Dirac�

Chronology (retrospective view) of linear relativistic wave equations
describing a free quantum particle:

masseless, spin 0: d'Alembert (1747)

masseless, spin 1: Maxwell (1873)
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1932-1939 : �Birth: generalise Dirac�

Chronology (retrospective view) of linear relativistic wave equations
describing a free quantum particle:

masseless, spin 0: d'Alembert (1747)

masseless, spin 1: Maxwell (1873)

spin 0: Klein-Gordon (1926)
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1932-1939 : �Birth: generalise Dirac�

Chronology (retrospective view) of linear relativistic wave equations
describing a free quantum particle:

masseless, spin 0: d'Alembert (1747)

masseless, spin 1: Maxwell (1873)

spin 0: Klein-Gordon (1926)
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1932-1939 : �Birth: generalise Dirac�

Chronology (retrospective view) of linear relativistic wave equations
describing a free quantum particle:

masseless, spin 0: d'Alembert (1747)
masseless, spin 1: Maxwell (1873)
spin 0: Klein-Gordon (1926)
spin 1/2: Dirac (1928)
arbitrary (half)integer spin: Majorana (1932) and Dirac (1936)
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1932-1939 : �Birth: generalise Dirac�

Chronology (retrospective view) of linear relativistic wave equations
describing a free quantum particle:

masseless, spin 0: d'Alembert (1747)

masseless, spin 1: Maxwell (1873)

spin 0: Klein-Gordon (1926)

spin 1/2: Dirac (1928)

arbitrary (half)integer spin: Majorana (1932) and Dirac (1936)

Other important contributors: Fierz & Pauli (1939) and many others
(Du�n, Kemmer, Petiau, Proca, ...)

⇒ Large zoo of relativistic equations

How to put some order (i.e. classify inequivalent ones) ?

Xavier Bekaert, Tours University From quantum tops to elementary particles



1932-1939 : �Birth: generalise Dirac�

Chronology (retrospective view) of linear relativistic wave equations
describing a free quantum particle:

masseless, spin 0: d'Alembert (1747)

masseless, spin 1: Maxwell (1873)

spin 0: Klein-Gordon (1926)

spin 1/2: Dirac (1928)

arbitrary (half)integer spin: Majorana (1932) and Dirac (1936)

Other important contributors: Fierz & Pauli (1939) and many others
(Du�n, Kemmer, Petiau, Proca, ...)

⇒ Large zoo of relativistic equations

How to put some order (i.e. classify inequivalent ones) ?

Xavier Bekaert, Tours University From quantum tops to elementary particles



1939 and 40's: �Foundations: elementary particles as unitary

irreducible representations�

In 1939, Wigner o�ered an extremely profound and modern (since it is
still valid) view on linear relativistic waves equations.

Combining the axioms of quantum mechanics and the principles of
special relativity necessarily leads to the following identi�cations:

Wave equation describing a free quantum relativistic particle
m

Unitary representation of the spacetime isometry group

Space of states (rays) of a free quantum relativistic particle
m

Unitary module of the spacetime isometry group
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1939 and 40's: �Foundations: elementary particles as unitary

irreducible representations�

This identi�cation between free particles and linear representation is
perfect on maximally-symmetric spacetimes (= homogeneous Riemannian
manifolds with Lorentz signature):

• Minkowski RD−1,1: zero scalar curvature

Poincaré group ISO(D − 1, 1) := RD−1,1 o SO(D − 1, 1)

• de Sitter dSD: constant positive scalar curvature

Pseudo-orthogonal group SO(D, 1) of Lorentzian signature

• anti de Sitter AdSD: constant negative scalar curvature

Pseudo-orthogonal group SO(D − 1, 2) of conformal signature
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1939 and 40's: �Foundations: elementary particles as unitary

irreducible representations�

LetM be a maximally-symmetric spacetime (background) and
H a unitary module (= space of representation) of the isometry group.

