QUARTIC INTERACTIONS IN HIGHER-SPIN GRAVITY FROM CFT

DMITRY PONOMAREV

IMPERIAL COLLEGE LONDON

MOSCOW, NOVEMBER 24, 2015

ARXIV: 1412.0016 AND 1508.04292 [WITH X. BEKAERT, J. ERDMENGER AND C. SLEIGHT]

CUBIC VERTICES

 $\langle J_{s_1}(y_1) J_{s_2}(y_2) J_{s_3}(y_3) \rangle$

CUBIC VERTICES

 $\langle J_{s_1}(y_1) J_{s_2}(y_2) J_{s_3}(y_3) \rangle$

QUARTIC VERTICES

u- and t-channels

 $= \langle J_{s_1}(y_1) J_{s_2}(y_2) J_{s_3}(y_3) J_{s_4}(y_4) \rangle$

CUBIC VERTICES

 $\langle J_{s_1}(y_1) J_{s_2}(y_2) J_{s_3}(y_3) \rangle$

QUARTIC VERTICES

u- and t-channels

 $= \langle J_{s_1}(y_1) J_{s_2}(y_2) J_{s_3}(y_3) J_{s_4}(y_4) \rangle$

TO START: QUARTIC VERTEX FOR SCALAR FIELDS

HOLOGRAPHIC RECONSTRUCTION VS NOETHER PROCEDURE

+ NOETHER PROCEDURE AFTER A CUBIC LEVEL BECOMES TECHNICALLY TEDIOUS

SEE, HOWEVER,

[VASILIEV'90],[METSAEV'91],[POLYAKOV'10], [TARONNA'11],[DEMPSTER,TSULAIA'12], [BUCHBINDER,KRYKHTIN'15],[POLYAKOV'15]

- + HOW FAR CAN ONE GO RECONSTRUCTING HS INTERACTIONS FROM HOLOGRAPHY?
- RECENT DEVELOPMENTS IN COMPUTATIONS OF AMPLITUDES IN ADS AND CFT (IN THE CONTEXT OF BOOTSTRAP, MELLIN AMPLITUDES)

[MACK, PENEDONES, COSTA, PAULOS, FITZPATRICK, KAPLAN, SIMMONS-DUFFIN,..]

+ THE POWER OF THESE TECHNIQUES IS NOT COMPLETELY UNDERSTOOD

LOCALITY & NOETHER PROCEDURE:

WITH LOCALITY - NO SOLUTIONS ? WITHOUT LOCALITY - INFINITELY MANY SOLUTIONS

LOCALITY & NOETHER PROCEDURE:

WITH LOCALITY - NO SOLUTIONS ?

WITHOUT LOCALITY - INFINITELY MANY SOLUTIONS

THE WAY OUT: WEAKEN THE NOTION OF LOCALITY

REQUIREMENTS FOR WEAK LOCALITY:

MAKE SOLUTIONS OF THE NOETHER PROCEDURE POSSIBLE RULE OUT PATHOLOGICALLY NON-LOCAL BEHAVIOUR

LOCALITY & NOETHER PROCEDURE:

WITH LOCALITY - NO SOLUTIONS

WITHOUT LOCALITY - INFINITELY MANY SOLUTIONS

THE WAY OUT: WEAKEN THE NOTION OF LOCALITY

REQUIREMENTS FOR WEAK LOCALITY:

MAKE SOLUTIONS OF THE NOETHER PROCEDURE POSSIBLE RULE OUT PATHOLOGICALLY NON-LOCAL BEHAVIOUR

PROPOSAL: THE VERTEX IS WEAKLY LOCAL IFF THE ASSOCIATED AMPLITUDE IS AN ENTIRE FUNCTION

NOT WEAKLY LOCAL

$$\phi^2 \frac{1}{\Box - \Lambda} \phi^2 \to \frac{1}{s - \Lambda}$$

 $\phi^2 e^{\Box} \phi^2 \to e^s$

NOT WEAKLY LOCAL

WEAKLY LOCAL

LOCALITY & NOETHER PROCEDURE:

WITH LOCALITY - NO SOLUTIONS ? WITHOUT LOCALITY - INFINITELY MANY SOLUTIONS

THE WAY OUT: WEAKEN THE NOTION OF LOCALITY

REQUIREMENTS FOR WEAK LOCALITY:

MAKE SOLUTIONS OF THE NOETHER PROCEDURE POSSIBLE RULE OUT PATHOLOGICALLY NON-LOCAL BEHAVIOUR

PROPOSAL: THE VERTEX IS WEAKLY LOCAL IFF THE ASSOCIATED AMPLITUDE IS AN ENTIRE **FUNCTION**

 $\phi^2 \frac{1}{\Box - \Lambda} \phi^2 \rightarrow \frac{1}{s - \Lambda}$

 $\phi^2 e^{\Box} \phi^2 \to e^s$

NOT WEAKLY LOCAL

NOT WEAKLY LOCAL

WEAKLY LOCAL

LOCALITY IN HS WAS RECENTLY DISCUSSED IN [VASILIEV'15], [SKVORTSOV, TARONNA'15]

MOTIVATION. HOLOGRAPHIC RECONSTRUCTION

- + CAN THIS BE DONE CONSISTENTLY FOR ANY TREE LEVEL N-POINT FUNCTIONS?
- WHAT ONE SHOULD REQUIRE FROM CFT TO EXPECT A LOCAL BULK DUAL (SUB-ADS RADIUS SCALE)?

