

Darío Francía

Scuola Normale Superiore & INFN

known to be an intrinsic feature of their interactions

known to be an intrinsic feature of their interactions

free local Lagrangians, however, are usually required to be generated by 2nd order kinetic tensors

known to be an intrinsic feature of their interactions

free local Lagrangians, however, are usually required to be generated by 2nd order kinetic tensors

still, free equations naturally appear in higher-derivative form, once they are formulated à la Bargmann-Wigner we investigated further the Bargmann-Wigner program extending it to the case of *multi-particle representations* we investigated further the Bargmann-Wigner program extending it to the case of *multi-particle representations*

alternative to more conventional single-particle equations

akin to massless hsp as emerging from tensionless strings

Back to basics: wave equations for particles with zero mass

wave equations for particles with zero mass

two options:

 \sim

$$h_{\mu\nu} \sim \mu \nu_{GL(D)}$$

 $\Box h_{\mu\nu} = 0, \quad \partial^{\alpha} h_{\alpha\mu} = 0, \quad h^{\alpha}{}_{\alpha} = 0$

$$h_{\mu\nu} \sim \mu \nu_{GL(D)}$$

$$\Box h_{\mu\nu} = 0, \quad \partial^{\alpha} h_{\alpha\mu} = 0, \quad h^{\alpha}{}_{\alpha} = 0$$
$$h_{\mu\nu} \sim h_{\mu\nu} + \partial_{\mu} \Lambda_{\nu} + \partial_{\nu} \Lambda_{\mu}$$
$$\Box \Lambda_{\mu} = 0, \quad \partial^{\alpha} \Lambda_{\alpha} = 0$$

$$h_{\mu\nu} \sim \left[\mu \mid \nu\right]_{GL(D)}$$

$$\Box h_{\mu\nu} = 0, \quad \partial^{\alpha} h_{\alpha\mu} = 0, \quad h^{\alpha}{}_{\alpha} = 0$$
$$h_{\mu\nu} \sim h_{\mu\nu} + \partial_{\mu} \Lambda_{\nu} + \partial_{\nu} \Lambda_{\mu}$$
$$\Box \Lambda_{\mu} = 0, \quad \partial^{\alpha} \Lambda_{\alpha} = 0$$

iso(D-2) non compact

gauge equivalence:

finite spin

$$\Box h_{\mu\nu} = 0, \quad \partial^{\alpha} h_{\alpha\mu} = 0, \quad h^{\alpha}{}_{\alpha} = 0$$
$$h_{\mu\nu} \sim h_{\mu\nu} + \partial_{\mu} \Lambda_{\nu} + \partial_{\nu} \Lambda_{\mu}$$
$$\Box \Lambda_{\mu} = 0, \quad \partial^{\alpha} \Lambda_{\alpha} = 0$$

iso(D-2) non compact

gauge equivalence:

finite spin

$$\Box h_{\mu\nu} = 0, \quad \partial^{\alpha} h_{\alpha\mu} = 0, \quad h^{\alpha}{}_{\alpha} = 0$$
$$h_{\mu\nu} \sim h_{\mu\nu} + \partial_{\mu}\Lambda_{\nu} + \partial_{\nu}\Lambda_{\mu}$$
$$\Box \Lambda_{\mu} = 0, \quad \partial^{\alpha}\Lambda_{\alpha} = 0$$

iso(D-2) non compact

gauge equivalence:

finite spin

$$\Box h_{\mu\nu} = 0, \quad \partial^{\alpha} h_{\alpha\mu} = 0, \quad h^{\alpha}{}_{\alpha} = 0$$
$$h_{\mu\nu} \sim h_{\mu\nu} + \partial_{\mu}\Lambda_{\nu} + \partial_{\nu}\Lambda_{\mu}$$
$$\Box \Lambda_{\mu} = 0, \quad \partial^{\alpha}\Lambda_{\alpha} = 0$$

iso(D-2) non compact

gauge equivalence:

finite spin

$$\mathcal{R}_{\mu\nu,\,\rho\sigma} \sim \frac{\mu}{\nu} \frac{\rho}{\sigma}_{GL(D)}$$

$$\partial_{[\lambda} \mathcal{R}_{\mu\nu],\,\rho\sigma} = 0$$

$$\eta^{\,\mu\rho}\,\mathcal{R}_{\,\mu\nu,\,\rho\sigma}\,=\,0$$

$$\Box h_{\mu\nu} = 0, \quad \partial^{\alpha} h_{\alpha\mu} = 0, \quad h^{\alpha}{}_{\alpha} = 0$$
$$h_{\mu\nu} \sim h_{\mu\nu} + \partial_{\mu}\Lambda_{\nu} + \partial_{\nu}\Lambda_{\mu}$$
$$\Box \Lambda_{\mu} = 0, \qquad \partial^{\alpha}\Lambda_{\alpha} = 0$$

iso(D-2) non compact

gauge equivalence:

finite spin

same tensor as for massive irreps

$$\mathcal{R}_{\mu\nu,\,\rho\sigma} \sim \frac{\mu}{\nu} \frac{\rho}{\sigma}_{GL(D)}$$

