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Aim:
understand tensionless string limit of AdS5/CFT4

– relation to HS theories, etc.



superstring in AdS5 × S5 ∼ SU(N) N = 4 SYM
string parameters: tension T and string coupling gs

T =
R2

2πα′
=

√
λ

2π
, gs = g2

YM
=

λ

N
, λ = g2

YM
N

’t Hooft limit: large N , fixed λ
λ→ 0: “zero-tension” limit T→ 0 is subtle
• does not mean R→ 0 or renormalization of string tension
[would contradict what is now known about duality from
integrability, supersymmetry and localization – exact BMN
disperison relation, exact results for BPS Wilson loops,
Konishi operator anomalous dimension]
• should correspond to theory in AdS5: free SYM is CFT –
should be dual to massless+ massive higher-spin theory inAdS5



• T→ 0 is strong-coupling limit in world sheet theory:
should be taken in quantum string theory –
start with exact string spectrum in AdS5 × S5 for fixed λ,
then take λ→ 0 in global AdS energy
→ match dimensions of primary operators in free SYM CFT
• same for correlation functions:
computed in AdS, finite in λ→ 0,
overall coefficients controlled by GN ∼ N−2

(modulo normalization to account for
spectrum degeneracy in T→ 0 limit)

• still: attempt to take T→ 0 directly in string action?
need to fix some charge – e.g. l.c. gauge momentum
P+ =

√
λp+=fixed or J= S5 angular momentum



• AdS5 × S5 l.c. gauge Lagrangian [Metsaev, Thorn, AT 02]

L = P+
[
ẋ2⊥+(ŻM− iηiρ

MNi
jη
jZNZ

−2)2+i(θiθ̇i+η
iη̇i−h.c.)

− Z−2(η2)2 − T2Z−4(p+)−2(x′2⊥ + Z ′MZ ′M)
]

− T
[
|Z|−3ηiρMij ZM(θ′j − i

√
2|Z|−1ηjx′) + h.c.

]
x⊥ = x1 + ix2 transverse coordinates of Poincare patch
ds2 = Z−2(dxmdxm + dZMdZM), ZM = ZnM , nMnM = 1

• T→ 0: drop all σ derivatives in I =
∫
dτ
∫
dσ L

parameter P+ =
√
λp+ plays role of ~−1 [AT 02]

IT→0 = P+

∫
dτ

∫
dσ
[
ẋ2⊥ + i(θiθ̇i + θiθ̇

i) + i(ηiη̇i + ηiη̇
i)

+ (ŻM − iηiρ
MNi

jη
jZNZ

−2)2 − Z−2(η2)2
]



• λ = 0 action describes collection of particles (“string bits”)
moving in AdS: integrable classical dynamics (geodesics)
• no ∂σ: huge degeneracy in spectrum – seen e.g.
in pp-wave case [Metsaev, AT 02; Lindstrom, Wulff et al 04]
leads to divergence in free partition function and correlators:
divide by gauge volume or consider ratios of corr. functions
• should be reflecting new gauge symmetry at λ = 0 in SYM:
∞ set of conserved HS currents→ massless HS fields in AdS
[Sundborg 00; Witten 00]
• spectrum: “leading” Regge trajectory of massless HS fields
+ higher trajectories of massive fields in AdS
• massless HS subsector: AdS5 Vasiliev-type theory dual
to bilinear cons. currents Js ∼ tr(Φ∂sΦ), tr(Fmn∂

sFmn), etc.
• infinite set of extra massive fields dual to “long” SYM ops:
n > 2 free fields On,s ∼ tr(Φ∂s1Φ...∂s2Φ)



• symbolic action of AdS dual for adjoint free field CFT:

S = N2
∫ ∑[

φs(∇2+...)φs+φ
3
s+...+ψn,s(∇2+M2

n,s)ψn,s+...
]

ψns – massive fields dual operators On,s with n fields
• puzzling feature: for N =∞ have any n < N =∞
but for finite N number of elementary fields is finite n < N :
trace factorizes (get multi-particle states) –
finite no. of “Regge trajectories”
• the coupling 1/N2 is not just as an overall Planck constant?
local action description is not appropriate unless N =∞?
• similar simpler model – adjoint U(N) scalar CFTd
AdSd+1 theory: massless HS sector +∞ set of massive fields;
can be also described as “zero-tension” limit
of some bosonic theory in AdSd+1 (no critical dim for T = 0)?
• even simpler model: vectorial AdS/CFT – no massive states



