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 Our goal: 

•   Holographic diagnostic of the black hole  creation 

•  Explicit model for thermalization  
   (non-equilibrium correlators that in some limit  
    approach to thermal correlators) 
 
This is related with the problem of quark-gluon 
plasma formation.        I.A., ``Holographic approach to quark-gluon heavy 
                                                                          plasma in ion collisions,’’Phys.Usp.57 (2014) 527  



Two main points 

•  Thermal Green functions in the 
holographic approach correspond to a 
bulk with  a black hole (or a black brane) 

•  Thermalization holographically means  
    a black hole creation 



Our modest  goal: 

How this works in D=3 



Simplest matter  -  point particles 

In D=3 point particles admit a simple description 

Why D=3 ? 



Point particle in AdS3 

•  In 3 dim Einstein gravity:  
   point particle produces  a conical singularity,  
   holonomy u of which is defined by the mass 
    of the particle and its kinetics   
  
                S. Deser, R. Jackiw, and G. 't Hooft, 1984 



Point particle in AdS3 
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Metric as AdS3 in the global coordinates, but � 2 (0, 2⇡A)



AdS3 

Relations with the Poincare-disk 
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This is a 3-dim project. The idea is very simple. More then for 10 years its known an ”explicit” model
of BH creation in 3-dim case. By the BH I mean the BTZ black hole.

2-dim thermal correlators have the form

G�,T

=

✓
1

sinh x/T

◆�

(1)

So we want to start with

G�,0 =

✓
1

x

◆�

(2)

perturb the system and end up (1). Perturbations supposed to be produced in the bulk.
As I have just said we have in our disposal the model of BH creations. This model deals with 3-dim

AdS and ultra relativistic colliding particles in AdS3 [3].

2 Setup

To describe the model I have to remind you the geometry of point particles in 3 dim space-time [4, 5]. I’ll
describe point particles in the AdS3. For this purpose it is useful to consider the AdS3 as the SL(2, R)
group manifold. Making use of this isometry one can represent points of the spacetime in a form of real
2⇥ 2 matrices.

The group manifold SL(2, R), consisting of real 2 ⇥ 2 matrices with unit determinant. As a basis of
2⇥ 2 matrices, we introduce the unit matrix 1, and the gamma matrices

�0 =

✓
0 1
�1 0

◆
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, �2 =
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We expand a generic matrix x in this basis as

x = x3 1+ xa
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1

2
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2
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a
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The condition for the determinant to be one is
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The relation with the barrel coordinates is

x = x31+
X
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µ
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⌦(⌧) = cos ⌧1+ sin ⌧ �0 �(�) = cos��1 + sin��2. (9)

Relations with the Poincare-disk and Schwarzschild coordinates are
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Parametrization 
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In 3-dim 

•  We take the cylinder, put there particles,  
   accelerate  them and  
   examine when we can get the black hole 
 

 
 

 What we do in D=3:  



In 3-dim 
•  An "explicit" model of BH creation in  AdS3 

•    H.-J.Matschull,  ``Black hole creation in 
(2+1)-dimensions,’’  Class. Quant.Grav,16, 
1069 (1999) 

 



Refs: 
•  This is a long term project: 
•  I.A.,  A. Bagrov, “Holographic dual of a conical 

defect”, TMP, 182 (2015), 1–22 
•  I.A., A. Bagrov, P. Saterskog, K. Schalm, Holographic dual 

of a time machine, arXiv:1508.04440 
•  I.A., D.Ageev, M.Tihanovskaya, M.Khramtsov, 1512.03362 
                                          1512.03363; 1604.08905 
•  I.A.,M.Khramtsov, JHEP 1604, 121 (2016) 

•  Work in progress,  



AdS3 as the SL(2,R) group manifold 

SL(2,R) 2x2 matrices with unit determinant 
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Stationary point particle in AdS3 at the origin 
 

Prescription:  one removes a wedge bounded by two faces 
separated by an   angle  
 

⌧

�

�

Figure 1. 3d picture of the AdS3 deformed by static particle. The space between two

surfaces incident from the origin of the AdS is the faces of the wedge to cut out and identify.

two faces that are some constant angle surfaces. These two faces are identified in the

constant t sections. In matrix notation the first face of the wedge is:

x1�st face

= cosh�⌦(t) + sinh��(�↵/2) (2.18)

The face is parameterized by two values: ↵ and t, ↵ is proportional to the mass of

the particle and t is time coordinate. The second face of the wedge can be obtained

by rotation of the first face by the angle ↵. Writing out rotation:

x
rot

= u

�1
rot

x u

rot

(2.19)

u

rot

= ⌦(�↵/2) (2.20)

we get

x2�nd face

= ⌦(↵/2) · x1�st face

· ⌦(�↵/2) (2.21)

where ⌦(↵/2) is given by (2.10).