 $\partial_{\,[\lambda}\,\mathcal{R}_{\,\mu\nu],\,\rho\sigma}\,=\,0$

$$\eta^{\,\mu\rho}\,\mathcal{R}_{\,\mu\nu,\,\rho\sigma}\,=\,0$$

no gauge equivalence to be discussed

s.t.

$$\Box h_{\mu\nu} = 0, \quad \partial^{\alpha} h_{\alpha\mu} = 0, \quad h^{\alpha}{}_{\alpha} = 0$$
$$h_{\mu\nu} \sim h_{\mu\nu} + \partial_{\mu}\Lambda_{\nu} + \partial_{\nu}\Lambda_{\mu}$$
$$\Box \Lambda_{\mu} = 0, \quad \partial^{\alpha}\Lambda_{\alpha} = 0$$
$$iso(D-2) \text{ non comp}$$

pact $\mathcal{I} = \mathcal{I}$

gauge equivalence:

finite spin

same tensor as for massive irreps

 $\partial_{[\lambda} \mathcal{R}_{\mu\nu],\rho\sigma} = 0$

$$\eta^{\,\mu\rho}\,\mathcal{R}_{\,\mu\nu,\,\rho\sigma}\,=\,0$$

no gauge equivalence to be discussed

Wave equations for m=0, s=2 \sim

Connecting the two descriptions:

$$\partial_{\left[\lambda\right.}\mathcal{R}_{\mu\nu],\,\rho\sigma}\,=\,0$$

 $\mathcal{R}_{\mu\nu,\,\rho\sigma}\left(h\right) = \partial_{\,\mu}\,\partial_{\rho}\,h_{\,\nu\sigma}\,+\,\ldots$

Poincaré Lemma

Connecting the two descriptions:

$$\partial_{\,[\lambda}\,\mathcal{R}_{\,\mu\nu],\,\rho\sigma}\,=\,0$$

 $\mathcal{R}_{\mu\nu,\,\rho\sigma}\left(h\right)\,=\,\partial_{\,\mu}\,\partial_{\rho}\,h_{\,\nu\sigma}\,+\,\ldots$

Poincaré Lemma

Connecting the two descriptions:

 $\partial_{[\lambda} \mathcal{R}_{\mu\nu],\rho\sigma} = 0$

 $\mathcal{R}_{\mu\nu,\,\rho\sigma}\left(h\right)\,=\,\partial_{\,\mu}\,\partial_{\rho}\,h_{\,\nu\sigma}\,+\,\ldots$

Poincaré Lemma

$$\quad \quad \partial_{\left[\lambda \right.} \mathcal{R}_{\mu\nu\right], \,\rho\sigma}\left(h\right) \,\equiv \, 0$$

Wave equations for m=0, s=2 \sim

Connecting the two descriptions:

$$\partial_{\left[\lambda\right.}\mathcal{R}_{\mu\nu],\,\rho\sigma}\,=\,0$$

 $\mathcal{R}_{\mu\nu,\,\rho\sigma}\left(h\right) = \partial_{\,\mu}\,\partial_{\rho}\,h_{\,\nu\sigma}\,+\,\ldots$

Poincaré Lemma

$$\bigstar \quad \partial_{\left[\lambda \right.} \mathcal{R}_{\mu\nu\right], \,\rho\sigma}\left(h\right) \,\equiv \, 0$$

$$\eta^{\mu\rho} \mathcal{R}_{\mu\nu,\rho\sigma} \left(h \right) = 0$$

corresponds to the vanishing of the linearised Ricci tensor, that can be written

 $\Box h_{\mu\nu} = \partial_{(\mu} \Lambda_{\nu)}(h)$

so as to stress that it reduces to $P^2 = 0$ upon partial gauge fixing

Wave equations for m = 0, spin s

Fierz 1939

Wave equations for m = 0, spin s gauge dependent Fierz 1939 $\varphi \equiv \varphi_{\mu_1 \dots \mu_s} \sim \square \dots$

Wave equations for m = 0, spin s we gauge dependent Fierz 1939 $\varphi \equiv \varphi_{\mu_1...\mu_s} \sim \square \dots$

$$\Box \varphi = 0, \ \partial \cdot \varphi = 0, \ \varphi' = 0$$

Wave equations for m = 0, spin s we gauge dependent Fierz 1939 $\varphi \equiv \varphi_{\mu_1...\mu_s} \sim \square \cdots$

$$\Box \varphi = 0, \quad \partial \cdot \varphi = 0, \quad \varphi' = 0$$
$$\varphi_{\mu_1 \dots \mu_s} \sim \varphi_{\mu_1 \dots \mu_s} + \partial_{(\mu_1} \Lambda_{\mu_2 \dots \mu_s)}$$
$$\Box \Lambda = 0, \quad \partial \cdot \Lambda = 0, \quad \Lambda' = 0$$

$$\Box \varphi = 0, \ \partial \cdot \varphi = 0, \ \varphi' = 0$$
$$\varphi_{\mu_1 \dots \mu_s} \sim \varphi_{\mu_1 \dots \mu_s} + \partial_{(\mu_1} \Lambda_{\mu_2 \dots \mu_s)}$$
$$\Box \Lambda = 0, \ \partial \cdot \Lambda = 0, \ \Lambda' = 0$$