[Gary,Giddings,Penedones'09], [Heemskerk,Penedones,Polchinski,Sully'09], [El-Showk,Papadodimas'11], [Fitzpatrick,Kaplan,Poland,Simmons-Duffin'12], [Maldacena,Simmons-Duffin,Zhiboedov'15] and many other

 ASSUME AGREEMENT AT TREE LEVEL. DOES THIS IMPLY AGREEMENT FOR ALL LOOPS?

HIGHER SPIN HOLOGRAPHY

BULK: MINIMAL HIGHER SPIN GAUGE THEORY IN 4D

$$S = \int \sqrt{g} d^4x \nabla^{\mu_1} \varphi^{\mu_2 \dots \mu_{s+1}} \nabla_{\mu_1} \varphi_{\mu_2 \dots \mu_{s+1}} + \dots$$

$$\delta\varphi_{\mu_1\dots\mu_s} = \nabla_{\mu_1}\xi_{\mu_2\dots\mu_s} + \dots \qquad s = 0, \ 2, \ 4, \ \dots \ \infty$$

HIGHER SPIN HOLOGRAPHY

BULK: MINIMAL HIGHER SPIN GAUGE THEORY IN 4D

$$S = \int \sqrt{g} d^4x \nabla^{\mu_1} \varphi^{\mu_2 \dots \mu_{s+1}} \nabla_{\mu_1} \varphi_{\mu_2 \dots \mu_{s+1}} + \dots$$

$$\delta\varphi_{\mu_1\dots\mu_s} = \nabla_{\mu_1}\xi_{\mu_2\dots\mu_s} + \dots \qquad s = 0, \ 2, \ 4, \ \dots \ \infty$$

BOUNDARY: FREE O(N) VECTOR MODEL IN 3D

$$S = \int d^3x \partial^\mu \phi^a \partial_\mu \phi_a$$

$$J_{\mu_1\dots\mu_s} = \phi^a \partial_{\mu_1}\dots\partial_{\mu_s} \phi_a + \dots, \qquad \partial^{\mu_1} J_{\mu_1\dots\mu_s} = 0$$

HIGHER SPIN HOLOGRAPHY

BULK: MINIMAL HIGHER SPIN GAUGE THEORY IN 4D

$$S = \int \sqrt{g} d^4x \nabla^{\mu_1} \varphi^{\mu_2 \dots \mu_{s+1}} \nabla_{\mu_1} \varphi_{\mu_2 \dots \mu_{s+1}} + \dots$$

$$\delta\varphi_{\mu_1\dots\mu_s} = \nabla_{\mu_1}\xi_{\mu_2\dots\mu_s} + \dots \qquad s = 0, \ 2, \ 4, \ \dots \ \infty$$

BOUNDARY: FREE O(N) VECTOR MODEL IN 3D

$$S = \int d^3x \partial^\mu \phi^a \partial_\mu \phi_a$$

$$J_{\mu_1\dots\mu_s} = \phi^a \partial_{\mu_1}\dots\partial_{\mu_s} \phi_a + \dots, \qquad \partial^{\mu_1} J_{\mu_1\dots\mu_s} = 0$$

DUALITY: $\varphi_{\mu_1...\mu_s} \leftrightarrow J_{\mu_1...\mu_s}$

AMBIENT FORMALISM FOR ADS

 $AdS_{d+1} \rightarrow \mathbb{R}^{d+2}, \quad g = \text{diag}(+, +, -, \dots, -)$ $AdS_{d+1} \text{ bulk } \rightarrow X^2 = 1$ $\text{boundary } \rightarrow P^2 = 0, \quad P \sim \alpha P$ $W \text{ and } Z \rightarrow \text{ auxiliary vectors}$

3-PT FUNCTIONS

3-PT FUNCTIONS

DOING WICK CONTRACTIONS

$$C_{00s} = \frac{2^{s/2+3/2}}{\sqrt{s!}\sqrt{N}} \frac{(d/2-1)_s}{\sqrt{(d+s-3)_s}}$$

[DIAZ, DORN'06]

3-PT WITTEN DIAGRAM

BULK:

 $g_{00s} \int_{AdS} d^{d+1}x \sqrt{g} \varphi^{\mu_1 \dots \mu_s} J_{\mu_1 \dots \mu_s}$ $\sim 2^s g_{00s} \int_{AdS} d^{d+1}x \sqrt{g} \varphi^{\mu_1 \dots \mu_s} \varphi \nabla_{\mu_1} \dots \nabla_{\mu_s} \varphi$

3-PT WITTEN DIAGRAM

BULK:

$$g_{00s} \int_{AdS} d^{d+1}x \sqrt{g} \varphi^{\mu_1 \dots \mu_s} J_{\mu_1 \dots \mu_s}$$
$$\sim 2^s g_{00s} \int_{AdS} d^{d+1}x \sqrt{g} \varphi^{\mu_1 \dots \mu_s} \varphi \nabla_{\mu_1} \dots \nabla_{\mu_s} \varphi$$

