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Motivations

• Lagrangians (or their substitutes) are inevitable for quantization

• Existence of a Lagranian formulation is often considered as a selection

criterium

• Analysis becomes problematic once auxiliary fields are in the game.

Ex.: unfolded formulation of HS theores etc.

• Lack of an invariant understanding of the structures underlying La-

grangian formulation



Jet space

Space-time coordinates (independent variables): xa, a = 1, . . . , n.

Fields (dependent variable) φi.

J0 : xa, φi, J1 : xa, φi, φia , J2 : xa, φi, φia, φ
i
ab , . . .

Projections:

. . .→ JN → JN−1 → JN−2 → . . .→ J1 → J0

Useful to work with J∞. A local diff. form on J∞ – a form on JN for

some N seen as that on J∞.

J∞ is equipped with the total derivative

∂Ta =
∂

∂xa
+ φia

∂

∂φi
+ φiab

∂

∂φib
+ . . .

For a given field configuration φi = si(x) and local function f [φ]

(∂Ta f)
∣∣∣
φ=s,φa=∂as,...

= ∂a(f
∣∣∣
φ=s,φa=∂as,φab=∂a∂bs,...

)



Space time differentials dxa. Horizontal differential

Q ≡ dH = dxa∂Ta , Q2 = 0 .

Differential forms:

α = α(x, dx, φ, φa, . . .)I1...Ikdvφ
I1 . . . dvφ

Ik , φI = φia1...am

Vertical De Rham differential:

dv = d−Q = dvφ
I ∂

∂φI

Variational bicomplex:

d2v = 0, dvQ+Qdv = 0 , Q2 = 0

Bidegree (l, p).



A system of partially differential equations (PDE) is a collection of local

functions

Eα[φ, x] .

The equation manifold (stationary surface) is E ⊂ J∞ singled out by:

∂Ta1 . . . ∂
T
al
Eα = 0 , l = 0,1,2, . . .

understood as the algebraic equations in J∞. It is usually assumed that

xa, φi are not constrained, e.g. E is a bundle over the space-time.

∂Ta are tangent to E and hence restricts to E. So do the differentials Q and

dv. ∂Ta |E determine a dim-n integrable distribution (Cartan distribution).

Definition: [Vinogradov] A PDE is a manifold E equipped with an integrable

distribution.

In addition one typically assumes regularity, constant rank, and that E is

a bundle over the spacetime. Use notation (E, Q).

In this form it is clear which PDEs are to be considered isomorphic.



Scalar field Example: Start with:

L =
1

2
ηabφaφb − V (φ)

E is coordinatized by xa, φ, φa, φab, . . .. Already φab are not independent.

One can e.g. take φabc... traceless. The Q differential on E reads as

Qxa = dxa , Qφ = dxaφa, , Qφa = dxb(φab −
1

n
ηab

∂V

∂φ
) , . . .

So if the system is nonlinear, i.e.
∂V

∂φ
nonlinear in φ, Q is also nonlinear.



Intrinsic (unfolded) realization

Given PDE (E, Q) defined invariantly one can always find a jet space J

such that (E, Q) can be realized as a stationary surface of some Eα[u, x].

There is an intrinsic way to realize (E, Q) explicitly. If xa, ψA coordinates

on E (e.g. ψA = {φ, φa, φab, . . .}) promote ψA to fields ψA(x) of a new

theory and subject them to EOM’s

dψA = QψA , components:
∂

∂xa
ψA(x) = (∂Ta ψ

A)(x)

Proposition: The original PDE (E, Q) is equivalent to dψA = QψA

Comments:

• Version of the unfolded formulation (though only zero forms). Unfolded

form of gauge systems involves gauge form-fields. Vasiliev, 1987,. . .

• Generalized version of the Proposition involving gauge forms and BRST

extension was formulated and proved using BRST technique and Koszule-

Tate differential. Barnich, M.G.,Semikhatov, Tipunin 2004, Barnich, M.G 2010



Jet space formulation

Becuase E is a bundle over spacetime, take J new = J∞(E). More precisely,

if xa, dxa, ψA are coordinates on E then

xa, dxa, ψA, ψAb , ψAbc, ψAbcd, . . .

are coordinates on J new.

New jet space is equipped with its own horizontal differential:

DH = dxa(
∂

∂xa
+ ψAa

∂

∂ψA
+ ψAab

∂

∂ψAb
+ . . .)

“Old” differential Q on E is extended to J new by [DH , Q] = 0.

In the new jet space J new consider the following PDE

DHψ
A = QψA

In this form the new PDE is manifestly isomorphic to (E, Q) (because

manifolds are isomorphic and horizontal differentials are equal by con-

struction)



Variational (Lagrangian) equations

Let us get back to equations Ei[φ, x] = 0 on the jet space J∞. These are

said variational (Lagrangian) if

Ei =
δELL

δφi
,

δELF [u, x]

δφi
≡

∂F

∂φi
− ∂Ta

∂F

∂φia
+ ∂Ta ∂

T
b
∂F

∂φiab
− . . .

for some local function L = L[φ, x]. It is convenient to work in terms of

Lagrangian density L = (dx)nL.