$$\Box \varphi = 0, \quad \partial \cdot \varphi = 0, \quad \varphi' = 0$$
$$\varphi_{\mu_1 \dots \mu_s} \sim \varphi_{\mu_1 \dots \mu_s} + \partial_{(\mu_1} \Lambda_{\mu_2 \dots \mu_s)}$$
$$\Box \Lambda = 0, \quad \partial \cdot \Lambda = 0, \quad \Lambda' = 0$$

$$\Box \varphi = 0, \quad \partial \cdot \varphi = 0, \quad \varphi' = 0 \qquad \qquad d\mathcal{R} = 0$$
$$\varphi_{\mu_1 \dots \mu_s} \sim \varphi_{\mu_1 \dots \mu_s} + \partial_{(\mu_1} \Lambda_{\mu_2 \dots \mu_s)}$$
$$\Box \Lambda = 0, \quad \partial \cdot \Lambda = 0, \quad \Lambda' = 0 \qquad \qquad \mathcal{R}' = 0$$

Wave equations for spin s \sim

Connecting the two descriptions:

Generalised Poincaré Lemma

Wave equations for spin s \sim

Connecting the two descriptions:

Generalised Poincaré Lemma

Wave equations for spin s \sim

Connecting the two descriptions:

Generalised Poincaré Lemma

* The higher-derivative equation $\mathcal{R}' = 0$ can be proven to be equivalent to the wave equation

 $\Box \varphi \,=\, \partial \Lambda \left(\varphi \right)$

where the r.h.s. can be gauge fixed to zero. (! Note: this is not the Fronsdal equation)

Goal of this talk

we focus on hsp curvatures:

 $\mathcal{R}_{\mu
u,\,
ho\sigma}\left(h
ight)$

 $\mathcal{R}_{\mu_{1}\nu_{1},...,\,\mu_{s}\nu_{s}}\left(\varphi\right)$

we focus on hsp curvatures:

 $\mathcal{R}_{\mu
u,\,
ho\sigma}\left(h
ight)$

 $\mathcal{R}_{\mu_1\nu_1,\ldots,\,\mu_s\nu_s}\left(\varphi\right)$

the equation

 $\eta^{\,\alpha\beta}\,\mathcal{R}_{\,\alpha
u_1,\,\beta
u_2,\,...,\,\mu_s
u_s}\,(arphi)\,=\,0$ is a backbone of gauge theories
$\mathcal{R}_{\mu
u,\,
ho\sigma}\left(h
ight)$

the equation

 $\eta^{\,lphaeta}\,\mathcal{R}_{\,lpha
u_1,\,eta
u_2,\,...,\,\mu_s
u_s}\,(arphi)\,=\,0$ is a backbone of gauge theories

 $\mathcal{R}_{\mu
u,\,
ho\sigma}\left(h
ight)$

 $\mathcal{R}_{\mu_1\nu_1,\ldots,\,\mu_s\nu_s}\left(\varphi\right)$

the equation $\eta^{\,lphaeta}\,\mathcal{R}_{\,lpha
u_1,\,eta
u_2,\,...,\,\mu_s
u_s}\,(arphi)\,=\,0$ is a backbone of gauge theories

→ For spin 2: Ricci = 0

 $\eta^{\alpha\beta} \mathcal{R}_{\alpha\nu_{1},\beta\nu_{2},...,\mu_{s}\nu_{s}}(\varphi) = 0 \quad \longrightarrow \quad \Box \varphi = \partial \Lambda(\varphi)$

 $\mathcal{R}_{\mu
u,\,
ho\sigma}\left(h
ight)$

the equation $\eta^{\alpha\beta} \mathcal{R}_{\alpha\nu_1,\beta\nu_2,...,\mu_s\nu_s}(\varphi) = 0$ is a backbone of gauge theories

→ For spin 2: Ricci = 0

For spin s one can prove

 $\eta^{\alpha\beta} \mathcal{R}_{\alpha\nu_1,\beta\nu_2,\ldots,\mu_s\nu_s}(\varphi) = 0 \quad \longrightarrow \quad \Box \varphi = \partial \Lambda(\varphi)$

In Vasiliev unfolded, frame-like formulation one recovers it in the form

``Curvature = Weyl''

 $\mathcal{R}_{\mu
u,\,
ho\sigma}\left(h
ight)$

 $\mathcal{R}_{\mu_1\nu_1,\ldots,\mu_s\nu_s}(\varphi)$

➢ For spin 2: Ricci = 0

the equation

 $\eta^{\alpha\beta} \mathcal{R}_{\alpha\nu_1,\,\beta\nu_2,\,...,\,\mu_s\nu_s}(\varphi) = 0$ is a backbone of gauge theories

standard hsp theories are ``Ricci-like"

For spin s one can prove

 $\eta^{\,\alpha\beta}\,\mathcal{R}_{\,\alpha\nu_1,\,\beta\nu_2,\,\ldots,\,\mu_s\nu_s}\left(\varphi\right)\,=\,0$ $\Box \varphi = \partial \Lambda (\varphi)$

In Vasiliev unfolded, frame-like formulation one recovers it in the form

``Curvature = Weyl''

Spin zero

→ the potential is its own curvature: $\varphi ~ \sim \mathcal{R}$ → one directly imposes $\Box \mathcal{R} = 0$

Spin zero

- → the potential is its own curvature: $\varphi \sim \mathcal{R}$
- \rightarrow one directly imposes $\Box \mathcal{R} = 0$

Spin one (and p-forms)

s.t.