Special relativity : Isometry ⇔ Symmetry

Quantum mechanics: Symmetry ⇔ Unitary operator

Temporal translations ⇔ 1-parameter subgroup

Temporal evolution ⇔ Evolution operator ⇔ Linear wave equation

Wave function of the particle ⇔ Field onM
Unitary module of inequivalent solutions ⇔ Hilbert space H of
physical states

Irreducible module ⇔ Elementary particle
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Quantum mechanics: Symmetry ⇔ Unitary operator

Temporal translations ⇔ 1-parameter subgroup

Temporal evolution ⇔ Evolution operator ⇔ Linear wave equation
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1939 and 40's: �Foundations: elementary particles as unitary

irreducible representations�

These identi�cations motivate the following mathematical problem

Wigner's programme: Classify all unitary irreducible representations of
the isometry groups of maximally-symmetric spacetimes

This programme somewhat gave birth to the modern theory of
representations by the subsequent works of mathematical physicists such
as Bargmann, Gel'fand, Harish-Chandra, ...
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1939 and 40's: �Foundations: elementary particles as unitary

irreducible representations�

From a mathematical point of view, Wigner's programme was a �quickly�
solved problem, but from a physical point of view, it was only a �rst step
towards the description of free elementary particles.

Indeed, the next step consist in going from the abstract representation
(classi�ed by mathematicians) to a more concrete realisation (as solution
space). This step is not trivial because it is not algorithmic: writing
relativistic equations is some sort of art.

Bargmann-Wigner's programme: Associate a linear covariant
di�erential equation to each unitary irreducible representation of the
isometry group of maximally-symmetric spacetimes, such that the space
of inequivalent solutions carries the corresponding representation.
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1939 and 40's: �Foundations: elementary particles as unitary

irreducible representations�

Let us �x ideas with a �concrete� example: the modules of the Poincaré
group describing the propagation of free massive particles of integer spin
on Minkowski spacetime can be realised as spaces of tensor �elds
ϕµ1...µr (x) on RD−1,1 which are

• solutions of Klein-Gordon equation

(2−m2)ϕµ1...µr (x) = 0 ,

where 2 is the d'Alembertian and m > 0 is the mass,

• divergenceless
∂νϕµ1...ν...µr (x) = 0 .

Moreover, in order to have irreducibility under the Poincaré group
ISO(D − 1, 1), these �elds must take value in an irreducible module of
the Lorentz subgroup SO(D − 1, 1).
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Decades 50-60:

�The demographic explosion: the hadronic boom�
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Decades 50-60:

�The demographic explosion: the hadronic boom�

Evolution of the number of distinct particles observed experimentally:

Middle of 40's: can count on the �ngers of one hand
(electron, photon, proton, neutron, muon)

Beginning of 70's: more than 50

Today: much more than 150
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Decades 50-60:

�The demographic explosion: the hadronic boom�

µ

TIMELINE OF PARTICLE DISCOVERYTIMELINE OF PARTICLE DISCOVERY

UP TO 2002UP TO 2002

mesons: in summary table                          +
baryons: in summary table (**** or ***)   +
leptons                                                              +
bosons: photon, W, Z0
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Decades 50-60:

�The demographic explosion: the hadronic boom�

However, most of these particuls are hadrons. Such particles are not
elementary but composite (pairs or triplets of quarks).

At the beginning of the 60's, the proliferation of hadrons with �high�
(> 3/2) spin was one of the main mystery of the strong nuclear
interaction.
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Decades 50-60:

�The demographic explosion: the hadronic boom�

In 1961, Chew and Frautschi noticed that the mass (squared) spectrum
could be approximately described by a growing linear Regge trajectory.
The extension of their plot to higher values of the spin suggest the
existence of an in�nite tower of hadrons, with unbounded spin.

HERA Collider Physics (2008)

Xavier Bekaert, Tours University From quantum tops to elementary particles



Decades 50-60:

�The demographic explosion: the hadronic boom�

In 1961, Chew and Frautschi noticed that the mass (squared) spectrum
could be approximately described by a growing linear Regge trajectory.
The extension of their plot to higher values of the spin suggest the
existence of an in�nite tower of hadrons, with unbounded spin.