HIGHER-SPIN BULK-TO-BOUNDARY PROPAGATOR

$$\Pi_s(X,W;P,Z) \sim \frac{(2(Z \cdot X)(P \cdot W) - 2(W \cdot Z)(P \cdot X))^s}{(-2X \cdot P)^{\Delta_s + s}} - \text{traces}$$

[MIKHAILOV'02]

3-PT WITTEN DIAGRAM

BULK:

$$g_{00s} \int_{AdS} d^{d+1}x \sqrt{g} \varphi^{\mu_1 \dots \mu_s} J_{\mu_1 \dots \mu_s}$$
$$\sim 2^s g_{00s} \int_{AdS} d^{d+1}x \sqrt{g} \varphi^{\mu_1 \dots \mu_s} \varphi \nabla_{\mu_1} \dots \nabla_{\mu_s} \varphi$$

HIGHER-SPIN BULK-TO-BOUNDARY PROPAGATOR

$$\Pi_s(X,W;P,Z) \sim \frac{(2(Z \cdot X)(P \cdot W) - 2(W \cdot Z)(P \cdot X))^s}{(-2X \cdot P)^{\Delta_s + s}} - \text{traces}$$

[MIKHAILOV'02]

CAN BE REDUCED TO AN ANALOGOUS COMPUTATION FOR THE SCALAR

[PAULOS'11][COSTA, GONCALVES, PENEDONES'14]

MATCHING BULK & CFT

$$g_{00s} = \frac{2^{4-s/2}}{\sqrt{N}\Gamma(s)}$$

EXCHANGES. SPLIT REPRESENTATION

$$F_{\nu,s}(u,v) = \int_{\partial AdS} d^d y \langle \mathcal{O}_0(y_1) \mathcal{O}_0(y_2) \mathcal{O}_{h+i\nu,s}(y) \rangle \langle \mathcal{O}_{h-i\nu,s}(y) \mathcal{O}(y_3) \mathcal{O}(y_4) \rangle$$

$$F_{\nu,s}(u,v) = \kappa(\nu,s)G_{h+i\nu}(u,v) + \kappa(-\nu,s)G_{h-i\nu,s}(u,v)$$

PRODUCES THE CONFORMAL BLOCK DECOMPOSITION!

ACTING ALONG THESE LINES WE FOUND A CONFORMAL BLOCK DECOMPOSITION FOR HIGHER SPIN EXCHANGES!

HS EXCHANGE IN D=4

SIMPLIFICATION: CURRENTS ARE TRACELESS

$\begin{aligned} \mathcal{A}(P_1, P_2; P_3, P_4) \\ &= \frac{g_{00s}^2}{(P_1 \cdot P_2)(P_3 \cdot P_4)} \int_{-\infty}^{+\infty} d\nu \, \frac{2^{-2i\nu+2s-3}\Gamma(i\nu+\frac{1}{2})\Gamma^2\left(\frac{1}{4}(2s+2i\nu+1)\right)}{\pi^{5/2}\Gamma(i\nu)(2i\nu+2s+1)} \\ &\qquad \times \frac{\Gamma^2\left(\frac{1}{4}(2s-2i\nu+1)\right)}{(\nu^2+(s-\frac{1}{2})^2)} G_{h+i\nu,s}(u,v) \end{aligned}$

HS EXCHANGE IN D=4

SIMPLIFICATION: CURRENTS ARE TRACELESS

$$\begin{aligned} \mathcal{A}(P_1, P_2; P_3, P_4) \\ &= \frac{g_{00s}^2}{(P_1 \cdot P_2)(P_3 \cdot P_4)} \int_{-\infty}^{+\infty} d\nu \, \frac{2^{-2i\nu+2s-3}\Gamma(i\nu+\frac{1}{2})\Gamma^2\left(\frac{1}{4}(2s+2i\nu+1)\right)}{\pi^{5/2}\Gamma(i\nu)(2i\nu+2s+1)} \\ &\times \underbrace{\frac{\Gamma^2\left(\frac{1}{4}(2s-2i\nu+1)\right)}{(\nu^2+(s-\frac{1}{2})^2)}}_{G_{h+i\nu,s}(u,v)} \end{aligned}$$

CLOSING THE CONTOUR IN THE LOWER HALF PLANE WE PICK THE POLES AT:

$$\nu = -i(2n+s+1/2) \quad \Rightarrow \quad \Delta_s = h + i\nu = 2\Delta + n + s = 2d + 2n + s - 4$$

DOUBLE-TRACE OPERATORS

$$\mathcal{O}_{n,s} := \square^n (\phi^a \phi_a) \partial_{\mu_1} \dots \partial_{\mu_s} (\phi^b \phi_b) :+ \dots$$
$$\Delta = \Delta(\varphi_0) = \Delta(\phi^a \phi_a)$$

HS EXCHANGE IN D=4

SIMPLIFICATION: CURRENTS ARE TRACELESS

$$\begin{aligned} \mathcal{A}(P_1, P_2; P_3, P_4) \\ &= \frac{g_{00s}^2}{(P_1 \cdot P_2)(P_3 \cdot P_4)} \int_{-\infty}^{+\infty} d\nu \, \frac{2^{-2i\nu+2s-3}\Gamma(i\nu+\frac{1}{2})\Gamma^2\left(\frac{1}{4}(2s+2i\nu+1)\right)}{\pi^{5/2}\Gamma(i\nu)(2i\nu+2s+1)} \\ &\times \underbrace{\frac{\Gamma^2\left(\frac{1}{4}(2s-2i\nu+1)\right)}{(\nu^2+(s-\frac{1}{2})^2)}}_{G_{h+i\nu,s}(u,v)} \end{aligned}$$