In Fig.2.2.1 we plot the AdS3 deformed by static point particle.

2.2.2 Moving massive particle in AdS3

To consider massive moving particle and get it’s group language description one

should boost it. Massive particle moves along the periodic worldline oscillating in

the bulk of the AdS3. The constant angle faces of the wedges to be identified become

some surfaces, that one can get boosting wedge of the static particle. These faces

are glued as in the static case along the constant time slices and symmetrically with

respect to the boost direction, but now they exhibits some nontrivial isometry due

to nontrivial holonomy induced by moving particle.
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Figure 1. The AdS3 deformed by the static particle. Two constant angle surfaces incident

from the origin of the AdS are the faces of the wedge to cut out and identify.

ds2 = � cosh2 �dt2 + d�2 + sinh2 �d�2,
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Let us now consider the static particle case from the group language. Resting
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↵̄ ⇠ m, ↵̄ = 2⇡ � ↵

Fixed points represent a point like source  

⌦(↵/2)⌦(t)⌦(�↵/2) = ⌦(t)

A>1 
Picture from: 
1603.08925 

A<1 



Moving  massive particle 
x2�ndmov face

= ⌦u(↵/2, ⇠/2) · x1�stmov face

· ⌦u(�↵/2, ⇠/2)

⌦u(�↵/2, ⇠/2) = u�1(⇠/2)⌦ (�↵/2)u(⇠/2)

u(⇠/2) = cosh(⇠/2)1� sinh(⇠/2) �2
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time-like geodesics 

Massive particle cannot 
 reach the boundary 



Ultrarelativistic particle 
 

A massless particle with a light-like momentum vector pointing 
into the x-direction. Its holonomy is 
 

u = 1 + tan ✏

✓
0 2
0 0

◆
, u�1 = 1� tan ✏

✓
0 2
0 0

◆

The isometry transformation 

x ! x

⇤ = u�1
xu

The fixed points lie on the world line r = tan(t/2), � = 0.



A point (t, r,��) 2 wedge� is mapped onto (t, r,�) 2 wedge
+

. The matrices

representing these points on the group manifold are

w± =
1 + r

2

1� r

2

⌦(t) +
2 r

1� r

2

�(±�). (2.9)

Writing

uw
+

= w�u (2.10)

we find that the faces wedge
+

and wedge� are uniquely determined by the following

coordinate relations,

wedge± :
2 r

1 + r

2

sin(✏± �) = sin t sin ✏. (2.11)

The lines wedge
+

and wedge� are moving upwards/downwards, and their intersec-

tion, the fixed point of the isometry at

r = tan(t/2), (2.12)

moves from the left to the right. The space manifold is obtained by cutting out

the wedge behind the particle and identifying the boundaries marked by the double

strokes. The resulting spacetime manifold has a constant curvature everywhere,

except on the world line. The map that provides the identification is an isometry of

anti-de-Sitter space, and therefore there is no extra curvature introduced by gluing

together the two faces of the wedge.

In Fig.1 these curves are shown for di↵erent values of t. In Fig.2 the 3D picture

is presented.

A B

Figure 1. The 2d plot of curves w±, ✏ = ⇡/4 (A) and ✏ = 0.45⇡ (B) for di↵erent time

t. From left to right(on each plot) curves corresponds to constant time t sections for

t = �1.1, �0.4, 0, 0.3, 1.47.
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A B

Figure 2. The 3d plot of isometry lines that the point-like particle produces. The green

line on the boundary shows the allowed zone for the final time moment, t = ⇡/2, the red

coloring corresponds to the cutted space. ✏ = ⇡/4 (A) and ✏ = 0.45⇡ (B).

2.2.3 Two moving massless particles.

Let’s proceed to the AdS

3

space deformed by two ultrarelativistic particles starting

from the opposite points of the AdS
3

boundary with the angles 0 and ⇡ in the moment

t = �⇡

2

.