 $\Box A_{\mu} = 0 \qquad \qquad \partial \cdot A = 0$ $A_{\mu} \sim A_{\mu} + \partial_{\mu} \Lambda$

 $\Box \Lambda = 0$

Spin zero

- → the potential is its own curvature: $\varphi \sim \mathcal{R}$
- → one directly imposes $\Box \mathcal{R} = 0$

Spin one (and p-forms)

s.t.

 $\partial_{\left[\mu\right.} \mathcal{R}_{\left.\nu,\rho
ight]} = 0$ $\partial^{\left.\alpha\right.} \mathcal{R}_{\left.\alpha,\mu
ight.} = 0$

Spin zero

- ightarrow the potential is its own curvature: $\varphi \sim \mathcal{R}$
- → one directly imposes $\Box \mathcal{R} = 0$

Spin one (and p-forms)

s.t.

 $\partial_{\left[\mu\right.}\mathcal{R}_{\nu,\rho\right]} = 0$

$$\partial^{\,\alpha}\,\mathcal{R}_{\,\alpha,\mu}\,=\,0$$

Our goal:

we wish to extend the Bargmann-Wigner program

to encompass the Maxwell-like equations

$\partial \cdot \mathcal{R}(\varphi) = 0$

for all spins, in any D, i.e. including tensors with mixed symmetry

Plan

 \S Maxwell-líke equations à la Bargmann-Wigner

§ Curvatures & wave operators for gauge potentíals

§ Reducible multiplets and tensionless strings

Based on

J.Phys.A: Math.Theor. 48 (2015) (with X. Bekaert and N. Boulanger)

Class.Quant.Grav. 29 (2012)

see also

Nucl.Phys. B881 (2014) 248-268 (with S. Lyakhovic and A. Sharapov)

HEP 1303 (2013) 168 (with A. Campoleoni)

Prog. Theor. Phys. Suppl. 188 (2011)

***** *Phys.Lett. B690 (2010)*

★ J.Phys.Conf. Ser. 222 (2010)

Maxwell-like equations à la Bargmann-Wigner

 $h_{\mu\nu} \sim \mu \nu \longrightarrow \mathcal{R}_{\mu\nu,\rho\sigma} \sim \frac{\mu \rho}{\nu \sigma}$

$$h_{\mu\nu} \sim \mu \nu \longrightarrow \mathcal{R}_{\mu\nu,\rho\sigma} \sim \frac{\mu \rho}{\nu \sigma}$$

$$\partial_{[\lambda} \mathcal{R}_{\mu\nu],\rho\sigma} = 0 \qquad \longrightarrow \qquad \Box \mathcal{R}_{\mu\nu,\rho\sigma} = 0$$
$$\partial^{\mu} \mathcal{R}_{\mu\nu,\rho\sigma} = 0$$

$$h_{\mu\nu} \sim \mu \nu \longrightarrow \mathcal{R}_{\mu\nu,\rho\sigma} \sim \frac{\mu \rho}{\nu \sigma}$$

$$\partial_{[\lambda} \mathcal{R}_{\mu\nu],\rho\sigma} = 0 \qquad \longrightarrow \qquad \Box \mathcal{R}_{\mu\nu,\rho\sigma} = 0$$
$$\partial^{\mu} \mathcal{R}_{\mu\nu,\rho\sigma} = 0$$

$$P^2 = 0 \quad \longrightarrow \quad p_\mu = (p_+, 0, \dots, 0)$$

$$h_{\mu\nu} \sim \mu \nu \longrightarrow \mathcal{R}_{\mu\nu,\rho\sigma} \sim \frac{\mu \rho}{\nu \sigma}$$

$$\partial_{[\lambda} \mathcal{R}_{\mu\nu],\rho\sigma} = 0 \qquad \qquad \square \mathcal{R}_{\mu\nu,\rho\sigma} = 0$$
$$\partial^{\mu} \mathcal{R}_{\mu\nu,\rho\sigma} = 0$$

$$P^2 = 0 \longrightarrow p_{\mu} = (p_+, 0, \dots, 0)$$

$$\partial^{\mu} \mathcal{R}_{\mu\nu,\rho\sigma} = 0 \quad \longrightarrow \quad \mathcal{R}_{-\nu,\rho\sigma} = 0$$
$$\partial_{[\lambda} \mathcal{R}_{\mu\nu],\rho\sigma} = 0 \quad \longrightarrow \quad \mathcal{R}_{ij,kl} = 0$$

The only non-vanishing components of $\mathcal{R}_{\mu\nu,\rho\sigma}$ are

 $\mathcal{R}_{+i,+j} \sim h_{ij}$

i.e. they define a symmetric tensor of GL(D-2)

