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Summary of results

toroidal theory characterized by parameters of the given particular solution [13]. In this paper we
are interested in toroidal conformal blocks and their dual realization. For the previous studies of the
toroidal conformal blocks in the framework of CFT see [14, 15, 16, 17, 18, 19, 20, 21].

We propose the following holographic interpretation of the linearized classical 1-point block on a
torus. The bulk geometry is identified with the thermal AdS, while both intermediate and external
fields of the classical block are represented by propagating massive particles with masses given by
classical conformal dimensions. Note that in the toroidal case the background is not produced by
fields of the 1-point function, both the external and intermediate particles are dynamical. This is
in contrast with conformal blocks on the Riemann sphere appeared in the AdS/CFT context, where
two heavy fields create singularities of the corresponding angle deficit/BTZ geometries. It is clear
that the presence of the heavy fields in that case was aimed to produce a cylindrical topology for the
boundary CFT which is appropriate for the consideration in the AdS/CFT context.
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Figure 1: One-point conformal block realized as the tadpole graph embedded into the thermal AdS.
The loop of the conformal block graph is identified with the non-contractible circle of the thermal
AdS. � and r� are external and intermediate conformal dimensions, ✏ “ k� and r✏ “ k r� are classical
conformal dimensions (k “ c{6).

The main result can be formulated as follows. We find that modulo regulator dependent (infinite)
terms the linearized version of 1-point classical block function f lin with ✏,r✏ being external and
intermediate classical conformal dimensions is given by

´ f lin “ Sthermal ` r✏ Sloop ` ✏ Sleg , (1.1)

where the first term is the holomorphic part of the 3d gravity action evaluated on the thermal AdS
space, while the second and third terms give the length of the tadpole graph attached at some
boundary point, see Fig. 1.

The outline of this paper is as follows. In section 2 we introduce the 1-point block on a torus,
discuss its classical limit and then define linearized version of the block. In general, the definition
requires introducing certain hierarchy of the conformal dimensions. In the case under consideration
it can be described by the ratio of the external and internal conformal dimensions of the fields. We
describe the series expansion of the block in terms of this parameter. In section 3 we develop the

2

−f lin = Sthermal + ε̃ Sloop + εSleg ,



Plan

• Toroidal 1-point blocks

• Tadpoles on thermal AdS

• AdS/CFT and modular invariance



Quantum toroidal block
• map from complex plane to cylinder
• identify edge states

The (holomorphic, quantum) 1-point conformal block of the primary field φ∆(z)

V(∆, ∆̃, c|q) = q∆̃−c/24
∞∑
n=0

qnVn(∆, ∆̃, c) ,

where
q = e2πi τ̂ ,

is the elliptic parameter on a torus with the modulus τ̂ , and the expansion coefficients are

Vn(∆, ∆̃, c) =
1

〈∆̃|φ∆|∆̃〉

∑
n=|M|=|N|

〈∆̃,M|φ∆|N, ∆̃〉
〈∆̃,M|N, ∆̃〉

.

Here, |∆̃,M〉 are the M-th level descendant vectors in the Verma module generated from the
primary state |∆̃〉. As usual, |M| denotes the minus sum of Virasoro generator indices. Note that
the 1-point conformal block is independent of the insertion point z.

Tadpole graph
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Given a 4d N = 2 SUSY gauge theory, one can construct the Seiberg-Witten prepotentional, which involves

a sum over instantons. Integrals over instanton moduli spaces require regularisation. For UV-finite theories

the AGT conjecture favours particular, Nekrasov’s way of regularization. It implies that Nekrasov’s partition

function equals conformal blocks in 2d theories with WNc chiral algebra. For Nc = 2 and one adjoint multiplet

it coincides with a torus 1-point Virasoro conformal block. We check the AGT relation between conformal

dimension and adjoint multiplet’s mass in this case and investigate the limit of the conformal block, which

corresponds to the large mass limit of the 4d theory e.i. the asymptotically free 4d N = 2 supersymmetric

Yang-Mills theory. Though technically more involved, the limit is the same as in the case of fundamental

multiplets, and this provides one more non-trivial check of AGT conjecture.

PACS: 11.25.Hf, 11.15.-q

1. INTRODUCTION

N = 2 supersymmetric Yang-Mills (SYM) theories

have attracted attention for rather a long time, because

they are ideally suited for the study of interplay between

perturbative and non-perturbative effects and for man-

ifestation of various dualities [1]-[4]. Depending on the

fields content, these theories exhibit all types of renor-

malization behaviour of effective coupling constant g: it

may tend to infinity (Landau pôle), and to zero (asymp-

totic freedom with dimensional transmutation in IR) or

remain constant (UV-finite).