Taking zero-tension limit:
alternative: static or l.c. gauge adapted to BMN vacuum
t = τ and momentum along S1 ⊂ S5 fixed: pϕ = J
(i) for fixed J =

√
λJ can take T =

√
λ

2π
→ 0 limit

– dropping all σ-derivatives;
(ii) only remaining parameter is overall J factor

e.g. bosonic part of string action in Rt × Sn

LS = −1
2

[
G(y)∂aϕ∂aϕ+ F (y)∂ays∂ays

]
G =

(1− 1
4
y2s)

2

(1 + 1
4
y2s)

2
, F =

1

(1 + 1
4
y2s)

2

to fix pϕ = J gauge apply first T-duality ϕ→ ϕ̃

and then fix static gauge t = κτ, ϕ̃ = J σ



I = −
√
λ

∫
dτ

∫
dσ

2π

√
h

h =
[
1− F (y)ẏ2r

][
J 2G−1(y) + F (y)y′2s

]
+
[
F (y)ẏry

′
r

]2
set J =

√
λJ

I = −J
∫
dτ
∫

dσ
2π

√[
1− F (y)ẏ2r

][
G−1(y) + λ

J2F (y)y′2s
]

+ λ
J2

[
F (y)ẏry

′
r

]2
• zero tension limit: λ→ 0 for fixed J , i.e. J = J√

λ
→∞

removes all σ-derivative terms

I0 = −J
∫
dτ

∫
dσ

2π

√
G−1(y)

[
1− F (y)ẏ2r

]
= −J

∫
dτ

∫
dσ

2π

√
(1 + 1

4
y2r)

2 − ẏ2r
(1− 1

4
y2r)
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• J � 1 corresponds to semiclassical expansion
expanding in powers of ỹ = J1/2y:

I0 = 1
2

∫
dτ

∫
dσ

2π

[
˙̃y
2

r − ỹ2r +O(J−1ỹ4)
]

8+8 massive modes in AdS5 × S5 case

• same in flat space: F = G = 1

I0 = −J
∫
dτ

∫
dσ

2π

√
1− ẏ2r

collection of free particles
[tensionless limit in flat space is not defined unless
one fixes one momentum]



Conformal symmetry in zero-tension limit?
• flat space: α′ →∞, no scale, massless higher spins
– conformal invariance? Why?
• previous suggestion [Lindstrom, Sundborg, Theodoris 91]
T
√
ggab degenerate in the limit: can be replaced by V aV b

I =

∫
d2z V aV b∂aX

m∂bX
nGmn(X)

V a(z) auxiliary vector density –
target space Weyl invariance?
sp-time conformal group in flat case?
• apparently not: V a(z) is not same as V a(x(z))

that is required to compensate for conformal transformations
indeed: standard massless HS fields are not conformal for s > 1



Galilean conformal symmetry?

S = T

∫
d2ξ
√
−det γab , γab = ∂aX

m∂bX
nηmn

generalised momenta satisfy

P 2 + T2γγ00 = 0, Pm∂σX
m = 0

add with Lagrange multipliers and integrate out momenta

S =
∫
d2ξ 1

2λ

[
Ẋ2 − 2ρẊm∂σXm + ρ2∂σX

m∂σXm − 4λ2T2γγ00
]

S = −1
2
T

∫
d2ξ
√
−ggab∂aXm∂bX

nηmn

gab =

(
−1 ρ
ρ −ρ2 + 4λ2T2

)



tensionless limit: replace degenerate metric gab by V aV b

V a = 1√
2λ

(1, ρ)

ST→0 =

∫
d2ξ V aV b∂aX

m∂bX
nηmn

Residual symmetries:
under ξa → ξa + εa vector density V a transforms as:

δV a = −V β∂bε
a + εb∂bV

a + 1
2
V a∂bε

b

gauge:

V a = (v, 0) → ST→0 =

∫
d2ξ v ẊmẊnηmn

residual symmetry (analog of Virasoro): [Bagchi 14]

εa =
(
f ′(σ)τ + g(σ), f(σ)

)



δF = [f ′(σ)τ∂τ + f(σ)∂σ + g(σ)∂τ ]F = [L(f) +M(g)]F

• generators:

L(f) = f ′(σ)τ∂τ + f(σ)∂σ, M(g) = g(σ)∂τ

[L(f1), L(f2)] = L(f1f
′
2−f ′1f2), [L(f),M(g)] = M(fg′−f ′g)

[M(g1),M(g2)] = 0

[Lm, Ln] = (m−n)Lm+n, [Lm,Mn] = (m−n)Mm+n, [Mm,Mn] = 0

same as 2d Galilean Conformal Algebra
• Virasoro symmetry is replaced in “conformal gauge”
by 2d Galilean conformal symmetry

Ln = ieinσ(∂σ + inτ∂τ ), Mn = ieinσ∂τ

• GCA in any d: conjectured symmetry of Galilean CFT:
non-relativistic analog conformal symmetry (but∞-dimensional)



• infinite dim symmetry in any flat d (i = 1, , ...d− 1)

Ln = tn+1φt+(n−1)tnxi∂i, M i
n = tn+1∂i, Jnij = tn (xi∂j − xj∂i)

[Ln, Lm] = (n−m)Ln+m, [Ln,M
i
m] = (n−m)M i

n+m, [M i
n,M

j
m] = 0

• finite dim subgroup is contraction of relativistic conf algebra

L−1,0,+1 = H,D,K0 M i
−1,0,+1 = P i, Bi, Ki

K0, Ki special conformal and Bi Galilean boosts
• quantum version of the GCA in d = 2

[Ln, Lm] = (n−m)Ln+m + 1
12
cL(n3 − n)δn+m,0 ,

[Ln,Mm] = (n−m)Mn+m + 1
12
cM(n3 − n)δn+m,0 , [Mn,Mm] = 0.

contraction of two copies of the Virasoro algebra Ln, L̄n

Ln+L̄n = Ln, Ln−L̄n = 1
ε
Mn , c+ c̄ = cL, c− c̄ = 1

ε
cM



if c = c̄ then in the limit cL = cM = 0

no anomalies in Virasoro→ no anomalies in GCA
cf. no critical dimension for tensionless string [Lizzi et al 86]

• is this symmetry really fundamental for T = 0 string?...
Virasoro is residual gauge symmetry of tensile string;
same should be for this symmetry
• but unlikely it is actually responsible for
degeneracy of spectrum in T→ 0 limit
in non-trivial curved space case



Superstring in pp-wave limit of AdS5 × S5 [Metsaev 02]

ds2 = dx+dx− − f2x2Idx
+dx+ + dxIdxI

F+1234 = F+5678 = f = curv. scale , I = 1, ..., 8

• l.c. gauge: x+ = p+τ , Γ+θII = 0

L = ∂axI∂ax
I −m2xIxI+fermions

• eqs of motion: 8 massive bosons + 8 massive fermions
ωn =

√
k2n + m2, kn = 2πn, m = 2πα′p+f = 2πµ

• Hamiltonian H = P−

H = f(aI0ā
I
0 + 2θ̄0γ̄

−Πθ0 + 4)

+ 1
α′p+

∑
I=1,2

∞∑
n=1

√
n2 + (α′p+f)2 (aIIn ā

II
n + ηIn γ̄

−η̄In)



Connection to BMN limit of AdS5 × S5 (R = 1)
P+ = J =

√
λp+

(E − J)J =
∑

n

√
J2 + λn2, E − J =

∑
n

√
1 + λ

J2n2

J = p+ = J√
λ
→∞



• flat space limit is f → 0: P−p+ =(mass)2

• dimensionless parameters: m = 2πα′p+f ≡ 2πµ and α′(p+)2

• zero-tension limit: α′p+f →∞ [Metsaev, AT 02]

H0 = f
[
(aI0ā

I
0 + 2θ̄0γ̄

−Πθ0 + 4) +
∑
I=1,2

∞∑
n=1

(aIIn ā
II
n + ηIn γ̄

−η̄In)
]

• vacuum = product of zero-mode vac and Fock oscillator vac
āI0|0〉 = 0 , θ̄α0 |0〉 = 0 , āIIn |0〉 = 0 , η̄Iαn |0〉 = 0 , n = 1, 2, ....
• generic state: |Φ〉 = Φ(a0 , an , θ0 , ηn)|0〉
subspace of physical states N1|Φphys〉 = N2|Φphys〉
NI =