The only non-vanishing components of $\mathcal{R}_{\mu\nu,\,\rho\sigma}$ are

 $\mathcal{R}_{+i,+j} \sim h_{ij}$

i.e. they define a symmetric tensor of GL(D-2)

The only non-vanishing components of $\mathcal{R}_{\mu\nu,\,\rho\sigma}$ are

 $\mathcal{R}_{+i,+j} \sim h_{ij}$

i.e. they define a symmetric tensor of GL(D-2)

In terms of particles (irreps of O(D-2)) this means

 $\partial_{[\lambda} \mathcal{R}_{\mu\nu],\rho\sigma} = 0$ \longrightarrow $\partial^{\mu} \mathcal{R}_{\mu\nu,\rho\sigma} = 0$

one particle with m = 0, s=2

one particle with m = 0, s = 0

In terms of particles (irreps of O(D-2)) this means

 $\partial_{[\lambda} \mathcal{R}_{\mu\nu],\rho\sigma} = 0 \qquad \text{one particle with } m = 0, s = 2$ $\partial^{\mu} \mathcal{R}_{\mu\nu,\rho\sigma} = 0 \qquad \text{one particle with } m = 0, s = 0$

Maxwell-like eqs propagate reducible multiplets

Arbitrary spin in arbitrary \mathcal{D}

→

General case: consider an arbitrary tableau in GL(D-2) and build its Bargmann-Wigner counterpart, by adding a row on its top

Arbitrary spin in arbitrary \mathcal{D}

General case: consider an arbitrary tableau in GL(D-2) and build its Bargmann-Wigner counterpart, by adding a row on its top

 \rightarrow

(w.r.t all rectangular blocks)

Arbítrary spín ín arbítrary \mathcal{D}

General case: consider an arbitrary tableau in GL(D-2) and build its Bargmann-Wigner counterpart, by adding a row on its top

 \rightarrow

Require $\mathcal{R}_{GL(D)}$ to satisfy the closure and co-closure conditions $d\mathcal{R} = 0$ $d^{\dagger}\mathcal{R} = 0$ $p_{\mu} = (p_{+}, 0, ..., 0)$

(w.r.t all rectangular blocks)

The non-vanishing components, $\mathcal{R}_{+j_1^1...j_{l_1}^1,...,+j_1^i...j_{l_i}^i},...,+j_1^s...j_{l_s}^s}$, correspond to a multiplet of massless particles: branching of the GL(D-2)-irrep in terms of its O(D-2)-components.

Curvatures & wave operators for gauge potentials

Hígh-derívatíve equations from curvatures \sim

We make contact with gauge potentials solving for the closure conditions via the Generalised Poincaré Lemma:

High-derivative equations from curvatures

We make contact with gauge potentials solving for the closure conditions via the Generalised Poincaré Lemma:

$$d\mathcal{R} = 0$$

 $\mathcal{R}(\varphi) \equiv d^1 d^2 \cdots d^s \varphi$

(w.r.t all rectangular blocks)

High-derivative equations from curvatures

We make contact with gauge potentials solving for the closure conditions via the Generalised Poincaré Lemma:

$$d\mathcal{R} = 0$$

 $\mathcal{R}(\varphi) \equiv d^1 d^2 \cdots d^s \varphi$

(w.r.t all rectangular blocks)

where $\mathcal{R}(\varphi)$ corresponds to the irrep of GL(D) obtained from a given tableau Y by adding an extra row on top of it:

Hígh-derívatíve equations from curvatures \sim

We go through the Bargmann-Wigner analysis again, but now for high-derivative functions of gauge potentials

$$\mathcal{R}\left(\varphi\right) \,\equiv\, d^{\,1}\,d^{\,2}\,\cdots\,d^{\,s}\,\varphi$$

computing the divergence of \mathcal{R}

$$d_{1}\mathcal{R}(\varphi) = d^{2} \cdots d^{s} \left(\Box - d^{i}d_{i}\right)\varphi \sim \mathcal{O}(d)M = 0$$

where

$$M = (\Box - d^{i}d_{i})\varphi$$

is a sort of second-order Maxwell-like wave operator

From high- to 2nd-order equations \sim

Problem: determine the kernel of the operator $\mathcal{O}(d)$ *two steps*:

From hígh- to 2nd-order equations

Problem: determine the kernel of the operator $\mathcal{O}(d)$ *two steps*:

 $d^2 \cdots d^s \left(\Box - d^i d_i\right) \varphi = 0$

 $M = d^{i} d^{j} D_{ij} (\varphi)$

From hígh- to 2nd-order equations

Problem: determine the kernel of the operator $\mathcal{O}(d)$ *two steps*:

$$d^2 \cdots d^s \left(\Box - d^i d_i\right) \varphi = 0$$

$$M = d^{i} d^{j} D_{ij} (\varphi)$$

Show that the resulting equation can be gauge fixed to $P^2 = 0$:

$$\Box \varphi = d^{i} \Lambda_{i} (\varphi)$$

 $\Box \varphi = 0 \qquad \qquad d^{\dagger} \varphi = 0$

Same analysis for the ``standard" BW trace conditions:

Same analysis for the ``standard" BW trace conditions:

$$T_{12}\mathcal{R}(\varphi) = d^3 \cdots d^s \mathcal{F} \sim \hat{\mathcal{O}}(d)\mathcal{F} = 0$$

Same analysis for the ``standard'' BW trace conditions:

$$T_{12}\mathcal{R}(\varphi) = d^3 \cdots d^s \mathcal{F} \sim \hat{\mathcal{O}}(d)\mathcal{F} = 0$$

where

$$\mathcal{F} := \Box \varphi - d^{i} d_{i} \varphi + \frac{1}{2} d^{i} d^{j} T_{ij} \varphi$$

Same analysis for the ``standard" BW trace conditions:

$$T_{12}\mathcal{R}(\varphi) = d^3 \cdots d^s \mathcal{F} \sim \hat{\mathcal{O}}(d)\mathcal{F} = 0$$

 $\mathcal{F} := \Box \varphi - d^{i} d_{i} \varphi + \frac{1}{2} d^{i} d^{j} T_{ij} \varphi$

Fronsdal-Labastida tensor

 $T_{ij} \mathcal{R} \left(\varphi \right) = 0$

 $\mathcal{F} = \frac{1}{2} d^{i} d^{j} d^{k} \mathcal{H}_{ijk} (\varphi)$

where

Same analysis for the ``standard" BW trace conditions:

$$T_{12}\mathcal{R}(\varphi) = d^3 \cdots d^s \mathcal{F} \sim \hat{\mathcal{O}}(d)\mathcal{F} = 0$$

 $\mathcal{F} := \Box \varphi - d^{i} d_{i} \varphi + \frac{1}{2} d^{i} d^{j} T_{ij} \varphi$

where

 $T_{ij} \mathcal{R} \left(\varphi \right) = 0$

Solving for the kernel of $\hat{\mathcal{O}}(d)$:

Show that the resulting equation can be gauge fixed to $P^2 = 0$:

 $\mathcal{F} = \frac{1}{2} d^{i} d^{j} d^{k} \mathcal{H}_{ijk} (\varphi)$

Fronsdal-Labastida

$$\Box \varphi = d^{i} \Lambda_{i} (\varphi)$$

 $\Box \varphi = 0$, $d^{\dagger} \varphi = 0$, $T_{ij} \varphi = 0$

 $M = d^{i} d^{j} D_{ij} (\varphi)$ $\mathcal{F} = \frac{1}{2} d^{i} d^{j} d^{k} \mathcal{H}_{ijk} (\varphi)$

still higher-derivative eqs!

$M = d^{i} d^{j} D_{ij} (\varphi)$ still higher-derivative eqs! $\mathcal{F} = \frac{1}{2} d^{i} d^{j} d^{k} \mathcal{H}_{ijk} (\varphi)$

Our analysis shows that the two ``compensator'' structures $D_{ij}(\varphi)$ and $\mathcal{H}_{ijk}(\varphi)$ can be consistently gauge fixed to zero, leading to

$$M = d^{i} d^{j} D_{ij} (\varphi)$$

still higher-derivative eqs!
$$\mathcal{F} = \frac{1}{2} d^{i} d^{j} d^{k} \mathcal{H}_{ijk} (\varphi)$$

Our analysis shows that the two ``compensator'' structures $D_{ij}(\varphi)$ and $\mathcal{H}_{ijk}(\varphi)$ can be consistently gauge fixed to zero, leading to

 $M = 0 \qquad \qquad \mathcal{F} = 0$ $d^{i} d^{j} d_{(i} \Lambda_{j)} = 0 \qquad \qquad T_{(ij} \Lambda_{k)} = 0$

Fronsdal-Labastida '78, '89

D.F., A. Campoleoni 2013

To summaríse:

To summaríse:

BW trace conditions on ``curvature precursors'' describe one-particle dof

_Via the Poincare' lemma _upon partial gauge fixing one recovers the usual Fronsdal-Labastida eqs

To summaríse:

BW trace conditions on ``curvature precursors'' describe one-particle dof

_Via the Poincare' lemma _upon partial gauge fixing one recovers the usual Fronsdal-Labastida eqs

BW transversality conditions on the same tensors describe multi-particle dof

_Via the Poincare' lemma _upon partial gauge fixing they reduce to

 $M := \Box \varphi - d^{i} d_{i} \varphi = 0$

Let us compare the corresponding Lagrangian formulations

Let us compare the corresponding Lagrangian formulations

Maxwell-like, N families:

(multi-particle spectrum)

 $\mathcal{L} = \frac{1}{2} \varphi M \varphi$ $M = (\Box - \partial^{i} \partial_{i})$ $\partial^{i} \partial^{j} \partial_{(i} \Lambda_{j)} = 0$

Let us compare the corresponding Lagrangian formulations

Maxwell-like, N families:

(multi-particle spectrum)

 $\mathcal{L} = rac{1}{2} \varphi M \varphi$ $M = (\Box - \partial^i \partial_i)$ $\partial^i \partial^j \partial_{(i} \Lambda_{j)} = 0$