As it was mentioned, point sources in dimension 3 deform AdS

3

in a local way,

so we for each particle and wedge faces we can take the result for wedges from the

previous subsection.

In Fig. 3A. we plot the process before moment of collision, i.e. before t = 0.

The space between faces of the wedges of the left and on the right side are deleted.

The picture after collision is presented in Fig. 3B. The spacetime is deleted between

two faces of the wedges corresponding to the left and right particles, i.e. on the left

hand side with respect to the left particle and on the right hand side with respect to

the right particle.

2.3 Correlators in geodesics approximation

We want to calculate correlators of scalar operators in the theory dual to the AdS

3

space deformed by one or two ultrarelativistic point particles.

< �
�

(t
a

,�

a

)�
�

(t
b

,�

b

) >
✏

(2.13)
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Ultrarelativistic particle 

Increasing  
energy  



Container with flexible wall 

Analogy with HIC 



Two wedges,  
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A B

Figure 3. The 2d plot of two colliding massless particles picture for ✏ = ⇡/4. Before

collision(A) and after collision(B) for di↵erent times t. On left plot we take t from left to

right we plot (for left particle) them at t = �1.17, �0.67, �0.3, 0. For the right plot we

take t from down to up t = 0.1, 0.5, 0.9, 1.3.

for the points (t
i

,�

i

), i = a, b belong the leaving space in all period of the evolution

�⇡/2  t

1

 ⇡/2, �⇡/2  t

2

 ⇡/2. We use the geodesics approximation so that

< �
�

(t
a

,�

a

)�
�

(t
b

,�

b

) >
✏

=
X

l(a, b)

e

��Lren(ta,�a;tb,�b)
, (2.14)

where l(a, b) is all geodesics connecting two points on the boundary (�
a

, t

a

) and

(�
b

, t

b

). Note that the geodesic length between two points in AdS is given by

coshL
AdS

(t
1

,�

1

, r

1

; t
2

,�

2

, r

2

) = �x

0,1

x

0,2

� x

3,1

x

3,2

+ x

1,1

x

1,2

+ x

2,1

x

2,2

(2.15)

here x

i,A

, i = 0, 1, 2, 3, A = 1, 2 are embedding plane coordinates, see (2.1). For the

endpoint near the boundary one has

L
b

(t
1

,�

1

, r

1

; t
2

,�

2

,�

2

)|
�1,2!1 = ln


� cos(t

1

� t

2

) + cos(�
1

� �

2

)

2

�
+ �

1

+ �

2

(2.16)

removing the divergent parts one gets the standard correlator on the cylinder

L
AdS,ren

(t
1

,�

1

; t
2

,�

2

) = ln

✓
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Figure 6: The creation of a black hole

Before showing that there is such a horizon, let us first consider J itself. In figure 6, it is that
part of the boundary of the disc, which is also a boundary of the shaded region. For t ≤ −π/2,
this is the full boundary of the Poincaré disc. For −π/2 < t < τ , it consists of two parts, one
between the curves w1+ and w2−, and one between w2+ and w1−. Because the end points of the
two parts are identified, J has always the shape of a closed circle. However, the circumference
of this circle shrinks, and it goes to zero at t = τ . Let us call the point which is represented by
the two dots in figure 6(f) the last point on J . Note again that the identification is such that both
dots represent the same physical point on J .

It is not difficult to show that every point on J is causally connected to the last point. This
is because the end points of the curves w1± and w2± on J are moving slower than the speed
of light. The amount of time they need to traverse a quarter of the circumference of the disc
is τ + π/2, whereas a light ray only needs π/2 to travel over the same distance. From this we
conclude that the horizon is the backward light cone of the last point on J . To construct this
light cone, we make use of some general properties of light cones emerging from J . First of
all, such a light cone is a geodesic surface. If we intersect it with another geodesic surface, say,
a disc of constant t, then the intersection is a geodesic. Moreover, we know that light travels on
J with a velocity of dϕ/dt = 1.

