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Regularization of theories with symmetries

Higher spin theories are an interesting direction of modern research. These
theories are invariant under some gauge symmetry transformations. There are
also supersymmetric higher spin theories. (Super)string theories can be
considered as (supersymmetric) higher spin theories.

Absence of ultraviolet divergencies is a very attractive feature of superstring
theories. Possibly, some other higher spin theories also have such a feature due
to large symmetries. So, in prospect, it would be interesting to investigate
quantum corrections in various higher spin theories.

For calculating quantum corrections one should regularize a theory. It is highly
desirable that the regularization does not break symmetries of the theory.

However, the most popular dimensional technique is not convenient in
supersymmetric theories.
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Dimensional technique in supersymmetric theories

Dimensional regularization breaks the supersymmetry and is not convenient for
calculations in supersymmetric theories. That is why supersymmetric theories
are mostly regularized by the dimensional reduction. However, the dimensional
reduction is not self-consistent.

W.Siegel, Phys.Lett. B 84 (1979) 193; B 94 (1980) 37.

Removing of the inconsistencies leads to the loss of explicit supersymmetry:

L.V.Avdeev, G.A.Chochia, A.A.Vladimirov, Phys.Lett. B 105 (1981) 272.

As a consequence, supersymmetry can be broken by quantum corrections in
higher loops.

L.V.Avdeev, Phys.Lett. B 117 (1982) 317;
L.V.Avdeev, A.A.Vladimirov, Nucl.Phys. B 219 (1983) 262.

Therefore, the dimensional technique is not convenient in supersymmetric
theories and it is desirable to use another regularization.
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Higher covariant derivative regularization

The higher covariant derivative regularization is a consistent regularization,
which does not break supersymmetry.

A.A.Slavnov, Nucl.Phys., B 31 (1971) 301; Theor.Math.Phys. 13 (1972) 1064.

In order to regularize a theory by higher derivatives it is necessary to add a
term with higher degrees of covariant derivatives. Then divergences remain
only in the one-loop approximation. These remaining divergences are
regularized by inserting the Pauli–Villars determinants.

A.A.Slavnov, Theor.Math.Phys. 33 (1977) 977.

The higher covariant derivative regularization can be generalized to the N = 1
supersymmetric case

V.K.Krivoshchekov, Theor.Math.Phys. 36 (1978) 745;
P.West, Nucl.Phys. B 268 (1986) 113.

Also it can be constructed for N = 2 supersymmetric theories

V.K.Krivoshchekov, Phys.Lett. B 149 (1984) 128;
I.L.Buchbinder, N.G.Pletnev, K.S., Phys.Lett. B 751 (2015) 434.
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Revealing structure of quantum corrections using the higher
covariant derivative

Higher covariant derivative regularization allows not only to calculate quantum
corrections in manifestly gauge and supersymmetric way. It also enables one to
reveal some interesting features of quantum corrections, which are not
manifest with other regularization.

In particular, we demonstrate how the higher derivative regularization allows
naturally to obtain the exact NSVZ β-function in N = 1 supersymmetric
gauge theories.

β(α) = −
α2

(
3C2 − T (R) + C(R)i

jγj
i(α)/r

)
2π(1− C2α/2π)

, where

tr (TATB) ≡ T (R) δAB ; (TA)i
k(TA)k

j ≡ C(R)i
j ;

fACDfBCD ≡ C2δ
AB ; r ≡ δAA.



~6

'

&

$

%

NSVZ β-function in N = 1 supersymmetric theories

The NSVZ β-function was obtained from different arguments: instantons,
anomalies etc.

V.Novikov, M.A.Shifman, A.Vainshtein, V.I.Zakharov, Nucl.Phys. B 229 (1983) 381;
Phys.Lett. B 166 (1985) 329; M.A.Shifman, A.I.Vainshtein, Nucl.Phys. B 277 (1986) 456;
D.R.T.Jones, Phys.Lett. B 123 (1983) 45.