In N = 2 SYM theory the low-energy effective ac-

tion is Abelian and its most important part is expressed

in terms of the prepotential. Prepotential contains one-

loop perturbative contribution and a far more sophis-

ticated non-peturbative part, obtained as a sum over

instantons. It was explicitly found by N.Seiberg and

E.Witten (SW) [1, 2] with the help of duality arguments,

and the answer was soon reformulated in terms of the

spectral surfaces and simple integrable systems [5, 6].

The spectral curves were later interpreted in terms of

branes. Straightforward evaluation of instanton sums

is rather difficult, especially because some of the inte-

grals over instanton moduli spaces diverge. See [7] for

a comprehensive review and references.

A very successful direct caluculation was finally pro-

vided by N.Nekrasov [8]. He introduced a new partition

function, depending on additional parameters ϵ1 and ϵ2,

1)e-mail:alba@itp.ac.ru, e-mail:andrey.morozov@itep.ru

such that the limit ϵ1, ϵ2 −→ 0 reproduces SW prepo-

tential.

Recently F.Alday, D.Gaiotto and Y.Tachikawa

(AGT) made a ground-breaking conjecture that

Nekrasov functions coincide with conformal blocks [9]

of 2d Liouville/Toda models, and the ϵ-parameters

are needed to allow arbitrary values of the central

charge in their chiral WNc algebras (for Nc = 2 the

chiral algebra is just the ordinary Virasoro). AGT

suggest a non-trivial association of conformal blocks

with UV-finite 4d quiver models. The 4-point tree

Virasoro block is associated with the Nc = 2 gauge

theory with 2Nc = 4 additional fundamental matter

supermultiplets.
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∆ext, 1

L−Y1 , ∆1, ∞ L−Y2 , ∆2, 0

=⇒

Triple vertex with two Virasoro descendants and the 1-point
toric conformal block, obtained by taking a trace over Ver-
mat module with a given dimension ∆. Each line is chara-
terized by dimension, by Ferrers diagram and external legs
are also labeled by the position of the vertex operator on the
Riemann surface.
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Classical toroidal block
In the c →∞ limit the 1-point classical block on a torus (see, e.g. Piatek 2013)

V(∆, ∆̃|q) = exp
[
−

c

6
f (ε, ε̃|q)

]
, ∆ = cε/6 , ∆̃ = c ε̃/6 ,

where

f (ε, ε̃|q) = (ε̃− 1/4) log q +
∞∑
n=1

qnfn(ε, ε̃) , where f1 =
ε2

2ε̃
, ...

Perturbative regime. Introduce the lightness parameter

δ = ε/ε̃ < 1 .

Then, changing from (ε, ε̃) to (δ, ε̃) we represent the classical conformal block as a double series
expansion in q and δ keeping terms at most linear in ε̃,

f (ε, ε̃|q) = f lin(δ, ε̃|q) +O(ε̃2) , where f lin(δ, ε̃|q) = (ε̃− 1/4) log q + ε̃
∞∑
n=1

fn(q)δ2n ,

with expansion coefficients written in a closed form as

fn = κnq
n (1− q)−2n+1 (qn−1 + γn−2q

n−2 + ...+ γ1) ,

where γi = (−)i
(2n+i−1

i

)
, i = 0, 1, ..., n − 1 are binomial coefficients, and κi are some constants.

• The 1-point block can be considered as a small deformation of the 0-point block where the
deformation parameter is identified with the external dimension.

• Even orders δ2n !



Thermal AdS

Euclidean thermal AdS space has the metric

ds2 = −τ2
(
1 +

r2

l2

)
dt2 +

(
1 +

r2

l2

)−1
dr2 + r2dφ2 ,

where τ is the pure imaginary modular parameter, and coordinates t ∼ t + 2π, φ ∼ φ+ 2π, r ≥ 0.

Thermal AdS

I The easiest case to start with is the one in which @M = T 2.
The simplest manifold with such boundary is Thermal AdS3.

Take Euclidean AdS3

ds2 = cosh2 ⇢dt2 + d⇢2 + sinh2 ⇢d�2

with the identification (t, �) ⇠ (t + �, �+ ✓)

� : Inverse temperature, ✓ : Angular potential

t

I The resulting space is a solid torus with a metric of constant
negative curvature

t

f

I The boundary @M is a T 2

with modulus ⌧ = 1
2⇡ (✓ + i�).

I As a quotient, this is just H3/Z.

Simone Giombi One-loop partition functions of 3D gravityTopologically, the thermal AdS is a solid torus with time running along the non-contractible cycle.

• (Re τ) = 0 — special (rectangular) torus!