∑∞
n=1 kn(aIIn ā

II
n + ηIn γ̄

−η̄In)

• large degeneracy of states in energy



Degeneracy of states in 0-tension limit leads to divergences:
• flat space: M2 = 1

α′
N → 0 – appearance of massless fields

• partition function becomes divergent:
integral over longitudinal directions is no longer suppressed
producing volume of the gauge group that appears in the limit
• analogy: massive→ massless vector
Z =

∫
[dA] exp[−

∫
d4x(FabF

ab +m2AaA
a)]

Aa = A⊥a + ∂aφ

FabF
ab +m2AaA

a = A⊥a (−∂2 +m2)A⊥a +m2∂aφ∂
aφ

if m→ 0 integral over φ is no longer suppressed: jump in d.o.f.∫
[dφ] is volume of gauge group that appears in the limit m→ 0

one needs to divide over
∫

[dφ] to get finite partition function
still ratios of certain correlation functions have smooth limit
e.g. 〈FmnFkl....Fpq〉〈FmnFkl〉



Partition function in pp-wave background
8b+8f: free energy on RL × S1

β ×R8 [Grignani et al 03]

Fb = 1
β
Tr ln(1− e−βp0) = −

∑∞
k=1

1
kβ

Tr e−
kβ
2
(p+−p−)

F = Fb + Ff = −
∑∞

k=1
1−(−1)k

2kβ
Tr e−

kβ
2
(p+−p−)

F = − L
4π2α′

∫ ∞
0

dτ2
τ 22

∫ 1
2

− 1
2

dτ1

∞∑
k=1,3,5,...

e
− k2β2

4πα′τ2 G(τ1, τ2)− πL
24β2

G(τ1, τ2) ≡
∞∏

n=−∞

[1 + exp(−2πτ2
√
n2 + µ2 + 2πiτ1n)

1− exp(−2πτ2
√
n2 + µ2 + 2πiτ1n)

]8
L→∞ = length in longitudinal 9-th direction, µ = α′p+f

• flat-space limit: µ = 0

• naive µ→∞ limit: G→ 1, F = − πL
6β2 :

free energy density of gas of massless particles in 2d



• zero-tension limit: µ→∞ with scale f fixed:
α′p+ →∞ while β2p+=fixed, Lp+=fixed

G =
∞∏

n=−∞

(1 + e−2πτ
′
2+2πiτ1n

1− e−2πτ ′2+2πiτ1n

)8
, τ ′2 = µτ2

product is diverent: reflects degeneracy in the 0-tension limit

• interpretation: new gauge symmetry appearing in T = 0 limit
• divide over its volume to define partition function?
consider ratios of correlation functions?



Interactions: 3-point function [Klebanov,Spradlin,Volovich 02]

|V 〉 = exp
[
1
2

3∑
r,s=1

∞∑
m,n=−∞

aI†m(r)N
(rs)

mn a
J†
n(s)δIJ

]
|0〉

Neumann matrices for m,n > 0

N
(rs)

mn = δrsδmn −
[
C

1/2
(r) C

−1/2A(r)TΓ−1+ A(s)C−1/2C
1/2
(s)

]
mn

A(1)
mn = (−1)m+n+1

√
mn
π

y sin(πmy)
n2−m2y2

A(2)
mn = (−1)m

√
mn
π

(1−y) sin(πmy)
n2−m2(1−y)2

A(3)
mn = δmn, Cmn = mδmn, C(1)

mn = δmn
√
m2 + µ2y2

C(2)
mn = δmn

√
m2 + µ2(1− y)2, C(3)

mn = δmn
√
m2 + µ2

Bm =
πy(1−y)α′p+

(−1)m+1 sin(πmy)

m3/2

• µ→∞: simplifications
and divergences due to degeneracy



Open questions
• which is efficient description of T = 0 limit?
is there a constructive definition of (string ?) theory
directly in the limit?
or only makes sense as limit of exact quantum spectrum ?
• new gauge symmetries of string theory in T = 0 limit?
• quantum bosonic T = 0 string theory well-defined in AdSd+1?
dual to free scalar adjoint CFTd ?
• precise connection to massless HS theory in AdS ?
• how to reproduce e.g. spectrum and simplets correlators
of primary operators in gYM = 0 YM SU(N) theory
from tensionless string in AdS ?
• generalization to superstring in AdS dual to SYM case