Using the dimensional reduction and DR-scheme a β-function of N = 1
supersymmetric theories was calculated up to the four-loop approximation:

L.V.Avdeev, O.V.Tarasov, Phys.Lett. B 112 (1982) 356; I.Jack, D.R.T.Jones, C.G.North,
Phys.Lett. B 386 (1996) 138; Nucl.Phys. B 486 (1997) 479; R.V.Harlander, D.R.T.Jones,
P.Kant, L.Mihaila, M.Steinhauser, JHEP 0612 (2006) 024.

The result coincides with the NSVZ β-function only in one- and two-loop
approximations. In the higher loops it is necessary to make a special tuning of
the coupling constant. At present, there is no general prescription how to
construct this finite renormalization in all orders.
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NSVZ β-function for N = 1 SQED with Nf flavors

A simple particular case of the N = 1 supersymmetric Yang–Mills theory is the
N = 1 supersymmetric electrodynamics (SQED) with Nf flavors, which (in
the massless case) is described by the action

S =
1

4e2
0

Re
∫

d4x d2θ W aWa +
Nf∑
i=1

1
4

∫
d4x d4θ

(
φ∗i e

2V φi + φ̃∗i e
−2V φ̃i

)
,

where V is a real gauge superfield, φi and φ̃i with i = 1, . . . , Nf are chiral
matter superfields, and Wa = D̄2DaV/4. This case corresponds to

C2 = 0; C(R) = I; T (R) = 2Nf r = 1,

where I is the 2Nf × 2Nf unit matrix. Therefore, for N = 1 SQED with Nf

flavors the NSVZ β-function has the form

β(α) =
α2Nf

π

(
1− γ(α)

)
.

M.A.Shifman, A.I.Vainshtein, V.I.Zakharov, JETP Lett. 42 (1985) 224;
Phys.Lett. B 166 (1986) 334.
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N = 1 SQED with Nf flavors, regularized by higher derivatives

In order to regularize the theory by higher derivatives it is necessary to add the
higher derivative term to the action:

Sreg =
1

4e2
0

Re
∫

d4x d2θ W aR(∂2/Λ2)Wa

+
Nf∑
i=1

1
4

∫
d4x d4θ

(
φ∗i e

2V φi + φ̃∗i e
−2V φ̃i

)
,

where R(∂2/Λ2) is a regulator, e.g. R = 1 + ∂2n/Λ2n.

Adding the higher derivative term allows to remove all divergences beyond the
one-loop approximation. In order to remove one-loop divergencies we insert in
the generating functional the Pauli–Villars determinants:

Z[J ] =
∫

Dµ
∏
I

(
detPV (V,MI)

)Nf cI

exp
{

iSreg + iSgf + Sources
}

,∑
I

cI = 1;
∑
I

cIM
2
I = 0; MI = aIΛ, where aI 6= aI(e0).
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Renormalization

Γ(2) =
∫

d4p

(2π)4
d4θ

(
− 1

16π
V (−p) ∂2Π1/2V (p) d−1(α0,Λ/p)

+
1
4

Nf∑
i=1

(
φ∗i (−p, θ)φi(p, θ) + φ̃∗i (−p, θ)φ̃i(p, θ)

)
G(α0,Λ/p)

)
.

where ∂2Π1/2 is a supersymmetric transversal projection operator.

Then we defined the renormalized coupling constant α(α0,Λ/µ), requiring
that the inverse invariant charge d−1(α0(α, Λ/µ),Λ/p) is finite in the limit
Λ→∞. The renormalization constant Z3 is defined by

1
α0
≡ Z3(α, Λ/µ)

α
.

