# Pseudo-local Theories on AdS: A Functional Class Proposal

#### Massimo Taronna

Université Libre de Bruxelles





Based on: JHEP 1511 (2015) 044 with E. Skvortsov

### HS-holography: Status & Motivations

Singlet Sector of O(N)/U(n) Vector Model



Bosonic Vasiliev's theory

Klebanov-Polyakov, Sezgin-Sundell (2002)

All known HS theories are pseudo-local also at cubic order(!)

- String Theory
- Vasiliev's equations



#### Cubic couplings have been classified by Metsaev and they are local

• Metsaev results extends to AdS via ambient space: AdS couplings have still bounded number of derivatives

$$\#\partial \le s_1 + s_2 + s_3$$

2

# Goals & Plan

#### The Goal:

• Study current interactions in HS theories

$$\Box \Phi_{\underline{m}(s)} + \ldots = J_{\underline{m}(s)}(\Phi, \Phi)$$

 Propose a functional class criterion that allows to deal with pseudo-local currents arising in string theory and Vasiliev's equations

$$\Box \Phi_{\underline{m}(s)} + \ldots = \sum_{k,l} a_{k,l} \Lambda^{-l} \nabla_{\underline{m}(s-k)\underline{n}(l)} \Phi \nabla_{\underline{m}(k)} \underline{^{n}(l)} \Phi + \ldots$$

#### We want to understand when there exists a "Metsaev" field frame for a pseudo-local theory at the cubic order

#### Plan of the talk:

- Unfolding and Jet space
- Pseudo-local currents and the functional class proposal
- Some checks of the proposal

# **Unfolding and Jet space**

 $\{\nabla^{b_1}...\nabla^{b_k}\Phi^{a_1...a_s}(x)\}_{k=0,...,\infty}$  $\Phi_{\underline{m}(s)}(x)$ X

*Jet Bundle:* each field and all of its derivatives as independent coordinates

It can be decomposed as:

- Gauge covariant components
- Gauge dependent components
- Components set to zero on the onshell surface
- Gauge dependent components encoded into 1-forms:  $\delta \omega = d\Lambda + \dots$
- Gauge covariant components encoded into 0-forms

$$e^{a}\,,\omega^{ab}$$
 (frame-like)  
 $W_{\mu
u
ho\sigma}\,,
abla_{
ho}W_{\mu
u
ho\sigma}\,,\dots$   
(Weyl and derivatives)

# 1-forms & 0-forms (4d)

• Gauge dependent component are represented by 1-forms (Vasiliev's 1980):

$$\omega^{(s)}(y,\bar{y}|x) = \sum_{k=0}^{s-1} \frac{1}{(s-1+k)!(s-1-k)!} \,\omega_{\alpha(s-1+k)\dot{\alpha}(s-1-k)}(x) y^{\alpha(s-1+k)} \bar{y}^{\dot{\alpha}(s-1-k)}$$
$$\omega_{\alpha(s-1+k)\dot{\alpha}(s-1-k)} \sim \nabla^{k < s} \Phi_{\alpha(s)}$$

• The gauge covariant components are (anti-)selfdual HS Weyl tensors + the scalar (Weyl module)

$$C^{(s)}(y,\bar{y}|x) = \sum_{k=0}^{\infty} \frac{1}{(s+k)!k!} C_{\alpha(s+k)\dot{\alpha}(k)}(x) y^{\alpha(s+k)} \bar{y}^{\dot{\alpha}(k)} \qquad C_{\alpha(s+k)\dot{\alpha}(k)} \sim \nabla^k C_{\alpha(s)}$$
$$C(y,\bar{y}) \sim J^{\infty}$$

### **Pseudo-Locality & Inverse Limit**

Pseudo-locality can be controlled by a formal construction in Category theory which is *"Inverse Limit"* 



### **Pseudo-Locality & Inverse Limit**

Pseudo-locality can be controlled by a formal construction in Category theory which is *"Inverse Limit"* 



### 0-0-s Currents & unfolding on AdS

• Current interactions are the simplest possible interactions:

 $J^{\underline{m}(s)} \sim \Phi^* \nabla^{\underline{m}(s)} \Phi + \dots \qquad \nabla_{\underline{n}} J^{\underline{nm}(s-1)} \approx 0$ 