Using all this, it follows that the backward light cone of the upper dot in figure 6(f) is, at
some time t in the past, a geodesic centered at π/2, with radius τ − t. The backward light cone
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Correlator	geodesic	in	the	orbifold	case		

Orbifold	 ,	 n = 1, 2, 3, ...↵ = 2⇡/n
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In	the	agreement	with	GKPW-prescrip5on	

The causal Green function then reads
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W
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Thus, in the case of integer conformal dimension both Wightman and Feynman

correlators are defined by the expression (2.21), and the retarded/advanced Green’s

function is equal to zero.

2.3 Boundary dual to the conical defect and AdS3 orbifolds

The theory on the boundary, which is dual to the AdS-deficit space, is a field theory

on a cylinder of circumference 2⇡A. To understand its relation to the ”covering”

CFT, i. e. the one dual to the empty AdS, we recall that the algebra of asymptotic

symmetries, which has the Virasoro form for empty AdS, for the AdS-deficit case

has to be replaced by its subalgebra, whose generators l
n

are defined as [25, 52]:
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where w = t + ✓. This subalgebra only has the Virasoro form as well if A = 1
r
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r 2 Z+. In this case the bulk spacetime is the AdS3/Zr

orbifold, and the boundary

theory is a CFT with central charge c = rc̃ (we denote quantities from the covering

CFT by tilde). Its operator algebra can be constructed from that of the covering

CFT by symmetrizing operators with respect to the identification map, see [25] up

to a normalization factor:

O(t,#) =
1

r

r�1X

k=0

ei
2⇡k

r

@
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This allows us to express matrix elements through those of the covering CFT as well.

In particular, for a two-point correlator we have
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Hence we’ve obtained the expression for the correlator as a sum over images, which

is what we expect for orbifold-like spaces4. For general A we emphasize that the

4The similar known applications of the images method other than the AdS3/Zr orbifold case
are thermal AdS case [50], the BTZ black hole case [50, 53] and multi-boundary AdS orbifold
constructions [54].
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Correlator	geodesic	in	“near”	orbifold	case		

Orbifold	
,	

n = 1, 2, 3, ...↵ = 2⇡/n

Comparison	with	GKPW-prescrip5on	
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Figure 3. Time dependence of the inverse correlators obtained by GKPW and geodesic

prescriptions. Plots A-C show the increase of discrepancy between two prescriptions in

case of � = 1 when the deficit parameter is close to the orbifold value A = 1
3 . Plot D

shows the discrepancy for � = 3. The value of angular variable is fixed # = ⇡

6 .

range region are much smaller than in the small deficit case.

5.2 Non-equal time correlators

Here we examine the di↵erences between the time dependencies of the GKPW answer

(3.6)-(3.7) and the geodesic expression (2.30). In Fig.3 A-C we trace the increase of

discrepancy between the two prescriptions when we slightly increase the value of the

deficit parameter starting from A = 1
3
. In this point the two prescriptions coincide:
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�
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. (5.2)

As we begin to deform the orbifold, we observe that some di↵erences in the analytic

structure of GKPW and geodesic expressions start to evolve.

First, consider zeros of the reverse correlator. These correspond to the singu-

larities in the correlator itself. The geodesic correlator (2.30) has singularities at

– 17 –
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Figure 1. Inverse equal time correlators obtained via GKPW prescription and the geodesic

image method for A = 3
4 for di↵erent conformal weights. Contributions of discontinuities

in the geodesic result (represented by the brown line) diminish as � increases.

The normalization factor dependent on the conformal dimension is scheme dependent

and is not reproduced by the geodesic approximation, however the GKPW result

(4.3) has a factor 1/r as well, which generally does not come from a saddle point

expansion. However, it is required from the point of the boundary CFT, as seen in

(2.25).

Thus, the two-point correlator on the boundary CFT dual to the AdS3/Zr

orb-

ifold is precisely reproduced by the GKPW prescription, and also by the geodesic

approximation up to a numerical factor.

5 Comparison of GKPW prescription for AdS3-cone with

geodesic image method. Non-integer 1/A case

In this case there is no obvious way of rewriting the sum (3.5) in terms of the geodesic

contributions. We are going to compare it with the geodesic result in some special

cases. Before we proceed, note that since the geodesic prescription does not fix the

overall numerical factor, we have to choose it manually. In the orbifold case we have

seen that the GKPW result gives an extra factor of 1
r

= A, so it is natural for us to

propose the normalization for the geodesic correlator equal to 2⌫2

⇡

A.
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Figure 18: The artistic picture of an double intertwining. The starting point is ”b” (around tb = 0,�b =
3/2⇡), then the geodesics goes to O, where it crossing the 1-st wedge and comes out in the point O⇤

1 .
Then it goes in the living area till it meet the second wedge at the point O0 and comes out at the point O

0⇤
2 .