Remark:
In 2010, the observed hadron with highest spin was the baryon ∆(2950)
of spin 15/2.
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70's: �Prolongations: the Lagrangian quest�

The attempts to model scattering cross sections of higher-spin hadrons
required the knowledge of the propagators for �elds of arbitrary spin.
This provided a new motivation for

Fierz-Pauli's programme: Associate a quadratic local covariant
Lagrangian to each unitary irreducible representation of the isometry
group of maximally-symmetric spacetimes, such that the space of
inequivalent solutions to Euler-Lagrange equations carries the
corresponding representation.
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70's: �Prolongations: the Lagrangian quest�

Completion of Fierz-Pauli's programme in Minkowski spacetime of
dimension D = 4 for the representations

massive (arbitrary spin): Singh & Hagen (1974)

massless (arbitrary helicity): Fang & Frønsdal (1978)
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Massless particles

The propagation of free massless integer-spin particles on Minkowski
spacetime are described by tensor �elds ϕµ1...µr (x) on RD−1,1 which are
harmonic, 2ϕµ1...µr (x) = 0 and obey to various supplementary
conditions.
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Gauge symmetries

With respect to the massive case, another novelty is the existence of
�gauge symmetries� (= equivalence relations)

ϕµ1...µr
(x) ∼ ϕµ1...µr

(x) + ∂µ1
εµ2...µr

(x) + · · ·

The non-Abelian deformations for �low� spins are well known:

Spin Theory Geometry Field Gauge symmetries

1 Yang-Mills Principal bundles Connection Transitions
2 Gravitation Riemannian Metric Di�eomorphisms

Gupta's programme: Non-geometrical reconstruction of the previous
theories via the perturbative introduction of consistent interactions to the
quadratic Lagrangians.
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1978: �A well posed problem: the Frønsdal programme�

Two recent achievements for massless particles

• 1976: generalisation of Gupta's programme for all �low� spins
(s 6 2) via supergravity

• 1978: completion of Fierz-Pauli's programme for all �higher� spins

lead Frønsdal to further generalise Gupta's programme for arbitrary spins.
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1978: �A well posed problem: the Frønsdal programme�

Frønsdal programme: List of all interactions

perturbative,

consistent,

covariant,

local,

deforming a positive sum (�nite or not) of quadratic (local
covariant) Lagrangians associated with unitary irreducible
representations of the isometry group of a maximally symmetric
spacetime,

non Abelian, i.e. such that the algebra of gauge symmetries is non
commutative already at �rst order in the deformation parameter(s).
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1978: �A well posed problem: the Frønsdal programme�

�It seems that massless �elds of spin 3/2 cannot couple without
the cooperation of gravity. Perhaps massless �elds of spin 3 can
couple only with the help of other massless �elds of integer
spin. The analogy with supergravity suggests a higher
symmetry that unites massless particles of all spins.�

Christian Frønsdal
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Strings: the ultraviolet lightning
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Strings: the ultraviolet lightning

Incidentally, the theoretical study of hadronic physics gave birth to string
theory, the spectrum of which is made of an in�nite pyramid of particles
with unbounded spin.

All particules in exotic representations (higher spin, mixed symmetries)
have a mass above (or of the order of) Planck mass (≈ 1019 proton
mass).

This in�nite pyramid of extremely massive higher-spin particles is
responsible for the very good ultraviolet behaviour (UV �niteness) of
string theory.
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Strings: the ultraviolet lightning

⇒ From the point of view of Frønsdal's programme, string �eld theory
is a highly nontrivial example of consistent interacting theory of
massive higher-spin particles.

⇐ Conversely, the development of Frønsdal's programme could shed
new light on

string theory:
ultraviolet behaviour, underlying symmetry principle, ...
AdS/CFT correspondence:
holographic duality in the regime of
strong curvature ↔ weak coupling, ...
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Decades 80-90: �The hurdle race: bypassing no-go

theorems�

Bypassing the spin-two barrier is similar to a hurdle race because many
obstacles (no-go theorems) are present on the road.
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Decades 80-90: �The hurdle race: bypassing no-go

theorems�

Coleman-Mandula theorem: Under very general hypotheses (e.g.
D > 3), nontrivial scattering in Minkowski spacetime precludes conserved
quantities which, besides Poincaré generators, would form a Lie algebra
and belong to a nontrivial representation of the Lorentz algebra.

