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—
N=4 SYM theory.

 N=4 SYM - one may hope that this theory is exactly solvable.

* The correlation functions in this theory can be studied in the weak and strong
regimes ( via AdS/CFT).

 The computation of anomalous dimensions of local operators in N=4 SYM in
planar limit can be reduced to the problem of solving some integrable system.

* There are numerous results for perturbative expansions of amplitudes (S-

matrix) with some results valid in all orders of PT (BDS ansatz for 4,5 points,
collinear OPE).

* Some perturbative results for generalisations of amplitudes (form factors)
with arbitrary number of on-shell states.

* N=4 SYM is perfect theoretical laboratory development and tests of new
ideas, methods and representations for D=4 gauge theories
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Integral over Grassmannian for amplitudes.

One of such remarkable ideas is representations of amplitudes and leading singularities in N=4

SYM in terms of Grassmannian integral and development of on-shell diagram formalism and
geometrical interpretation (“amplituhidron”):

On shell information about external particles
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This is multidimensional integral over multiple complex variables, which can be computed by
residues. Different choices of integration contour gives different BCFW representations for tree
amplitudes and leading singularities to all loop order (!). Also this is the most general form of
rational Yangian invariant. And do not forget about twistor strings!
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About leading singularities ...

1-loop example. Roughly speaking leading singularities are coefficients before master
integrals in loop corrections to the amplitudes.
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Grassmannian integral, on shell diagrams

and (decorated) permutations.
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Grassmannian integral and Form Factors ?

* Considerable progress with understanding the structure of form factors in

N=4 SYM (at lest from PT point of view) Brandhuber, Travaglini et-al 10, Bork,
Kazakov 10-14, Zhiboedov 10, Nandan, Wen 12, Wen et-al 14, Wilhelm & Co 15, Bork,

Onishchenko 15 and more!
* Most of “on shell methods” for the amplitudes, such as BCFW at tree level,
generalized unitarity, can be applied for form factors as well.

* What about Grassmannian integral representation ?

 Motivation: arguments (proofs) in favour of equivalence between different
BCFW representations, cancellation of spurious poles; leading singularities
and also (possibly) BCFW recursion for integrands.

* Here (for simplicity) we will consider g”2=0, stress tensor supermultiplet form
factors only and form factors of operators of Willson line insertion (gauge

invariant off shell gluon). (See also Wilhelm & Co 15 for the form factors with off
shell momentum q.)
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%> BPS and Wilson line operator

form factors in N=4 SYM.
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We are most
interested in p=2!
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¢t (z,u) = _1/2UA €ab UB ¢AB Most natural and simple way to treat form factors in
N=4 SYM is to use superspace and on-shell techniques
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B
% BPS form factors in N=4 SYM in on shell momentum

superspace - general structure.

In more details, using supersymmetry arguments one can write form factor as
(Brandhuber et al 10-14, Bork et-al 10-14):
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“MHV” form factors \

Total helisity n-p “NMHV” form factors
Total helisity n-(p+2)

We are most
interested in p=2!
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Soft theorems for form factors.
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Full analogy with amplitudes ! The same for other (1/2-BPS and Konishi form factors). In
contrast when g->0:

Regular soft limit
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On shell diagrams and form factors with

gN2=0.

One can write the first none vanishing form factor as:
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(1g){gi +1)
(i1 + 1)
In some very specific case for carefully chosen coordinates

(“canonical”) on Grassmannian:
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Reg(i,i+1|q) = S7'(i,q,i + 1) =

Reg(lila, B, la|a, Bllq) = = (ig) 2.

However one can conjecture that in general case (M -are | Reg = Z(zq)
minors of C matrix): i
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Is Reg. really the regulator ?

So for every on-shell diagram with form factor vertex one can obtain the following Grassmannian

integral:
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R
Grassmannian integral representation for

form factors with g*2=0. The conjecture.

One can solve BCFW ([1,2> shift is implemented)
for MHV (red) and n=k+1 NAkMHV sectors (green).
The result for NAkMHV can be written as:
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Grassmannian integral representation for
form factors with g*2=0. The conjecture.

Our conjecture is that the following grassmannian integral for appropriate choice of the contour
can reproduce tree level form factors:
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Where we choose Reg. functions as follows. (i...j) are minors of C constructed fromi ...j columns
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Buy the way ...

The explicit form of n=5,k=4 form factor for example can

| be seen below. Our Grassamnnian integral reproduces all

- /¢— —— green and red form factors. But the Grassmannian integral
R o A is trivial in such cases.