Here and below

(dx)n = dx1 . . . dxn , (dx)n−1
a =

1

(n− 1)!
ǫab2...bndx

b1 . . . dxbn

The notion of Lagrangian is explicitly based on the realization of the

equation (E, Q) in terms of the jet space J . For instance it’s possible

that E ⊂ J is variational while E ⊂ J ′ is not. Naive invariant object – the

restriction of L to E, does not make much sense.



Presymplectic structure

It is well-known that L = (dx)nL[x, φ] induce an invariant object on E

Crnkovic, Witten, 1987, Hydon 2005,. . .

(dx)nEi dφ
i = dvL −Qχ̂ , components:

δELL

δφi
=

∂L

∂φi
+ ∂Ta (χ̂

a
i )

for some 1 form χ̂ = χ̂idvφ
i+ χ̂iadvφ

i
a+ . . . of degree n−1, called presym-

plectic potential. For χ = χ̂|E we have

Qσ = 0 , σ = dχ

So we have conserved closed 2-form on E. It’s called canonical presym-

plectic structure.

As an example consider L(φ, φa, φab). One finds:

χ = (dx)n−1
a

(
(
∂L

∂φa
− ∂Tb

∂L

∂φab
)dvφ+

∂L

∂φab
dvφb

) ∣∣∣∣
E

In particular, for a scalar field with L = 1
2η
abφaφb − V (φ)

χ = (dx)n−1
a φa dvφ , σ = (dx)n−1

a dvφ
a dvφ



More generally:

Definition: A 2-form σ of degree n − 1 on (E, Q) is called compatible

presymplectic structure if Qσ = 0 , dσ = 0.

Such form in general can be considered irrespective of any realization in

terms of jet space and/or Lagrangian.



Symmetries and conservation laws

A well-known fact: both symmetries and conservation laws can be defined

in terms of the equation manifold (E, Q).

Recall: a vector field V̂ on J is a symmetry if it is evolutionary i.e.

[Q, V̂ ] = 0 and tangent to E ⊂ J .

Intrinsic terms: a vector field V on (E, Q) satisfying is called symmetry if

[Q,V ] = 0 (typically one also requires V xa = 0).

If E ⊂ J is variational then variational symmetries restricted to E satisfy

in addition

LV σ = 0



Conservation law (conserved curent) is a degree n−1 0-form K on E such

that QK = 0. K of the form K = QM is trivial.

Any compatible presymplectic structure determines a map from symme-

tries to conserved currents according to

dK = iV σ , components:
∂

∂ψA
K = σABV

B

Note: diV σ = LV σ = 0. Trivial symmetries are mapped to trivial con-

served currents. In the Lagrangian case this is Noether theorem. General

case was also discussed recently Sharapov 2016.

Note that it is different from the Poisson (BV antibracket) bracket map

from conservation laws to symmetries. The degenerate version of the

bracket is known as Lagrange structure Lyakhovich, Sharapov



Suppose that (E, Q, σ) is realized as E ⊂ J∞. Then σ determines a La-

grangian form L on J∞ such that EL equations derived from L are in

general consequences of those defining E.

More precisely, if E ′ is an equation manifold defined by L then E ⊂ E ′. Even

if σ is canonical (derived from a Lagrangian) there is no guarantee that

constructed L is equivalent to the starting point Lagrangian.

Khavkine 2012, based on earlier: Bridges, Hydon, Lawson 2009, Hydon 2005



Intrinsic Lagrangian

Given an equation manifold (E, Q, σ) equipped with the compatible presym-

plectic structure one can construct a natural Lagrangian in terms of the

E-valued fields.

First: define generalized Hamiltonian (better BRST charge) which is a

conserved current associated to Q seen as a symmetry of E. Degree n

function H on E defined by

dvH = iQσ , components:
∂

∂ψA
H = σABQ

B

In the Lagrangian case

H = χAQ
A − L|E QA = QψA

E.g. in the simple case where L = (dx)nL(φ, φa)

χ = (dx)n−1
a (

∂L

∂φa
dvφ)

∣∣∣
E
, H = (dx)n(

∂L

∂φa
φa − L)

∣∣∣
E



New (intrinsic) Lagrangian:

LC = idχ−H , components: LC = χAdψ
A −H

The respective action can be seen as presymplectic generalization

Alkalaev, M.G. 2013

SC =
∫ (

χA(ψ, x, dx)dψ
A(x)−H(ψ, x, dx)

)

of AKSZ action. Its equations of motion read as

σAB(dψ
B −QB) = 0 ,

and hence are consequences of the original dψB −QB = 0.