CLOSING THE CONTOUR IN THE LOWER HALF PLANE WE PICK THE POLES AT:

$$\nu = -i(2n+s+1/2) \quad \Rightarrow \quad \Delta_s = h + i\nu = 2\Delta + n + s = 2d + 2n + s - 4$$

DOUBLE-TRACE OPERATORS

$$\mathcal{O}_{n,s} \coloneqq \Box^n(\phi^a \phi_a) \partial_{\mu_1} \dots \partial_{\mu_s}(\phi^b \phi_b) : + \dots$$

 $\Delta = \Delta(\varphi_0) = \Delta(\phi^a \phi_a)$

$$\nu = -i(s - 1/2) \quad \Rightarrow \quad \Delta_s = h + i\nu = \Delta + s = d + s - 2$$

SINGLE-TRACE OPERATORS (CONSERVED CURRENTS)

$$\mathcal{J}_s =: \phi^a \partial_{\mu_1} \dots \partial_{\mu_s} \phi_a :+ \dots$$

THE BASIS: $\mathcal{V}_{n,s} = J_{\mu_1\dots\mu_s} \Box^n (J^{\mu_1\dots\mu_s}), \quad s = 2k, \quad k \ge n \ge 0$

THE BASIS: $\mathcal{V}_{n,s} = J_{\mu_1...\mu_s} \Box^n (J^{\mu_1...\mu_s}), \quad s = 2k, \quad k \ge n \ge 0$

$$\mathcal{V} = J(x) \Box J(x) \longrightarrow J(x)\delta(x, x') \Box J(x') \longrightarrow J(x) \sum_{s} \int d\nu \Omega_{\nu,s}(x, x') \Box J(x')$$

THE BASIS:
$$\mathcal{V}_{n,s} = J_{\mu_1...\mu_s} \square^n (J^{\mu_1...\mu_s}), \quad s = 2k, \quad k \ge n \ge 0$$

$$\mathcal{V} = J(x) \Box J(x) \longrightarrow J(x)\delta(x,x') \Box J(x') \longrightarrow J(x) \sum_{s} \int d\nu \Omega_{\nu,s}(x,x') \Box J(x')$$

 $\mathcal{A}(P_1, P_2, P_3, P_4)$

$$= \frac{g_{n,s}}{(P_1 \cdot P_2)(P_3 \cdot P_4)} \int_{-\infty}^{+\infty} d\nu \frac{2^{-2i\nu+2s-3}\Gamma(i\nu+\frac{1}{2})\Gamma^2(\frac{1}{4}(2s+2i\nu+1))}{\pi^{5/2}\Gamma(i\nu)(2i\nu+2s+1)} \times (\nu^2+s+\frac{9}{4})^n\Gamma^2(\frac{1}{4}(2s-2i\nu+1))G_{h+i\nu,s}(u,v)$$

THE BASIS:
$$\mathcal{V}_{n,s} = J_{\mu_1...\mu_s} \Box^n (J^{\mu_1...\mu_s}), \quad s = 2k, \quad k \ge n \ge 0$$

$$\mathcal{V} = J(x) \Box J(x) \longrightarrow J(x)\delta(x,x') \Box J(x') \longrightarrow J(x) \sum_{s} \int d\nu \Omega_{\nu,s}(x,x') \Box J(x')$$

 $\mathcal{A}(P_1, P_2, P_3, P_4)$

$$= \frac{g_{n,s}}{(P_1 \cdot P_2)(P_3 \cdot P_4)} \int_{-\infty}^{+\infty} d\nu \frac{2^{-2i\nu+2s-3}\Gamma(i\nu+\frac{1}{2})\Gamma^2(\frac{1}{4}(2s+2i\nu+1))}{\pi^{5/2}\Gamma(i\nu)(2i\nu+2s+1)} \times (\nu^2+s+\frac{9}{4})^n\Gamma^2(\frac{1}{4}(2s-2i\nu+1))G_{h+i\nu,s}(u,v)$$

DOUBLE TRACE POLES

THE BASIS:
$$\mathcal{V}_{n,s} = J_{\mu_1...\mu_s} \square^n (J^{\mu_1...\mu_s}), \quad s = 2k, \quad k \ge n \ge 0$$

$$\mathcal{V} = J(x) \Box J(x) \longrightarrow J(x)\delta(x,x') \Box J(x') \longrightarrow J(x)\sum_{s} \int d\nu \Omega_{\nu,s}(x,x') \Box J(x')$$

 $\mathcal{A}(P_1, P_2, P_3, P_4)$

$$=\frac{g_{n,s}}{(P_1 \cdot P_2)(P_3 \cdot P_4)} \int_{-\infty}^{+\infty} d\nu \frac{2^{-2i\nu+2s-3}\Gamma(i\nu+\frac{1}{2})\Gamma^2(\frac{1}{4}(2s+2i\nu+1))}{\pi^{5/2}\Gamma(i\nu)(2i\nu+2s+1)} \times (\nu^2+s+\frac{9}{4})^n\Gamma^2(\frac{1}{4}(2s-2i\nu+1))G_{h+i\nu,s}(u,v)$$