In the unfolded language classifying currents is a cohomology problem

 $D\omega + \ldots = J(C, C)$   $DJ(C, C) \approx 0$  $D: V_{\infty} \to V_{\infty}$   $D^2 = 0$ 

• Improvements in this language are exact currents

#### Some facts we can prove:

- Local cohomology:  $s \le k < \infty$  and  $J \in V_k(C, C) 1$ -dim cohomology for each s, representative with s derivatives  $\tilde{J} \in V_s(C, C)$  (<u>Metsaev coupling</u> <u>canonical</u> <u>primary current</u>)
- Non-local cohomology:  $J \in V_{\infty}(C, C)$  the cohomology is empty.

Kessel, Lucena-Gómez, Skvortsov & M.T. '15; Skvortsov & M.T. '15

 $J = D\xi(C, C)$ 

### 0-0-s Currents & unfolding on AdS

#### What do we learn?

• Without locality conserved currents are *quasi-locally* exact

$$DJ = 0 \implies J = D\left(\sum_{l=0}^{\infty} g_l \Box^l \xi\right) = \sum_{l=0}^{\infty} g_l D\left(\Box^l \xi\right)$$

Each of this is a *local* Improvement

 Any pseudo-local conserved current is an (infinite) sum of conserved local Improvements

#### Conserved local currents span all conserved currents (!)

• In 4d such a basis for canonical traceless currents is schematically:

$$\left\{C_{\ldots\alpha(l)\dot{\alpha}(l)}C_{\ldots}^{\alpha(l)\dot{\alpha}(l)}\right\}_{l=0,\ldots,\infty} \sim \left\{\nabla_{\ldots\alpha(l)\dot{\alpha}(l)}\Phi^*\nabla_{\ldots}^{\alpha(l)\dot{\alpha}(l)}\Phi\right\}_{l=0,\ldots,\infty}$$

• There *exist* basis for conserved currents compatible with the inverse limit

$$[D, f_{\infty,j}] pprox 0$$
 9

## Locality: a pseudo-local proposal I

Use the inverse limit to propose a pseudo-local functional class for which the cohomology is non-trivial (!)



$$J_s = \lim_{j \to \infty} f_{\infty,j}(J_s) = \left(\lim_{j \to \infty} b_{j,J}^{(s)}\right) \tilde{J}_s + \text{Impr.}$$

- Read off the coefficient of the cohomology representative:
- If the limit exists and is finite the coupling admits a Metsaev frame

### Locality: a pseudo-local proposal II

• <u>Trivial</u> pseudo-local currents are:  $J_s \in V^\infty$ 

$$\lim_{j \to \infty} b_{j,J}^{(s)} = 0$$

$$f_{\infty,j}(J_s) = b_{j,J}^{(s)} \tilde{J}_s + \text{Impr.} \quad \& \quad \text{Impr.} \in V_j$$

• Given a basis one can compute the coefficients  $b_i$ 

primary canonical

$$j_{s,l} = [C_{\alpha(s)\dot{\alpha}(s)\beta(l)\dot{\beta}(l)}C^{\beta(l)\dot{\beta}(l)} + \dots]y^{\alpha(s)}\bar{y}^{\dot{\alpha}(s)} = c_l^{(s)}\tilde{J}_s + \text{Impr.}$$
$$c_l^{(s)} \sim l^{2s}(l!)^2$$

$$J_{s} = \sum_{l=0}^{\infty} g_{l} j_{s,l} = \lim_{j \to \infty} \left( \sum_{l=0}^{j} g_{l} c_{l}^{(s)} \right) \tilde{J}_{s} + \text{Impr.}$$
Converges if:  

$$g_{l} \prec \frac{1}{l^{2s+1}} \left( \frac{1}{l!} \right)^{2} \qquad b_{j,J}^{(s)}$$

#### This defines a pseudo-local functional class preserving the cohomology

## Locality: String Field Theory

0-0-s vertex in open string theory is also pseudo-local!