The renormalization constant Z is constructed, requiring that the renormalized
two-point Green function ZG is finite in the limit Λ→∞:

Gren(α, µ/p) = lim
Λ→∞

Z(α, Λ/µ)G(α0,Λ/p).
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The renormalization group functions
defined in terms of the bare coupling constant

In most original papers

V.Novikov, M.A.Shifman, A.Vainshtein, V.I.Zakharov, Nucl.Phys. B 229 (1983) 381;
Phys.Lett. B 166 (1985) 329; M.A.Shifman, A.I.Vainshtein, V.I.Zakharov, JETP Lett. 42
(1985) 224; Phys.Lett. B 166 (1986) 334.

the NSVZ β-function was derived for the renormalization group functions
defined in terms of the bare coupling constant

β
(
α0(α, Λ/µ)

)
≡ dα0(α, Λ/µ)

d lnΛ

∣∣∣
α=const

;

γi
j
(
α0(α, Λ/µ)

)
≡ −d lnZi

j(α,Λ/µ)
d lnΛ

∣∣∣
α=const

These renormalization group functions

1. are scheme independent for a fixed regularization;

2. depend on the regularization;

2. in all loops satisfy the NSVZ relation in the case of N = 1 SQED with Nf

flavors, regularized by higher derivatives.
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The renormalization group functions
defined in terms of the bare coupling constant

The above RG functions do not depend on the renormalization prescription,
because they can be expressed via unrenormalized Green functions:

0 = lim
p→0

dd−1(α0,Λ/p)
d lnΛ

∣∣∣
α=const

= lim
p→0

(∂d−1(α0,Λ/p)
∂α0

β(α0)−
∂d−1(α0,Λ/p)

∂ ln p

)
where in the last equality α0 and p are considered as independent variables.
Similarly, differentiating

lnG(α0,Λ/q) = lnGren(α, µ/q)− lnZ(α, Λ/µ)

+(terms vanishing in the limit q → 0)

with respect to lnΛ at a fixed value of α, in the limit q → 0 we obtain

γ(α0) = lim
q→0

(∂ lnG(α0,Λ/q)
∂α0

β(α0)−
∂ lnG(α0,Λ/q)

∂ ln q

)
.

Therefore, β(α0) and γ(α0) do not depend on an arbitrariness of choosing the
renormalization constants.
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NSVZ relation with the HD regularization

With the higher covariant derivative regularization loop integrals giving a
β-function defined in terms of the bare coupling constant are integrals of total
derivatives

A.Soloshenko, K.S., hep-th/0304083.

and even integrals of double total derivatives

A.V.Smilga, A.I.Vainshtein, Nucl.Phys. B 704 (2005) 445.

This allows to calculate one of the loop integrals analytically and obtain the
NSVZ relation for the RG functions defined in terms of the bare coupling
constant. In the Abelian case this has been done in all loops

K.S., Nucl.Phys. B 852 (2011) 71; JHEP 1408 (2014) 096.

β(α0)
α2

0

=
d

d lnΛ

(
d−1(α0,Λ/p)− α−1

0

)∣∣∣
p=0

=
Nf

π

(
1− d

d lnΛ
lnG(α0,Λ/q)

∣∣∣
q=0

)
=

Nf

π

(
1− γ(α0)

)
.
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Three-loop calculation for N = 1 SQED

β(α0)

α2
0

= 2πNf
d

d ln Λ

{ ∑
I

cI

∫
d4q

(2π)4
∂

∂qµ

∂

∂qµ

ln(q2 + M2)

q2
+ 4π

∫
d4q

(2π)4
d4k

(2π)4
e2

k2R2
k

× ∂

∂qµ

∂

∂qµ

(
1

q2(k + q)2
−

∑
I

cI
1

(q2 + M2
I )((k + q)2 + M2

I )

)[
Rk

(
1 +

e2Nf

4π2
ln

Λ

µ

)

−2e2Nf

 ∫
d4t

(2π)4
1

t2(k + t)2
−

∑
J

cJ

∫
d4t

(2π)4
1

(t2 + M2
J)((k + t)2 + M2

J)

)]

+4π

∫
d4q

(2π)4
d4k

(2π)4
d4l

(2π)4
e4

k2Rkl2Rl

∂

∂qµ

∂

∂qµ

{(
− 2k2

q2(q + k)2(q + l)2(q + k + l)2

+
2

q2(q + k)2(q + l)2

)
−

∑
I

cI

(
− 2(k2 + M2

I )