THE ONLY DIFFERENCE WITH EXCHANGES

DOUBLE TRACE POLES

4-PT FUNCTION VIA WICK CONTRACTIONS

4-PT FUNCTION VIA WICK CONTRACTIONS

OPE:

4-PT FUNCTION VIA WICK CONTRACTIONS

4-PT FUNCTION VIA WICK CONTRACTIONS

SINGLE CHANNEL PROBLEM

 $= \quad "\frac{1}{3} \langle \mathcal{O}\mathcal{O}\mathcal{O}\mathcal{O} \rangle "$

USE REPRESENTATION

+

 $\int d\nu \,\alpha(\nu) \,G_{h+i\nu,s}(u,v)$

Solve for $p_s(\nu)$. Taylor series coefficients at $\nu^2 = -s - 9/4$ define $a_{n,s}$

THE VERTEX

$$\mathcal{V}_4 = \sum_{n,s} a_{n,s} J_{\mu_1\dots\mu_s} \square^n J^{\mu_1\dots\mu_s} \qquad s = 2k$$

$$\sum_{m} a_{m,s} (-1)^{m} (\nu^{2} + s + \frac{9}{4})^{m} = \frac{2^{8-s}}{N} \frac{1}{\nu^{2} + (s - \frac{1}{2})^{2}} \left[\frac{\pi}{\Gamma^{2} \left(\frac{2s - 2i\nu + 1}{4}\right) \Gamma^{2} \left(\frac{2s + 2i\nu + 1}{4}\right)} - \frac{1}{\Gamma^{2}(s)} \right]$$
$$-\frac{1}{N} \frac{(-1)^{\frac{s}{2}} \pi^{\frac{3}{2}} 2^{s + 5} \Gamma \left(s + \frac{3}{2}\right) \Gamma \left(\frac{s}{2} + \frac{1}{2}\right)}{\sqrt{2} \Gamma \left(\frac{s}{2} + 1\right) \Gamma (s + 1) \Gamma \left(\frac{3}{4} - \frac{i\nu}{2}\right) \Gamma \left(\frac{3}{4} + \frac{i\nu}{2}\right) \Gamma \left(s + \frac{1}{2} + i\nu\right) \Gamma \left(s + \frac{1}{2} - i\nu\right)}$$

THE VERTEX

$$\mathcal{V}_4 = \sum_{n,s} a_{n,s} J_{\mu_1 \dots \mu_s} \square^n J^{\mu_1 \dots \mu_s} \qquad s = 2k \qquad k \ge n$$

$$\sum_{m} a_{m,s} (-1)^{m} (\nu^{2} + s + \frac{9}{4})^{m} = \frac{2^{8-s}}{N} \frac{1}{\nu^{2} + (s - \frac{1}{2})^{2}} \left[\frac{\pi}{\Gamma^{2} \left(\frac{2s - 2i\nu + 1}{4}\right) \Gamma^{2} \left(\frac{2s + 2i\nu + 1}{4}\right)} - \frac{1}{\Gamma^{2}(s)} \right]$$
$$-\frac{1}{N} \frac{(-1)^{\frac{s}{2}} \pi^{\frac{3}{2}} 2^{s + 5} \Gamma \left(s + \frac{3}{2}\right) \Gamma \left(\frac{s}{2} + \frac{1}{2}\right)}{\sqrt{2} \Gamma \left(\frac{s}{2} + 1\right) \Gamma (s + 1) \Gamma \left(\frac{3}{4} - \frac{i\nu}{2}\right) \Gamma \left(\frac{3}{4} + \frac{i\nu}{2}\right) \Gamma \left(s + \frac{1}{2} + i\nu\right) \Gamma \left(s + \frac{1}{2} - i\nu\right)}$$

THE SET OF VERTICES USED IS EXCESSIVE

LOCALITY VS ∂^∞

IN FLAT SPACE:

MANDELSTAM VARIABLES

 $\mathcal{V}_4 \rightarrow \mathcal{A}(s,t,u)$

Poles in $\mathcal{A} \leftrightarrow$ exchanges

LOCALITY VS ∂^{∞}

IN FLAT SPACE:

MANDELSTAM VARIABLES

 $\mathcal{V}_4 \rightarrow \mathcal{A}(s,t,u)$

Poles in $\mathcal{A} \leftrightarrow$ exchanges

DEFINITION:

LOCALITY VS ∂^{∞}

IN FLAT SPACE:

MANDELSTAM VARIABLES

 $\mathcal{V}_4 \rightarrow \mathcal{A}(s,t,u)$

Poles in $\mathcal{A} \leftrightarrow$ exchanges

DEFINITION:

$$\phi^2 \frac{1}{\Box - \Lambda} \phi^2 \to \frac{1}{s - \Lambda}$$

 $\phi^2 e^{\Box} \phi^2 \to e^s$

NOT WEAKLY LOCAL

NOT WEAKLY LOCAL

WEAKLY LOCAL

LEAVES ROOM FOR LOCAL INFINITE DERIVATIVE INTERACTIONS

DEFINTION:

$$\{\mathcal{M}f\}(s) = \varphi(s) = \int_0^\infty x^{s-1} f(x) dx$$

$$\{\mathcal{M}^{-1}\varphi\}(x) = f(x) = \frac{1}{2\pi i} \int x^{-s}\varphi(s)ds$$