$$\mathcal{V}_{3} \sim |y_{12}y_{13}y_{23}| \exp\left[\alpha' \sum_{i \neq j} p_{i} \cdot p_{j} \ln |y_{ij}| - \frac{\sqrt{2\alpha'}}{y_{31}} p_{3} \cdot \alpha_{+1}\right] \Phi^{\star}(p_{2}) \Phi(p_{3}) \Phi_{\underline{m}(s)}(p_{1}) \alpha_{-1}^{\underline{m}(s)}$$

One can split the latter in improvements and canonical currents (local cohomology): *s=1*:

$$J^{\underline{m}} \sim \exp\left(-\alpha' \Box \ln \left|\frac{y_{23}}{y_{31}y_{12}}\right|\right) \Phi^{\star} \overleftrightarrow{\overset{\leftrightarrow}{\underline{m}}} \Phi = \Phi^{\star} \overleftrightarrow{\overset{\leftrightarrow}{\underline{m}}} \Phi - \alpha' \left(\ln \left|\frac{y_{23}}{y_{31}y_{12}}\right|\right) \Box \left(\Phi^{\star} \overleftrightarrow{\overset{\leftrightarrow}{\underline{m}}} \Phi\right) + \dots$$

- Canonical current comes with a finite coefficient compatible with Virasoro
- All infinite tail contributes! (<u>no</u> redefs involved)

$$J^{\underline{m}(s)} \sim \frac{1}{s!} \Phi^* \overleftrightarrow{\partial}^{\underline{m}(s)} \Phi + \text{Impr.}$$

M.T. 2010, Sagnotti & M.T. 2010

The locality proposal works for ST

Need to write the currents as primary plus Impr.

# Locality and Witten Diagrams (3d)

We have computed the Witten diagram associated to each basis element:

 $J_s =$ 



$$\sum_{l} g_{l} \Box^{l} J^{\text{can}} \left( J_{s} \mathcal{O}^{*} \mathcal{O} \right) \sim \left( \sum_{l} g_{l} c_{l}^{(s)} \right) \frac{1}{|x_{12}|} \left( \frac{x_{12}^{+}}{x_{31}^{+} x_{23}^{+}} \right)^{s}$$

$$\int_{AdS} \sum_{l} \stackrel{?}{\neq} \sum_{l} \int_{AdS}$$

This locality proposal ensures that infinite sum and AdS integral commute – otherwise some analyticity issue may occur (??)

#### Summary

#### We propose a functional class for pseudo-local theories

#### **Properties:**

- This functional class space works in String Field Theory
- It ensures that the integration over space time and infinite sum over derivatives commute (preserves holographic S-matrix)
- It is *tuned* to make primary canonical currents non-trivial cohomologies otherwise one can consider:

$$\tilde{J}_{s}^{\operatorname{can}} = \lim_{l \to \infty} \left( \tilde{J}_{s}^{\operatorname{can}} - \frac{1}{c_{l}^{(s)}} \Box^{l} \tilde{J}_{s}^{\operatorname{can}} \right) = \lim_{l \to \infty} \left( D\xi_{l} \right) \stackrel{?}{=} D\xi$$

 Puzzle: for divergent coefficient of the cohomology the Metsaev frame <u>cannot</u> <u>be reached or is singular</u> – Intrinsically non-local cubic?? Clash with Metsaev's classification??

#### **Resumming Vasiliev's Backreaction**

**Puzzle:** Metsaev's field frame seems singular

$$\frac{\cos(2\theta)}{12} \left(\sum_{n=1}^{\infty} l\right) J_{s=2}^{\text{can.}} \qquad \qquad \text{The series diverge as} \qquad l^{2s-3}$$

$$\frac{\cos(2\theta)}{3 \cdot 7!} \left(\sum_{l=1}^{\infty} \frac{l(l+1)(l+2)^2(3l+11)(5l(l+4)+3)}{(l+3)(l+4)}\right) J_{s=4}^{\text{can.}}$$
Skyortsov & M.T. 2015

#### Possible ways out:

- Vasiliev's theory may not admit a Metsaev frame (Vasiliev vs. Metsaev)
- The prescription of the equations should be improved
- The functional class needs to be enlarged (hard since we only not allow the redefinitions that would remove the cohomology)