(q2 + M2
I )((q + k)2 + M2

I )((q + l)2 + M2
I )

× 1

((q + k + l)2 + M2
I )

+
2

(q2 + M2
I )((q + k)2 + M2

I )((q + l)2 + M2
I )
− 1

(q2 + M2
I )2

× 4M2
I

((q + k)2 + M2
I )((q + l)2 + M2

I )

)}
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Structure of the β-function with the dimensional reduction

In the case of using the higher derivative regularization

d

d lnΛ

(
d−1 − α−1

0

)∣∣∣
p=0

=
d

d lnΛ

(
One-loop− 16π3Nf

∫
d4q

(2π)4
δ4(q) lnG

)
.

The corresponding equality obtained with the dimensional reduction in the
three-loop approximation has the form

S.S.Aleshin, A.L.Kataev, K.S., arXiv:1511.05675.

d−1 − α−1
0 = One-loop− 8πNfΛε ε

1− ε

∫
ddq

(2π)d

1
q2(q + p)2

(lnG)1−loop

−8πNfΛε 2ε

1− 3ε/2

∫
ddq

(2π)d

1
q2(q + p)2

(lnG)2−loops,Nf
+ finite terms

+O(Nfα2
0) + O(α3

0).

and does not give the NSVZ relation in DR-scheme.
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The RG functions defined in terms of the renormalized
coupling constant

RG function defined in terms of the bare coupling constant are scheme
independent for a fixed regularization. However, RG functions are usually
defined by a different way, in terms of the renormalized coupling constant:

β̃
(
α(α0,Λ/µ)

)
≡ dα(α0,Λ/µ)

d lnµ

∣∣∣
α0=const

;

γ̃i
j
(
α(α0,Λ/µ)

)
≡ d lnZi

j(α(α0,Λ/µ),Λ/µ)
d lnµ

∣∣∣
α0=const

.

These RG functions are scheme-dependent. They coincide with the RG
functions defined in terms of the bare coupling constant, if the boundary
conditions

Z3(α, x0) = 1; Zi
j(α, x0) = 1

are imposed on the renormalization constants, where x0 is an arbitrary fixed
value of lnΛ/µ.

A.L.Kataev and K.S., Nucl.Phys. B 875 (2013) 459; Phys.Lett. B 730 (2014) 184;
Theor.Math.Phys. 181 (2014) 1531.
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The NSVZ-scheme with the higher derivatives

γ̃ (α(α0, x)) = −d lnZ (α(α0, x), x)
dx

= −∂ lnZ(α, x)
∂α

· ∂α(α0, x)
∂x

− ∂ lnZ (α(α0, x), x)
∂x

,

where the total derivative with respect to x = ln Λ/µ also acts on x inside α.
Calculating these expressions at the point x = x0 and taking into account that
∂ lnZ(α, x0)/∂α = 0 we obtain

γ̃(α0) = γ(α0).

The equality for the β-functions can be proved similarly.

The RG functions β̃ and γ̃ (defined in terms of the renormalized coupling
constant) are scheme-dependent. They satisfy the NSVZ relation only in a
certain subtraction scheme, called the NSVZ scheme, which is evidently fixed
in all loops by the boundary conditions

(Z3)NSVZ(αNSVZ, x0) = 1; ZNSVZ(αNSVZ, x0) = 1,

if the theory is regularized by higher derivatives.
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The scheme dependence in the three-loop approximation

The (three-loop) renormalized coupling constant for N = 1 SQED can be
calculated in the case Rk = 1 + k2n/Λ2n:

1
α0

=
1
α
− Nf

π

(
ln

Λ
µ

+ b1

)
− αNf

π2

(
ln

Λ
µ

+ b2

)
− α2Nf

π3

(Nf

2
ln2 Λ

µ

− ln
Λ
µ

(
Nf

n∑
I=1

cI ln aI + Nf +
1
2
−Nfb1

)
+ b3

)
+ O(α3),

where bi are arbitrary finite constants.