Finally, the geodesics reaches the point a, that in fact is nothing but c = a!#2

#

1

!. Up to renormalization
the geodesics length is equal to ldouble intertwining = lbO + lO⇤

1O0 + lO0⇤
2a. Since we have lbO = lb⇤1O⇤

1

and
lO0a = lOa#2

we get ldouble intertwining = lb⇤1a#2

. Note that c = a#2

#

1 .

Cb⇤1 =
��
2 tan2(✏) + 1

�
sin(tb)� 2 tan(✏) sec(✏) sin(✏� �b)

�
2

+ cos2(tb) (322)

Ca#1 =
��
2 tan2(✏) + 1

�
sin(ta)� 2 tan(✏) sec(✏) sin(✏+ �a)

�
2

+ cos2(ta)] (323)



										Infinite	#	of	images	and		
compac5fica5on/thermaliza5on	

1X

n=�1

1

(x+ n)2
=

⇡

2

1� cos2 ⇡x
, (3.1)

1X

n=�1

1

(x+ ⇡n)2 + y

2
=

⇡ sinh 2⇡y

y(cosh 2⇡y � cos 2⇡x)
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=
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cosh2
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(x+ i⇡n)2 + y
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=

i coth(x+ iy)

2y
� i coth(x� iy)
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(3.4)

This formula shows that infinite number of images from usual vacuum correlator gives

the thermal one. This is in accordance with the usual prescription to get thermal

correlators by considering the pure imaginary periodic time coordinate.

3.2 Toy model with a mirrow

Let us consider the propagation of geodesics in the flat 2-dimensional space bounded

from the top and the bottom by absorbing ”material” and from the right and the left

by reflecting mirrors. We are interested in the correlator for points a and b on the

left mirror. We assume that to get the contribution from the bulk one can proceed

in the following way. The non-perturbed correlator is defined by the shortest length

between points a and b (the corresponding geodesics is shown in the left top plot in

Fig.1), i.e.

G0(a, b) =
1

x

2
, l

2
0 = x

2 = (xa � xb)
2 (3.5)

We consider the contribution from the geodesics penetrating in the bulk and per-

forming one reflection from the mirror as

Gbulk,1(a, b;L) =
1

l

2
1

, l1 = 2

r
(
x

2
)2 + L

2 (3.6)

Here we take into account that an angle of incidence and an angle of reflection are

equal. The contribution from the geodesics penetrating in the bulk and performing

two reflections from the mirror is

Gbulk,2(a, b;L) =
1

l

2
2

, l2 = 2 · 2
r

(
x

2 · 2)
2 + L

2 (3.7)

The contribution from the geodesics with n-reflections is

Gbulk,n(a, b;L) =
1

l

2
n

, ln = 2 · n
r
(

x

2 · n)
2 + L

2 (3.8)
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Note, that correlator (2.44) is the Lorentz version of the Euclidean correlator on

the infinite cylinder

< 0|O(t1, x1)O(t2, x2)|0 >E=
1

(cosh(t1 � t2)� cos(x1 � x2))�
(2.43)

The equal time thermal correlator on the circle is CHECK!?

< �|O(t, x1)O(t, x2)|� >=
1

(cos(2⇡/�)� cos(x1 � x2))
� (2.44)

According to the general prescription one can get this correlator from the BTZ

black hole. The corresponding metric is

ds

2
BTZ = �(r̂2 � 1)dt̂2 +

1

r̂

2 � 1
d̂r

2 + r̂

2
d�̂

2 (2.45)

here �1 < t̂ < 1, 0 < r̂ < 1, �⇡ < �̂ < ⇡, and the identification �̂ ⇠ �̂ + 2⇡ is

assumed. One gets this metric parametrizing the quadric as in eq.(3.25), see below.

The correlators that we get from this geometry in the geodesics approximation

is

<  |O(t̂1, �̂1)O(t̂2, �̂2)| > ⇠ e

��L
ren

(t̂1,�̂1;t̂2,�̂2) (2.46)

⇠ 1

(cosh(�̂1 � �̂2)� cosh(t̂1 � t̂2 + i✏))�
(2.47)

To take into account that �̂ is the periodic variable, we have to sum over infinity

number of images [25].