DEFINTION:

$$\{\mathcal{M}f\}(s) = \varphi(s) = \int_0^\infty x^{s-1} f(x) dx \qquad \qquad \{\mathcal{M}^{-1}\varphi\}(x) = f(x) = \frac{1}{2\pi i} \int x^{-s} \varphi(s) ds$$

ROUGHLY, WE JUST APPLY IT TO CONFORMAL CROSS-RATIOS:

$$\langle \mathcal{O}_1(P_1) \dots \mathcal{O}_n(P_n) \rangle \propto \int d\gamma \mathcal{M}(\gamma_{ij}) \prod_{i < j}^n \frac{\Gamma(\gamma_{ij})}{(-2P_i \cdot P_j)^{\gamma_{ij}}}$$

DEFINTION:

$$\{\mathcal{M}f\}(s) = \varphi(s) = \int_0^\infty x^{s-1} f(x) dx \qquad \qquad \{\mathcal{M}^{-1}\varphi\}(x) = f(x) = \frac{1}{2\pi i} \int x^{-s} \varphi(s) ds$$

ROUGHLY, WE JUST APPLY IT TO CONFORMAL CROSS-RATIOS:

$$\langle \mathcal{O}_1(P_1) \dots \mathcal{O}_n(P_n) \rangle \propto \int d\gamma \mathcal{M}(\gamma_{ij}) \prod_{i < j}^n \frac{\Gamma(\gamma_{ij})}{(-2P_i \cdot P_j)^{\gamma_{ij}}}$$

MELLIN AMPLITUDES		SCATTERING AMPLITUDES
FOR	\approx	FOR
WITTEN DIAGRAMS		FEYNMAN DIAGRAMS

[MACK'09], [PENEDONES'10], [PAULOS'11], [FITZPATRICK, KAPLAN, PENEDONES, RAJU, VAN REES'11],...

DEFINTION:

$$\{\mathcal{M}f\}(s) = \varphi(s) = \int_0^\infty x^{s-1} f(x) dx \qquad \qquad \{\mathcal{M}^{-1}\varphi\}(x) = f(x) = \frac{1}{2\pi i} \int x^{-s} \varphi(s) ds$$

ROUGHLY, WE JUST APPLY IT TO CONFORMAL CROSS-RATIOS:

$$\langle \mathcal{O}_1(P_1) \dots \mathcal{O}_n(P_n) \rangle \propto \int d\gamma \mathcal{M}(\gamma_{ij}) \prod_{i < j}^n \frac{\Gamma(\gamma_{ij})}{(-2P_i \cdot P_j)^{\gamma_{ij}}}$$

MELLIN AMPLITUDES		SCATTERING AMPLITUDES
FOR	\approx	FOR
WITTEN DIAGRAMS		FEYNMAN DIAGRAMS

[MACK'09], [PENEDONES'10], [PAULOS'11], [FITZPATRICK, KAPLAN, PENEDONES, RAJU, VAN REES'11],...

FOR EXAMPLE,

 $\mathcal{V}_n(\nabla,\phi) \rightarrow \mathcal{V}_n(\partial,\phi)$

 $\mathcal{M}(p_i \cdot p_j) pprox \mathcal{A}(p_i \cdot p_j)$ up to subleading terms in $p_i \cdot p_j$

DEFINITION:

HOLOGRAPHIC VERTEX

\mathcal{V}_4 is weakly local

BECAUSE CONTACT DIAGRAM DOES NOT CONTAIN SINGLE TRACE CONFORMAL BLOCKS

HOLOGRAPHIC VERTEX

\mathcal{V}_4 is weakly local

BECAUSE CONTACT DIAGRAM DOES NOT CONTAIN SINGLE TRACE CONFORMAL BLOCKS

BECAUSE COEFFICIENTS IN THE CONFORMAL BLOCK DECOMPOSITION ARE FINITE

HOLOGRAPHIC VERTEX

\mathcal{V}_4 is weakly local

BECAUSE CONTACT DIAGRAM DOES NOT CONTAIN SINGLE TRACE CONFORMAL BLOCKS

BECAUSE COEFFICIENTS IN THE CONFORMAL BLOCK DECOMPOSITION ARE FINITE

CONCLUSION

HOLOGRAPHIC QUARTIC VERTEX IS COMPUTED

HS PROPAGATORS

CURRENTS IN ADS, IMPROVEMENTS

BULK AMPLITUDES FOR 4PT EXCHANGES AND CONTACT DIAGRAMS

OPE ON THE CFT SIDE

LOCALITY OF THE HOLOGRAPHIC VERTEX

OUTLOOK

- MORE EXPLICIT RESULT. IS IT ZERO?
- IMPROVE TECHNIQUES. MELLIN AMPLITUDES?
- VERTICES FOR FIELDS WITH SPIN, HIGHER VERTICES
- HOLOGRAPHIC RECONSTRUCTION. GENERAL STATEMENTS ABOUT BULK LOCALITY
- HOLOGRAPHIC RECONSTRUCTION. AGREEMENT FOR ALL LOOPS?