Similarly, the renormalization constant Z (in the two-loop approximation) for
the matter superfields is not also uniquely defined:

Z = 1 +
α

π

(
ln

Λ
µ

+ g1

)
+

α2(Nf + 1)
2π2

ln2 Λ
µ

−α2

π2
ln

Λ
µ

(
Nf

n∑
I=1

cI ln aI −Nfb1 + Nf +
1
2
− g1

)
+

α2g2

π2
+ O(α3),

where gi are other arbitrary finite constants.

The subtraction scheme is fixed by fixing values of the constants bi and gi.
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The scheme dependence in the three-loop approximation

The RG functions defined in terms of the bare coupling constant are

β(α0)
α2

0

=
Nf

π
+

α0Nf

π2
− α2

0Nf

π3

(
Nf

n∑
I=1

cI ln aI + Nf +
1
2

)
+ O(α3

0);

γ(α0) = −α0

π
+

α2
0

π2

(
Nf

n∑
I=1

cI ln aI + Nf +
1
2

)
+ O(α3

0).

They do not depend on the finite constants bi and gi (i.e. they are
scheme-independent) and satisfy the NSVZ relation.

The RG functions defined in terms of the renormalized coupling constant are

β̃(α)
α2

=
Nf

π
+

αNf

π2
− α2Nf

π3

(
Nf

n∑
I=1

cI ln aI + Nf +
1
2

+ Nf (b2 − b1)
)

+ O(α3)

γ̃(α) = −α

π
+

α2

π2

(
Nf +

1
2

+ Nf

n∑
I=1

cI ln aI −Nfb1 + Nfg1

)
+ O(α3)

and depend on a subtraction scheme.



~19

'

&

$

%

The NSVZ scheme in the three-loop approximation

The NSVZ scheme is determined by the conditions

α0(αNSVZ, x0) = αNSVZ; ZNSVZ(αNSVZ, x0) = 1

For simplicity we set g1 = 0 (this constant can be excluded by a redefinition of
µ). In this case x0 = 0 and the above conditions (for the NSVZ scheme) give

g2 = b1 = b2 = b3 = 0.

In this case in the considered approximations

β̃(α)
α2

=
Nf

π
+

αNf

π2
− α2Nf

π3

(
Nf

n∑
I=1

cI ln aI + Nf +
1
2

)
+ O(α3) =

β(α)
α2

;

γ̃(α) =
d lnZ

d lnµ
= −α

π
+

α2

π2

(
Nf +

1
2

+ Nf

n∑
I=1

cI ln aI

)
+ O(α3) = γ(α).

As a consequence, in this scheme the NSVZ relation is satisfied.
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RG function for N = 1 SQED in different subtraction schemes

NSVZ-scheme with the higher derivatives

γ̃NSVZ(α) = −α

π
+

α2

π2

(1
2

+ Nf

n∑
I=1

cI ln aI + Nf

)
+ O(α3);

β̃NSVZ(α) =
α2Nf

π

(
1 +

α

π
− α2

π2

(1
2

+ Nf

n∑
I=1

cI ln aI + Nf

)
+ O(α3)

)
.

MOM-scheme (The results with the dimensional reduction and with the higher
derivative regularization coincide.)

γ̃MOM(α) = −α

π
+

α2(1 + Nf )
2π2

+ O(α3);

β̃MOM(α) =
α2Nf

π

(
1 +

α

π
− α2

2π2

(
1 + 3Nf (1− ζ(3))

)
+ O(α3)

)
.

DR-scheme

γ̃DR(α) = −α

π
+

α2(2 + 2Nf )
4π2

+ O(α3);

β̃DR(α) =
α2Nf

π

(
1 +

α

π
− α2(2 + 3Nf )

4π2
+ O(α3)

)
.
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Simple non-Abelian example: exact expression for the Adler
D-function in N = 1 SQCD

M.A.Shifman and K.S., Phys.Rev.Lett. 114 (2015) 051601; Phys.Rev. D 91 (2015) 105008.