<  |O(t̂1, �̂1)O(t̂2, �̂2)| > =
X

n

1

(cosh(�̂1 � �̂2 � 2⇡n)� cosh(t̂1 � t̂2 + i✏))�

(2.48)

The RHS of (2.48) presents the correlator in already thermalized state. Our goal

in this paper is to present the arguments why under collision of two particles with

kinematics above threshold the dynamical geometry according to the correspondence

really describe after tcr the thermalized correlator function.

3 Geodesics with an infinite number of windings

3.1 Image method and compactification

It is well known that starting from the flat correlator on R one can get correlators

on the circle just summing on the images. Indeed,
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The relation between the barrel (or Poincare) coordinates and BTZ ones is

x
0

= �r̂ cosh �̂ = cosh � sin t (5.51)

x
2

= r̂ sinh �̂ = sin � sinh � (5.52)

x
3

=
p

r̂2 � 1 sinh t̂ = cos t cosh �, r̂ � 1 (5.53)

x
1

=
p

r̂2 � 1 cosh t̂ = cos � sinh � (5.54)

(5.55)

Near the boundary one has

r̂2 =
e�

4
(sin2 t � sin2 �) (5.56)

These relations follow from

x =

✓
cos t cosh � + sin � sinh � cosh � sin t + cos � sinh �

� cosh � sin t + cos � sinh � cos t cosh � � sin � sinh �
,

◆
=

✓
x
3

+ x
2

x
0

+ x
1

x
1

� x
0

x
3

� x
2

◆

(5.57)

We know that the geodesic length is

x(1)

µ x(2)µ (5.58)

so it should be
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cosh t̂
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) (5.59)
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1
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2

⇣
cosh(�̂

1

� �̂
2

) � cosh(t̂
1

� t̂
2

)
⌘

(5.60)

or in other coordinates
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sin t
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� sin �
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sinh �
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sinh �
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� sin �
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=
1
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e�1+�2 (cos(t

1

� t
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) � cos(�
1

� �
2

)) (5.63)

Note that r̂ and � are related via

r̂2 =
e2�

4
(sin2 t � sin2 �) (5.64)

since from (5.70) and (5.71) follow that

r̂2(cosh2 �̂ � sinh2 �̂) =
e2�

4
(sin2 t � sin2 �) (5.65)
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Note that r̂ and � are related via

r̂2 =
e2�

4
(sin2 t � sin2 �) (5.64)

since from (5.70) and (5.71) follow that

r̂2(cosh2 �̂ � sinh2 �̂) =
e2�

4
(sin2 t � sin2 �) (5.65)
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The relation between the barrel (or Poincare) coordinates and BTZ ones is

x
0

= �r̂ cosh �̂ = cosh � sin t (5.51)

x
2

= r̂ sinh �̂ = sin � sinh � (5.52)

x
3

=
p
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x
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(5.55)

Near the boundary one has
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e�

4
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We know that the geodesic length is

x(1)

µ x(2)µ (5.58)

so it should be
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Note, that the formula (5.64) makes a restriction on possible coordinates (t, �)

sin2 t � sin2 � (5.66)

Considering, for example, the moment t = �⇡/2, see Fig.13.d we get the restriction

1 � sin2 � (5.67)

For the moments t = �⇡, see Fig.13.a,

0 � sin2 � (5.68)

we can take only � = 0. For �⇡ < t = t
0

< �⇡/2

sin2 �  sin2 t
0

(5.69)

5.2.1 Calculations of ⇤-isometry using the identification in the BTZ co-

ordinates

Now we will check the formulae for tan t⇤ through the BTZ coordinates that are

related with the barrel coordinates as:

�r̂ cosh �̂ = cosh � sin t (5.70)

r̂ sinh �̂ = sinh � sin � (5.71)
p

r̂2 � 1 sinh t̂ = cosh � cos t (5.72)
p

r̂2 � 1 cosh t̂ = sinh � cos � (5.73)

Under isometry:

�r̂ cosh(�̂ + 2µ) = cosh �⇤ sin t⇤ (5.74)

r̂ sinh(�̂ + 2µ) = sinh �⇤ sin �⇤ (5.75)
p

r̂2 � 1 sinh t̂ = cosh �⇤ cos t⇤ (5.76)
p

r̂2 � 1 cosh t̂ = sinh �⇤ cos �⇤ (5.77)

Then we divide (5.70) on (5.71) and (5.72) on (5.73) we obtain formulas:

tanh �̂ = �sin �

sin t
(5.78)

tanh t̂ =
cos t

cos �
(5.79)

Then we divide (5.74) on (5.75) and (5.76) on (5.77) we obtain formulas:

tanh(�̂ + 2µ) = �sin �⇤

sin t⇤
(5.80)

tanh t̂ =
cos t⇤

cos �⇤ (5.81)
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and taking ↵ = x and we get

<

G

00
bulk(a, b)

G0(a, b)
>L =

1

2
ln

sinh ⇡
2

sinh x⇡
2R

, (3.12)

3.3 BTZ correlators and the image method in the global coordinetes

One gets the thermal 2-point conformal correlators using the image method [25].

Usually this is done in the Schwarzschild coordinates. Here we present the similar

calculations in the global coordinates. To do this, let us remind how looks maximally

extended, matter free BTZ black hole in its rest frame in the global coordinates

[11, 22]. As it has been shown in particular in [12], it can be obtained by cutting and

gluing, very similar to the spacetime containing a point particle. The only di↵erence

is that the holonomy u has to be spacelike (u has to lie in a spatial conjugacy class

of SL(2)) and it is related to the mass µ of the black hole

1

2
Tru = � coshµ, (3.13)

A simple group element with this property is

u = �e

�µ �1 = � coshµ1+ sinhµ �1. (3.14)

Why I have to take ”-”?. To make connection with
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BTZ	
A B C

Figure 3. The map (3.19)-(3.18). Blue, green and magenta points correspond to map

(3.19), (3.18) for µ = 0.5, 1, 5. In plot A there are two initial points tb = �⇡/4,�b1 = ⇡/64

and tb = �⇡/4,�b2 = ⇡/16. In plot B there are three initial points tb = �⇡/4,�b1 = ⇡/64,

tb = �⇡/4,�b2 = ⇡/16, and tb = �⇡/4,�b2 = ⇡/8. In plot C there are three initial points

tb = �⇡/4,�b1 = ⇡/64, tb = �⇡/4,�b2 = ⇡/16, and tb = �⇡/4,�b2 = ⇡/5. We see that

the image points converges to (⇡/2,�⇡/2), We see that t⇤nb ! �⇡/2, �⇤n
b ! ⇡/2 for large

enough n, and in plot C the convergence is faster.

-1.0 -0.5 0.5 1.0

-1.0

-0.5

0.5

1.0

A B C

Figure 4. The maximally extended BTZ black hole for di↵erent µ: µ = 1 (A), µ = 2 (B),

µ = 5 (C). The same color solid and dashed lines are identified. The red lines correspond

to t = �⇡, 0, the darker orange lines correspond to t = �⇡ + ⇡/8 and t = �⇡/8 , the

darker cyan lines correspond to t = �⇡ + ⇡/4 and t = �⇡/4, the green lines correspond

to t = �⇡ + ⇡/3 and t = �⇡/3 and the blue lines correspond to t = �⇡ + ⇡/2.1 and

t = �⇡/2.1

Spacetime splits into four regions, and has the same global causal structure as the

maximally extended Schwarzschild black hole, i.e. we have two external regions, to

the left and to the right of both horizons, which are causally completely disconnected.

The isometry (3.14) means that

x0 + x2 ⇠ e

�2µ(x0 + x2)

x0 � x2 ⇠ e

2µ(x0 � x2) (3.24)

One gets relation with standard BRZ parametrization, see for example [25], using
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Few	steps										to	get	the	fixed	point	un (�⇡/2,⇡/2)



Collision	of	two	massive	par5cles	
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n : Bnd ! Bnd

chao5c	 integrable	

threshold	



Collision	of		massive	and	sta5c	par5cles	
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Conclusion 

		
	

Different	behaviour	of	winding	geodesics:		
	
											below	threshold	chao5c		
	
											above	threshold	like	to	an	integrable	model	

We	have	to	check	what	is	going	in	the	CFT	language	