COMPLETE HS MASSLESS PROPAGATOR

FRONSDAL EQUATION WITH A SOURCE

 $(1 - 1/4u_1^2 \partial_{u_1} \cdot \partial_{u_1}) \mathcal{F}_s(x_1, u_1, \nabla_1) \Pi_s(x_1, u_1, x_2, u_2) =$ $-\{\{(u_1 \cdot u_2)^2\}\} \delta(x_1, x_2) + (u_2 \cdot \nabla_2) \Lambda(x_1, u_1, x_2, u_2)$

COMPLETE HS MASSLESS PROPAGATOR

FRONSDAL EQUATION WITH A SOURCE

 $(1 - 1/4u_1^2 \partial_{u_1} \cdot \partial_{u_1}) \mathcal{F}_s(x_1, u_1, \nabla_1) \Pi_s(x_1, u_1, x_2, u_2) =$ $-\{\{(u_1 \cdot u_2)^2\}\} \delta(x_1, x_2) + (u_2 \cdot \nabla_2) \Lambda(x_1, u_1, x_2, u_2)$

$$\Pi_{s} = \sum_{j=0}^{\lfloor s/2 \rfloor} \int d\nu g_{s,j}(\nu) (g_{AA})^{j} (g'_{AA})^{j} \Omega_{\nu,s-2j}$$

$$g_{s,0}(\nu) = \frac{1}{(h+s-2)^2 + \nu^2}$$

$$g_{s,j}(\nu) = \frac{(1/2)_{j-1}}{2^{2j+3} \cdot j!} \frac{(s-2j+1)_{2j}}{(h+s-j)_j(h+s-j-3/2)_j} \times \frac{(h/2+s/2-j+i\nu/2)_{j-1}(h/2+s/2-j-i\nu/2)_{j-1}}{(h/2+s/2-j+1/2+i\nu/2)_j(h/2+s/2-j+1/2-i\nu/2)_j}$$

COMPLETE HS MASSLESS PROPAGATOR

FRONSDAL EQUATION WITH A SOURCE

 $(1 - 1/4u_1^2 \partial_{u_1} \cdot \partial_{u_1}) \mathcal{F}_s(x_1, u_1, \nabla_1) \Pi_s(x_1, u_1, x_2, u_2) =$ $-\{\{(u_1 \cdot u_2)^2\}\} \delta(x_1, x_2) + (u_2 \cdot \nabla_2) \Lambda(x_1, u_1, x_2, u_2)$

$$\Pi_{s} = \sum_{j=0}^{\lfloor s/2 \rfloor} \int d\nu g_{s,j}(\nu) (g_{AA})^{j} (g'_{AA})^{j} \Omega_{\nu,s-2j}$$

$$g_{s,0}(\nu) = \frac{1}{(h+s-2)^{2}+\nu^{2}}$$

$$g_{s,j}(\nu) = \frac{(1/2)_{j-1}}{2^{2j+3} \cdot j!} \frac{(s-2j+1)_{2j}}{(h+s-j)_{j}(h+s-j-3/2)_{j}} \times$$

$$\frac{(h/2+s/2-j+i\nu/2)_{j-1}(h/2+s/2-j-i\nu/2)_{j-1}}{(h/2+s/2-j+1/2-i\nu/2)_{j}} \qquad (a)_{n} = \frac{\Gamma(a+n)}{\Gamma(a)}$$

$$h = \frac{d}{2}$$

$$[(h+s-1)^2 + \nu^2][(h+s-3)^2 + \nu^2] \dots$$

$$\Delta = d+s-1, \ d+s-3, \ \dots$$

HS EXCHANGE IN GENERAL DIMENSIONS

$$\mathcal{A}_s(y_1, y_2, y_3, y_4) = \sum_{k=0}^{[s/2]} \int d\nu \, b_{s-2k}(\nu) F_{\nu, s-2k}(u, v)$$

$$b_{s-2k}(\nu) = (g_{00s})^2 \frac{4^{s-2k}g_{s,k}\tau_{s,k}^2\Gamma^2\left(\frac{3-2h-2(s-2k)}{2}\right)\Gamma^2(1-h-(s-2k))}{\pi^{3h+1}2^{4h+6(s-2k)+3}\Gamma^2(2-2h-2(s-2k))\Gamma^4(\Delta+1-h)}$$

$$\tau_{s,k}(\nu) = \sum_{m=0}^{k} \frac{2^{2k} \cdot k!}{m!(k-m)!} (\Delta - h - k + m + 1/2)_{k-m} \\ \times \left(\frac{h+s-2m+1+i\nu}{2}\right)_{m} \left(\frac{h+s-2m+1-i\nu}{2}\right)_{m}$$

HS EXCHANGE IN GENERAL DIMENSIONS

$$\mathcal{A}_s(y_1, y_2, y_3, y_4) = \sum_{k=0}^{[s/2]} \int d\nu \, b_{s-2k}(\nu) F_{\nu, s-2k}(u, v)$$

$$b_{s-2k}(\nu) = (g_{00s})^2 \frac{4^{s-2k}g_{s,k}\tau_{s,k}^2\Gamma^2\left(\frac{3-2h-2(s-2k)}{2}\right)\Gamma^2(1-h-(s-2k))}{\pi^{3h+1}2^{4h+6(s-2k)+3}\Gamma^2(2-2h-2(s-2k))\Gamma^4(\Delta+1-h)}$$