Fronsdal-Labastida, N families:

$$\mathcal{L} = \frac{1}{2} \varphi \left\{ \mathcal{F} + \sum_{p=1}^{N} \frac{(-1)^p}{p! (p+1)!} \eta^{i_1 j_1} \dots \eta^{i_p j_p} Y_{\{2^p\}} T_{i_1 j_1} \dots T_{i_p j_p} \mathcal{F} \right\},$$

$$\mathcal{F} = \left(M + \partial^i \partial^j T_{ij} \right) \varphi \qquad \qquad \begin{cases} T_{(ij} \Lambda_{k)} = 0\\ T_{(ij} T_{kl)} \varphi = 0 \end{cases}$$

Reducible multiplets and tensionless strings

Open bosonic string oscillators

 $\left[\alpha_k^{\mu}, \alpha_l^{\nu}\right] = k \,\delta_{k+l,0} \,\eta^{\mu\nu}$

Open bosonic string oscillators

 $[\alpha_k^{\mu}, \alpha_l^{\nu}] = k \,\delta_{k+l,0} \,\eta^{\mu\nu}$

Virasoro generators and their rescaling limit:

``tensionless '' limit

Open bosonic string oscillators

 $[\alpha_k^{\mu}, \alpha_l^{\nu}] = k \,\delta_{k+l,0} \,\eta^{\mu\nu}$

Virasoro generators and their rescaling limit:

 $[l_k, l_l] = k \,\delta_{k+l, 0} \,l_0$

Open bosonic string oscillators

 $[\alpha_k^{\mu}, \alpha_l^{\nu}] = k \,\delta_{k+l,0} \,\eta^{\mu\nu}$

Virasoro generators and their rescaling limit:

 $[l_k, l_l] = k \,\delta_{k+l, 0} \,l_0$

Algebra with no central charge \longrightarrow identically nilpotent BRST charge Q same charge from tensionless limit of open string BRST charge, after rescaling of ghosts

Massless higher spins from tensionless strings $\mathcal{L} = \frac{1}{2} \langle \psi | Q | \psi \rangle \xrightarrow[\alpha' \to \infty]{} decomposes in diagonal blocks}$

Massless higher spins from tensionless strings

$$\mathcal{L} = \frac{1}{2} \langle \psi | Q | \psi \rangle \xrightarrow[\alpha' \to \infty]{} decomposes in diagonal blocks}$$

for ``diagonal blocks'' associated to symmetric, rank-s tensors $\varphi \mu_1 \cdots \mu_s$, (states generated by powers of α_{-1}^{μ}) the corresponding Lagrangian is

$$\mathcal{L}_{triplet} = \frac{1}{2} \varphi \Box \varphi - \frac{1}{2} s C^2 - {\binom{s}{2}} D \Box D + s \partial \cdot \varphi C + 2 {\binom{s}{2}} D \partial \cdot C$$

Massless higher spins from tensionless strings $\mathcal{L} = \frac{1}{2} \langle \psi | Q | \psi \rangle \xrightarrow[\alpha' \to \infty]{decomposes in diagonal blocks}$

for ``diagonal blocks'' associated to symmetric, rank-s tensors $\varphi \mu_1 \cdots \mu_s$, (states generated by powers of α_{-1}^{μ}) the corresponding Lagrangian is

$$\mathcal{L}_{triplet} = \frac{1}{2} \varphi \Box \varphi - \frac{1}{2} s C^2 - {\binom{s}{2}} D \Box D + s \partial \cdot \varphi C + 2 {\binom{s}{2}} D \partial \cdot C$$

equations of motiongauge transformations
$$\Box \varphi = \partial C$$
 $\varphi \rightarrow \text{spin } s$ $\delta \varphi = \partial \Lambda$ $C = \partial \cdot \varphi - \partial D$ $C \rightarrow \text{spin } s - 1$ $\delta C = \Box \Lambda$ $\Box D = \partial \cdot C$ $D \rightarrow \text{spin } s - 2$ $\delta D = \partial \cdot \Lambda$

 \rightarrow the field C is purely auxiliary (no kinetic term) and can be directly integrated away from the Lagrangian

 \rightarrow the field C is purely auxiliary (no kinetic term) and can be directly integrated away from the Lagrangian

 \rightarrow the field *D* is *pure gauge*, and as such contains no physical polarisations

 \rightarrow the field C is purely auxiliary (no kinetic term) and can be directly integrated away from the Lagrangian

 \rightarrow the field *D* is *pure gauge*, and as such contains no physical polarisations

the eom for the physical field from the tensionless string

$$M\varphi = 2\partial^2 \mathcal{D}$$

are just the Maxwell-like equations with a ``compensator"

 \rightarrow the field C is purely auxiliary (no kinetic term) and can be directly integrated away from the Lagrangian

Bengtsson, Ouvry-Stern '86 Henneaux-Teitelboim '88 D.F.-Sagnotti '02, Sagnotti-Tsulaia '03 Fotopoulos-Tsulaia '08...