We consider N = 1 (massless) SQCD interacting with the Abelian gauge field:

S =
1

2g2
0

tr Re
∫

d4x d2θ W aWa +
1

4e2
0

Re
∫

d4x d2θ W aW a

+
Nf∑
f=1

1
4

∫
d4x d4θ

(
Φ+

f e2qf V +2V Φf + Φ̃+
f e−2qf V −2V t

Φ̃f

)
.

where the gauge superfield strengths are given by

Wa ≡
1
8
D̄2(e−2V Dae2V ); W a =

1
4
D̄2DaV .

We assume that the gauge group is SU(Nc)× U(1), and matter superfields
belong to the (anti)fundamental representation. The considered theory
contains two coupling constants:

αs =
g2

4π
and α =

e2

4π
.
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The Adler D-function

We consider quantum corrections to the electromagnetic coupling contant α,
which appear due to the quark loop with internal gluon and quark lines. The
diagrams containing internal photon lines are omitted. (Thus, the
electromagnetic field V is considered as an external field.)

Due to the Ward identity the two-point Green function of the superfield V is
transversal:

∆Γ(2) = − 1
16π

∫
d4p

(2π)4
d4θ V ∂2Π1/2V

(
d−1(α0, α0s,Λ/p)− α−1

0

)
.

We calculate the Adler function, which is defined in terms of the bare coupling
constant by the equation

D(α0s) =
3π

2
d

d lnΛ

(
d−1(α0, α0s,Λ/p)− α−1

0

)∣∣∣
p=0

=
3π

2α2
0

dα0

d lnΛ
.

Thus, it depends on regularization, but is independent of a subtraction scheme.



~23

'

&

$

%

The higher covariant derivative regularization

We add to the action the higher derivative term, e.g.,

SΛ =
1

2g2
0

tr Re
∫

d4x d2θ (eΩW ae−Ω)
[
R

(
− ∇̄

2∇2

16Λ2

)
− 1

]
(eΩWae−Ω).

The covariant derivatives have the form

∇a = e−Ω+
DaeΩ+

; ∇̄ȧ = eΩD̄ȧe−Ω, where e2V = eΩ+
eΩ,

Λ is a dimensionful parameter, and R− 1 is a regulator, such as R(0)− 1 = 0
and R(x)→∞ for x→∞, for example, R(x) = 1 + xn.

Remaining one-loop (sub)divergences are regularized by inserting the
Pauli–Villars determinants into the generating functional:

Γ[V ] = −i ln
∫

DV DΦDΦ̃
m∏

I=1

det(V,V ,MI)cI exp
(
i(S+SΛ+Sgf+Sghosts)

)
,

where MI = aIΛ and aI do not depend on α0s.



~24

'

&

$

%

Exact expression for the Adler function

It is possible to derive the following NSVZ-like exact expression for the Adler
function for the considered theory

D(α0s) =
3
2

∑
f

q2
f ·Nc

(
1− γ(α0s)

)
.

Note that, in general, the Adler D-function consists of two contributions

D(α0s) =
∑

f

q2
f D1(α0s) +

( ∑
f

qf

)2

D2(α0s),

which correspond to two different types of diagrams:
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Conclusion

X The higher covariant derivative regularization is a consistent regularization
which allows to calculate quantum corrections in a manifestly gauge and
supersymmetric way. That is why it is more convenient for supersymmetric
theories than the dimensional regularization (reduction). Possibly, in
prospect, it can be used for the supersymmetric higher spin theories.

X The higher covariant derivative regularization allows to reveal some
features of quantum corrections which are not manifest with other
regularization. For example, in supersymmetric gauge theories it allows to
reduce integrals for the β-function to integrals of δ-singularities.

X (At least in the Abelian case) the NSVZ relation is obtained for the RG
functions defined in terms of the bare coupling constant in the case of
using the higher derivative regularization. For the standard definition of
the RG functions it is possible to construct a simple prescription giving the
NSVZ scheme in all orders. It seems that all this results are also valid in
the non-Abelian case.
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Thank you for the attention!