 $\Delta = \Delta(\varphi_0)$

$$\tau_{s,k}(\nu) = \sum_{m=0}^{k} \frac{2^{2k} \cdot k!}{m!(k-m)!} (\Delta - h - k + m + 1/2)_{k-m} \\ \times \left(\frac{h+s-2m+1+i\nu}{2}\right)_{m} \left(\frac{h+s-2m+1-i\nu}{2}\right)_{m}$$

DIRECT METHOD $\mathcal{O}_{n,s} \to \mathcal{O}\partial_{\mu_1} \dots \partial_{\mu_s} \Box^n \mathcal{O} + \dots$?

PROBLEM:

$$K_{\mu}\mathcal{O}_1 = 0, \quad K_{\mu}\mathcal{O}_2 = 0, \quad \Delta(\mathcal{O}_1) = \Delta_1, \quad \Delta(\mathcal{O}_2) = \Delta_2$$

FIND

$$\begin{aligned} \mathcal{O}_{n,s} \rightarrow \sum_{s_1,b_1,b_2} a_{s,n}(s_1,s_2;b_1,b_2,b_{12})\partial_{a(s_1)} \Box^{b_1} \partial^{m(b_{12})} \mathcal{O}_1 \partial_{a(s_2)} \Box^{b_2} \partial_{m(b_{12})} \mathcal{O}_2 \\ \text{such that} \qquad K_\mu \mathcal{O}_{n,s} = 0 \end{aligned}$$

DIRECT METHOD $\mathcal{O}_{n,s} \to \mathcal{O}\partial_{\mu_1} \dots \partial_{\mu_s} \Box^n \mathcal{O} + \dots$?

PROBLEM:

$$K_{\mu}\mathcal{O}_1 = 0, \quad K_{\mu}\mathcal{O}_2 = 0, \quad \Delta(\mathcal{O}_1) = \Delta_1, \quad \Delta(\mathcal{O}_2) = \Delta_2$$

FIND

$$\mathcal{O}_{n,s} \rightarrow \sum_{s_1,b_1,b_2} a_{s,n}(s_1,s_2;b_1,b_2,b_{12})\partial_{a(s_1)} \Box^{b_1} \partial^{m(b_{12})} \mathcal{O}_1 \partial_{a(s_2)} \Box^{b_2} \partial_{m(b_{12})} \mathcal{O}_2$$

Such that $K_{\mu} \mathcal{O}_{n,s} = 0$

$$a_{s,n}(s_1, s_2; b_1, b_2, b_{12}) = \frac{s!}{s_1! s_2!} \frac{(\Delta_1 + s_1 + 2b_1 + b_{12})_{s_2}}{(\Delta_2 + 2b_2 + b_{12})_{s_2}(\Delta_1 + s_1 + n)_{b_1 - b_2}(\Delta_2 + s_2 + n)_{b_2 - b_1}} \\ \times \frac{(-1)^{s_2 + b_1 + b_2} n!}{2^{b_1 + b_2} b_1! b_2! (n - b_1 - b_2)!} \frac{(\Delta_1 + s + n)_{b_1}(\Delta_2 + s + n - b_1)_{b_2}}{(\Delta_1 + 1 - h)_{b_1}(\Delta_2 + 1 - h)_{b_2}} \\ \times \sum_{k=0}^{b_2} \frac{b_2!}{k! (b_2 - k)!} \frac{(b_1 - k + 1)_k (\Delta_1 + b_1 - h - k + 1)_k}{(\Delta_2 + s + n - b_1)_k (\Delta_1 + s + n + b_1 - k)_k}.$$

ÅGREES WITH PARTIAL RESULTS IN THE LITERATURE

[MIKHAILOV'02][PENEDONES'10][FITZPATRICK, KAPLAN'11]

OPE COEFFICIENTS

From $\langle \mathcal{OOO}_{n,s} \rangle$ and $\langle \mathcal{O}_{n,s} \mathcal{O}_{n,s} \rangle$

$$\begin{split} C^2_{\mathcal{OOO}_{n,s}} &= \left(1 + \frac{4}{N} (-1)^n \frac{\Gamma(s)}{\Gamma(\frac{s}{2})} \frac{\left(\frac{\Delta}{2}\right)_{n+\frac{s}{2}}}{\left(\frac{\Delta+1}{2}\right)_{\frac{s}{2}} (\Delta)_{n+\frac{s}{2}}} \right) \\ &\times \frac{\left[(-1)^s + 1 \right] 2^s \left(\frac{\Delta}{2}\right)_n^2 (\Delta)_{s+n}^2}{s! n! \left(s + \frac{d}{2}\right)_n (2\Delta + n - d + 1)_n (2\Delta + 2n + s - 1)_s (2\Delta + n + s - \frac{d}{2})_n} \end{split}$$

AGREES WITH

$$d = 4$$
 result

[DOLAN, OSBORN'00]

 $O(N^0)$ part

[FITZPATRICK, KAPLAN'11]