 \rightarrow the field *D* is *pure gauge*, and as such contains no physical polarisations

the eom for the physical field from the tensionless string

$$M\varphi = 2\partial^2 \mathcal{D}$$

are just the Maxwell-like equations with a ``compensator"

[also valid for mixed-symmetry fields]

$$\mathcal{R}^{\alpha}{}_{\alpha\,\mu_3\ldots\mu_s,\,\nu_1\ldots\nu_s}\,=\,0$$

``Ricci = 0" provides the backbone of gauge theories...

$$\mathcal{R}^{\alpha}{}_{\alpha\,\mu_3\ldots\mu_s,\,\nu_1\ldots\nu_s}\,=\,0$$

``Ricci = 0" provides the backbone of gauge theories...

when the focus is on *single-particle interactions*

$$\mathcal{R}^{\alpha}{}_{\alpha\,\mu_3\ldots\mu_s,\,\nu_1\ldots\nu_s}\,=\,0$$

``Ricci = 0" provides the backbone of gauge theories...

when the focus is on *single-particle interactions*

Alternative option: reducible, multi-particle theories

 $\mathcal{R}^{\alpha}{}_{\alpha\,\mu_3\ldots\mu_s,\,\nu_1\ldots\nu_s}\,=\,0$

``Ricci = 0" provides the backbone of gauge theories...

when the focus is on *single-particle interactions*

Alternative option: reducible, multi-particle theories

``Maxwell = 0'' seems to provide the proper model to this end

 $\partial^{\alpha} \mathcal{R}_{\alpha \, \mu_2 \dots \mu_s, \, \nu_1 \dots \nu_s}$

→ for instance for the spin-2 case the self-interactions of a single field would encompass all the vertices of a scalar-tensor theory

(Reminiscent of Galileon interactions)

→ for instance for the spin-2 case the self-interactions of a single field would encompass all the vertices of a scalar-tensor theory (Reminiscent of Galileon interactions)

seemingly, usual (say) self-interacting spin-s vertices would subsume a
 number of lower-spin couplings, the majority of which with too many derivatives (wrt Metsaev's classification)

 → for instance for the spin-2 case the self-interactions of a single field would encompass all the vertices of a scalar-tensor theory (Reminiscent of Galileon interactions)

seemingly, usual (say) self-interacting spin-s vertices would subsume a
 number of lower-spin couplings, the majority of which with too many derivatives (wrt Metsaev's classification)

 \rightarrow SFT is full of such couplings.

 → for instance for the spin-2 case the self-interactions of a single field would encompass all the vertices of a scalar-tensor theory (Reminiscent of Galileon interactions)

seemingly, usual (say) self-interacting spin-s vertices would subsume a
 number of lower-spin couplings, the majority of which with too many derivatives (wrt Metsaev's classification)

 \rightarrow SFT is full of such couplings.

what are their actual role and meaning?

in progress...

Maxwell-like geometric Lagrangians \sim

- \rightarrow the field *C* is purely auxiliary
- \rightarrow the field *D* is pure gauge

how does the Lagrangian would look in terms of the physical field only?
Maxwell-like geometric Lagrangians \sim

- \rightarrow the field *C* is purely auxiliary
- \rightarrow the field *D* is pure gauge

how does the Lagrangian would look in terms of the physical field only?

Integrating over the fields C and D we find

$$\mathcal{L}_{eff}(\varphi) = \frac{1}{2}\varphi\left(\Box - \partial\partial\cdot\right)\varphi + \frac{1}{2}\binom{s}{2}\partial\cdot\partial\cdot\varphi\left(\Box + \frac{1}{2}\partial\partial\cdot\right)^{-1}\partial\cdot\partial\cdot\varphi$$

Maxwell-like geometric Lagrangians \sim

The inverse of the operator $\mathcal{O} = \Box + \frac{1}{2} \partial \partial \cdot$ on rank-k tensors is

$$\mathcal{O}_{(k)}^{-1} = \frac{1}{\Box} \left\{ 1 + \sum_{m=1}^{k} (-1)^m \frac{m!}{2^m \prod_{l=1}^{m} (1 + \frac{l}{2})} \frac{\partial^m}{\Box^m} \partial^{m} \right\}$$

and the resulting Lagrangian is

Maxwell-like geometric Lagrangians \sim

The inverse of the operator $\mathcal{O} = \Box + \frac{1}{2} \partial \partial \cdot$ on rank-k tensors is

$$\mathcal{O}_{(k)}^{-1} = \frac{1}{\Box} \left\{ 1 + \sum_{m=1}^{k} (-1)^m \frac{m!}{2^m \prod_{l=1}^{m} (1 + \frac{l}{2})} \frac{\partial^m}{\Box^m} \partial^m \cdot^m \right\}$$

and the resulting Lagrangian is

$$\mathcal{L}_{eff}(\varphi) = \frac{(-1)^s}{2(s+1)} \mathcal{R}^{(s)}_{\mu_1\cdots\mu_s,\nu_1\cdots\nu_s} \frac{1}{\Box^{s-1}} \mathcal{R}^{(s)\mu_1\cdots\mu_s,\nu_1\cdots\nu_s}$$

Lagrangians \sim squares of curvatures