Dual interpretation
Constant angle slice: annulus

where ⌧ is the pure imaginary modular parameter, and coordinates t „ t ` 2⇡, ' „ ' ` 2⇡, r • 0.
Topologically, the thermal AdS is a solid torus with time running along the non-contractible cycle.
In what follows, we set the AdS radius l “ 1.

r✏

✏

⇡

0

3⇡

2

⇡

2

Figure 2: Annulus and tadpole graph. The inner and outer black solid circles represent the conformal
boundary. The dashed circle goes along the r “ 0 radius. The blue loop is a deformation of the
dashed circle when the external field represented by the solid blue segment is switched on. Vertex
and boundary attachment points are at t “ ⇡. Routinely, time flows clockwise.

Within the geodesic approximation the gravity functional integral is to be evaluated near the
saddle-point given by a particular solution. It is known that in the low-temperature regime cor-
responding to Im ⌧ " 1 the thermal AdS dominates the functional integral [24]. It follows that
the on-shell classical action for the gravity plus the matter represented by massive external and
intermediate particles is given by

Stotal “ Sthermal ` r✏ Sloop ` ✏ Sleg , (3.2)

where the first term being the gravity action on the thermal AdS, the second and third terms being
the geodesic lengths of the loop and the radial line with conformal weights (2.5) identified in the
c Ñ 8 limit with masses. Below we show that that the linearized conformal block (2.10) is equal to
the total action (3.2) as f lin “ ´Stotal, cf. (1.1).

In the sequel we calculate the geodesic lengths within the classical mechanics of the external and
intermediate particles propagating on the surface level characterized by a constant angle. However,
the spherical coordinates in (3.1) are incomplete in the sense that a loop going along the zeroth radius
has no particular angle value. To complete the definition we change the parameterization of radial
and angle coordinates as ´8 † r † 8 and ' „ '`⇡. Then, the solid torus is represented as a stack
of annuluses on Fig. 2 rotated along the r “ 0 circle by angles from 0 to ⇡. The r “ 0 circle has

5

Stotal = Sthermal + ε̃ Sloop + ε Sleg ,

• ∆ = 0: 1-point conformal block =⇒ 0-point conformal block (Virasoro character). The
corresponding graph is a constant radius circle going along the origin r = 0.

Total action is
Stotal = Sthermal + ε̃ Sloop ,

where Sthermal = iπτ/2 in terms of the rescaled central charge k = c/6 (Maldacena & Strominger
1998), while the circumference is Sloop = −2πiτ we find that

Stotal

∣∣∣
ε=0

= −2πi (ε̃− 1/4) τ := −(ε̃− 1/4) log q = −f lin(ε, ε̃|q)
∣∣∣
ε=0

.



Worldline approach
The worldline action of a single massive particle with m ∼ ε is

S = ε

∫ λ
′′

λ
′

dλ
√

gtt ṫ2 + gφφφ̇2 + gρρρ̇2 , ds2 = −τ2
(
1 +

r2

l2

)
dt2 +

(
1 +

r2

l2

)−1
dr2 + r2dφ2

• Boundary coordinates t and φ are cyclic — a constant angle annulus (ρ,t).
• The normalization condition

|gmn(x)ẋm ẋn| = 1 : ṙ = ±
√

r2 − s2 + 1 , s ≡ i
|pt |
τ

.

• The circumference of the loop can be calculated by using the definition of the time
momentum pt = gtt ṫ. Representing the loop as two semi-loops we find that

ṫ =
i

τ

s

1 + r2
: Sloop =

2τ

is

∫ π

0
dt
(
1 + r2(t)

)
,

where the radial deviation r(t) is defined from the normalization condition.
• The boundary condition

r(0) = 0 , r(π) = ρ ,

where ρ is the vertex radial position. If the loop is a constant radius circle then we find that
s2 = 1 + r2, and, therefore, Sloop = −2πiτs. For r = 0 the length is Sloop = −2πiτ .

• The time momentum of the external leg is s = 0: radial direction

Sleg =

∫ Λ

ρ

dr
√

1 + r2
= −ArcSinh ρ + infinite cutoff (Λ)

The cutoff parameter Λ is introduced to regularize the conformal boundary position.



Equilibrium equation
Minimizing the vertex configuration of three lines

ε̃ (p1
m + p2

m) + εp0
m = 0 ,

where

• p1,2 are the ingoing/outgoing intermediate momenta and p0 is an external momentum
• Spacetime index takes just two values m = (t, r)
• Any closed curve has |p1

m| = |p2
m| while overall sings can be different. Indeed, their relative

sign ± depends on whether we take m = t or m = r .