As any theorem, the weakness of no-go theorem lies in the strength of its
hypotheses, c.f.

• Spinorial (spin 1/2): Supersymmetry (�square root�)

• Tensorial (spin > 2): Higher-spin symmetry (�powers�)
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Decades 80-90: �The hurdle race: bypassing no-go

theorems�

By now a very large list of positive results have been obtained in the last
three decades:

Theory Higher-spins Background Approx. Lagrangian

Strings Massive (Flat) No Yes

Vertices Massless Flat & (A)dS Cubic Yes
Fradkin-Vasiliev Massless (Anti) de Sitter Cubic Yes

Vasiliev Massless (Anti) de Sitter No No
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Decades 80-90: �The hurdle race: bypassing no-go

theorems�

By now a very large list of positive results have been obtained in the last
three decades:

Theory Higher-spins Background Approx. Lagrangian

Strings Massive (Flat) No Yes

Vertices Massless Flat & (A)dS Cubic Yes
Fradkin-Vasiliev Massless (Anti) de Sitter Cubic Yes

Vasiliev Massless (Anti) de Sitter No No

The necessity of a non-vanishing cosmological constant for the
consistency of higher-spin interactions indeed was a curious feature in the
early 90's but it has now found a perfectly natural explanation in
holographic duality.
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2001-now: �The holographic lightning:

spacetime reconstruction�
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2001-now: �The holographic lightning:

spacetime reconstruction�

At the beginning of this century, a major conceptual change of
perspective on higher-spin gravity and its potential relevance for
high-energy physics was brought by holographic duality (aka the
�AdS/CFT correspondence�).
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2001-now: �The holographic lightning:

spacetime reconstruction�

A holographic duality is an equivalence between a theory of quantum
gravity in the bulk of (an asymptotically) AdS spacetimeM and
a CFT (without gravity) living on the conformal boundary ∂M.
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2001-now: �The holographic lightning:

spacetime reconstruction�

The semiclassical limit (tree approximation) in the bulk gravitational
theory corresponds to the limit of a large number of �elds on the
boundary.

Usually the bulk is weakly curved and corresponds to a strongly coupled
CFT on the boundary, but the converse limit is also of interest (as argued
by Witten, Sundborg, Sezgin, Sundell, etc) in the sense that in principle
one should be able to reconstruct the gravitational theory in the strongly
curved bulk.
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2001-now: �The holographic lightning:

spacetime reconstruction�

In particular, integrable CFTs should be dual to unbroken higher-spin
gravity theories in the bulk.

The most inspiring example of such holographic duality was pushed
forward by Klebanov and Polyakov who conjectured in 2002 that:
Vasiliev higher-spin gravity around AdS4 is dual to the Wilson-Fisher
�xed point of the O(N) model, of which various checks have been
performed.
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Conclusion

Spin remains one of the most important � though elusive �
manifestations of the �eld-theoretical nature of elementary particles.

Spin is one of those physical properties whose proper understanding
requires a quite abstract approach (based on representation theory).

The spin two barrier constitutes a natural frontier between the
territory where traditional quantum �eld theoretical descriptions of
massless interacting particles (gauge bosons) are successful and the
still largely uncharted lands of higher-spin theories.

The history of higher-spin particles provides a suggestive example of
oscillations between waves of theoretical developments based on the
transformation of physically motivated problems into well posed
problems of mathematical physics (e.g. the early days of relativistic
wave equations and their group-theoretical description in the
30's-40's) and waves of experimental collection of vast data (e.g.
the discovery of a plethora of higher-spin hadrons in the 50's-60's).

In a sense this remains true for its more recent developments linked
with string theory and holographic duality due to their potential
applications in QCD and condensed matter.
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