.............................
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Not so trivial example. NMHV 5 point form
factor.
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Not so trivial example. NMHV 5 point form
factor. R-functions definitions.

Some more details about NMHV 5 point form factor. The R functions are five by:
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Not so trivial example. NMHV 5 point form
factor. The choice of the contour.

3 (345) (134)\ 644(1,2,3,q,4,5) (356) 644(1,2,3,4,5,q)
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In the case under consideration Grassamannian integral can be f d Cal — f

reduced to the one parameter integral over complex varlable \

A

By appropriate choice of integration contour one can obtain

the following identity:
Q(3) T35] = Z(3) [1,2)

And (with some subtleties) with different contour:
r
(3) _ 7(3) 123) e
Q57 [T2464] = Z;
Full analogy with NMHV 6 point amplitude case!
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NMHV 5 point form factor example.
Spurious poles cancellation.

Typical form of individual BCFW term:
| 2) o1 (3¢)64(234)
A r Z5( )R§3)2 —

. (45)(15)[3q][2q] (15 + 4lq](4]5 + 1|2]/Z‘9f54

Arkani Hamed et-a/ 09 :
° Spurious poles. Phys. pole.

Poles like (3\5—|—4lq] or <3|1—|—2|5]

ﬁ

should cancel in the full result (sum of all BCFW terms).

Poles like p%% should remain in the full answer.
>

In Grassmannian picture spurious poles can be avoided by the choice of integration contour,
while physical poles cannot! (see NMHV 5 example).
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What about Wilson line operator form

factors (gauge invariant off-shell
amplitudes) ?

Using similar ideas as in g*2=0 case one can obtain:

R dkx (n—|—2)C/ Reg
A — T, / s (1, ...
n+1 +1,n+2 VOl[GL(k)] M1 . ‘Mn+1Mn+1 X ( y y 1y, D, 5)
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From this, for example, using NMHV6 tree contour one can obtain :
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A28 aT]g) =

Result coincides with BCFW. Also other consistency tests were performed.
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Conclusions.

* The powerful on-shell methods in N=4 SYM can be applied to partially off-
shell objects and objects with different colour structures as well.

* The Grassmannian representation can be formulated for form factors in
N=4 SYM more or less in the same way as for the amplitudes.

* Duality between operators and states in N=4 SYM ?

* Leading singularities structure of form factors from Grassmannian integral ?
* Twistor string description of form factors as well as amplitudes ?

* Additional simplifications in suggested Grassmannian representation (true
top-cell object, not linear combination of amplitude like top-cells) ?

* There is hope that N=4 SYM is integral theory and its S-matrix can be
completely fixed by the symmetry arguments. If this is the case, then one may
expect even more rich structure for form factors (like in 2D sin-gordon
models).
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Inverse soft limit recursion and integrability

for form factors.

New recursion relations from soft limit (Dhritiman Nandan, Congkao Wen):

Zo(1, nlq.y) =D | HSR (i A g y) + (T S0) ZumiG ot )]

iR, L R L

Where (+ substitutions of spinors):

, , (ni)
Si(ni—1,i) = ,
Hn = L) = T

1

S-(n,i=1,4) = [ni — 1][i — 1i][in]?

(§4(7}n[ii — 1]+ ni[ni — 1] + ni—1]in])

With interpretations as R-matrixes of gl(4|4) spin chain!
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Inverse soft limit recursion and integrability

for form factors.

o o (ni)
Si(n.i—1,i) = i = Dl — 11"
1 .

[n_j — 1”}\ B 11.”1.‘”]3()* (‘]]n[.ji — 1] + n; [,Uf _ 1] + "’]ﬂz'.—l[l'"l?])

S_(n,i—1,1) =

(Sy(nln—1))"X

b, = R(0) 1 R(0) 1 X6*(\,), The subtleties
with (pseudo)vacuum

_ 5% N state for form factors.
S—(nln — 1>X|8’“b~ = [2(0),12(0)12X07(A,)0" (1) Form factors

Where R’s are R-matrixes of gl(4|4) spin chain I eneiel et

' f Tr(M
(Chicerin,Derkachov,Krichner,Staudacher et.all 13-14): e|g.envecto.rs of (M)
- while amplitudes
Ria(u) = / —eap[—z(p;Xa)], are eigenvectors of M.

A~

Where x; = (\;, /0N, 8/0n;) and p, = (9/0N;, —Ni, —n;). L(u) matrix is given by
L(u) =ul+x® p,
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