Time component is given by

ε̃(s1 − s2) + εs0 = 0 , s ≡ i
|pt |
τ

As the loop has s1 = s2 ≡ s we find out that s0 = 0 (it goes along the radial direction!).
Radial component is more interesting

ε̃(ṙ1 + ṙ2)− εṙ0 = 0 ,

where ṙ can be found from the normalization condition. Since r1 = r2 we find that δṙ0 = 2ṙ1,
where δ = ε/ε̃. Then, the vertex position ρ is expressed in terms of the loop momentum s as

ρ =

√
s2

1− δ2/4
− 1 .

We see that if the external field is decoupled δ = 0 then there is the following solution

δ = 0 : s = 1 , ρ = 0 .



Radial deviation equation

To find how the loop radial deviation evolves in time we use the time loop momentum pt = gtt ṫ
and recall that ṙ is given by the normalization condition. Their ratio

dt

dr
=

i

τ

s

(1 + r2)
√
r2 − s2 + 1

, s ≡ i
|pt |
τ

It integrates to radial deviation equation

e−2iτ t(r2 + 1)(s2 − 1) = −r(2s
√

r2 − s2 + 1 + rs2 + r) + s2 − 1 ,

where the time dependence is given only via the exponential. Note that the modular parameter
enters only through this exponential and this is how the elliptic parameter appears in the final
expressions.

Solving the radial deviation equation as r = r(t) can be problematic — no exact solutions!

Instead, we develop the deformation method which allows us to find s and r(t) as a power series
in δ with the leading term given by the seed solution s = 1 and r(t) = 0.

• Our strategy: Solve the equilibrium and radial deviation equations perturbatively in δ!



Perturbative expansion
We consider the tadpole graph perturbatively starting from the seed solution corresponding to the
loop of constant radius and adding small interaction with the external leg. In this way we are led
to calculate the geodesic length function

L = ε̃ Sloop(τ, ε, ε̃) + ε Sleg (τ, ε, ε̃) ,

Both lengths can be represented as power series in the lightness parameter δ as

Sloop =
∞∑
n=0

S
(n)
loop(τ)δn , Sleg =

∞∑
n=0

S
(n)
leg (τ)δn ,

where S
(0)
loop(τ) = −2πiτ and S

(0)
leg (τ) = 0. Noting that ε̃δn = εδn−1 the length function is given by

L = −2πi ε̃τ + ε̃
∞∑
n=1

[
S

(n)
loop(τ) + S

(n−1)
leg (τ)

]
δn .

Comparing with the linearized block expression we find the condition

S
(n)
loop(τ) + S

(n−1)
leg (τ) = 0 , for n = 2k + 1 , k = 0, 1, 2, ... .

Time momentum and the radial deviation along with the vertex position are expanded as

s =
∞∑
n=0

s2n δ
2n , r(t) =

∞∑
n=0

r2n+1(t) δ2n+1 , ρ = r(π)

where the seed values are s0 = 1 and r0(t) = 0.



More calculations ...
We find

r1(t) =
1

2
sech (−iπτ) sinh (−iτ t) , r3(t) =

1

16
sech3 (−iπτ) sinh (−iτ t) cosh2 (−iτ t) , ...

and the loop momentum corrections

s2 = −
1

8
sech2 (−iπτ) , s4 = −

1

128
sech4 (−iπτ) , ...

Substituting t = π we find the vertex position corrections

ρ = g(δ) tanh (−iπτ) , where g(δ) =
1

2
δ +

1

16
δ2 +

3

256
δ3 + ... .

Now, it is straightforward to find lower order corrections to the loop length and the leg length:

S
(2)
loop(τ) = −

1

4
tanh (−iπτ) , S

(1)
leg (τ) =

1

2
tanh (−iπτ) ,

Identifying the modular parameters as τ → τ + 1
2

in the conformal parametrization

S
(2)
loop(q) := f1(q) +

1

4
, S

(1)
leg (q) := −2f1(q)−

1

2
,

and so modulo an additive constant the length function in the first nontrivial order is

L(q) := −ε̃ log q − ε̃ δ2f1(q) +O(δ4) .

Adding the thermal AdS action term we find out that Sthermal (q) + L(ε, ε̃|q) = −f (ε, ε̃|q).



...and final interpretation

We observe that the AdS/CFT correspondence holds for

• τCFT = τAdS + 1
2

(exact correspondence)

• Im τAdS →∞ (low-temperature approximation)



Conclusions & outlooks

Conclusions
• We considered the classical 1-point conformal block on a torus and defined its linearized

version: intermediate is heavier than external!

• Thermal AdS is the background and the block function is realized as the geodesic length of
the tadpole + the thermal action.

Outlooks

• Monodromy approach

• Higher point blocks and their dual interpretation, including WN symmetry.

• Holographic entropies, worldline interpretation of toroidal conformal blocks as Wilson lines
of CS formulation, etc.