For a local theory LC does not depend on most of the fields ψA. These

can be treated as pure-gauge variables with algebraic (shift) gauge trans-

formations. With this interpretation and under certain assumptions we

can prove that starting point L and LC are equivalent.



Examples

Scalar field: Start with:

L =
1

2
ηabφaφb − V (φ) (1)

E is coordinatized by xa, φ, φa, φab, . . .. take φabc... traceless. The Q differ-

ential reads as

Qxa = dxa , Qφ = dxaφa, , Qφa = dxb(φab −
1

n
ηab

∂V

∂φ
)

The presymplectic potential and 2-form:

χ =

(
(dx)n−1

a (
∂L

∂φa
− ∂Tc

∂L

∂φca
)dvφ)

) ∣∣∣∣
E
= (dx)n−1

a φadvφ , σ = (dx)n−1
a dvφ

advφ

The Hamiltonian obtained from dH− iQσ = 0:

H = (dx)n(φaφ
a − L|E) =

1

2
φaφa+ V (φ)

The intrinsic Larangian: Schwinger

Lc = (dx)n
(
φa(∂aφ−

1

2
φa)− V (φ)

)



Polywave equation

The simplest genuine higher derivative example is L = 1
2�φ�φ = 1

2φaaφbb

(here and below φaa = ηabφab). Presymplectic potential:

χ = (−φaccdvφ+ φccdvφa)(dx)
n−1
a

Hamiltonian

H = (dx)n(−φaccφa+
1

2
φccφaa) .

The intrinsic action takes the form

SC =
∫
dnx(−φacc(∂aφ− φa) + φcc∂aφa −

1

2
φaaφcc) .

Note that the action depends on only the following variables φ, φa, φaa, φacc

but NOT on the traceless component of φab and φabc.

It is equivalent to
∫
φaaφcc. Indeed, varying φa and φacc gives φa = ∂aφ and

φacc = ∂aφcc resulting in

∫
dnx(φcc∂a∂aφ−

1

2
φaaφcc)



YM theory

The YM field is Aa taking values in a Lie algebra g equipped with an

invariant inner product 〈, 〉. We will use notation Aab1...bl
for ∂Tb1

. . . ∂Tbl
Aa.

The Lagrangian:

L =
1

4
〈Fab, Fab〉 , Fab := Aba −Aab + [Aa, Ab] .

Coordinates on E:

xa, Aa, Fab, Sab := Aba+Aab , A
a
bc, . . .

The one form χ is given by

χ =
∂L

∂Aba
dAb(dx)n−1

a = 〈Fab, dA
b〉(dx)n−1

a

The Hamiltonian

H = (
∂L

∂Aba
Aba −

1

4
〈Fab, Fab〉)(dx) =

1

2
〈Fab,

1

2
Fab − [Aa, Ab]〉



The intrinsic action

∫
1

2
〈Fab, ∂aA

b − ∂bA
a〉 −

1

2
〈Fab,

1

2
Fab − [Aa, Ab]〉 =

∫
1

2
〈Fab, ∂aA

b − ∂bA
a+ [Aa, Ab]−

1

2
Fab〉

equivalent to the starting point action through the elimination of Fab by

its own equations of motion.

Well-known first-order action for YM.



Algebraic gauge symmetries

Assume that starting point Lagrangian L does not have shift gauge sym-

metries i.e. there are no invertible nontrivial Rαi such that

Riα[φ, ∂
T
a ]

δELL

δφi
= 0 .

The intrinsic Lagrangian does have infinite amount of shift gauge sym-

metry. EOMs are

σAB(dψ
B −QB) = 0

so that any null vector of σAB gives rise to a shift gauge symmetry. If

σABR
B(ψ) = 0 then δψA = RAǫ(x) is a gauge symmetry of the intrinsic

action.

Interpretation of the intrinsic action: all its shift gauge symmetries are

taken into account (the respective fields are set to fixed values – i.e.

gauge-fixed).



Restrict to “reasonable theories: the Lagrangian theory is “reasonable” if

by adding/eliminating auxiliary fields and local invertible change of vari-

ables the action
∫
L can be brought to the form

Sfirst =
∫

Lfirst[u] =
∫
ddx(V aλ (u, x)∂au

λ −H(u, x))

and such that its equations of motion do not imply algebraic constraints

between undifferentiated fields uλ. (i.e. uλ reduced to E remain indepen-

dent)

Note that know frame-like Larangians are “resonable”. Thanks to Vasiliev,

Zinoveiv, Alakalev, Shaynkman, Skvortsov, . . . . . . all known free Lagragian HS

fields are resonable.



Proposition: for a “reasonable” system the original Lagrangian L[φ] and

the intrinsic Lagrangian LC[ψ] are equivalent.

Proof. Equivalent Lagrangian formulations result in equivalent presym-

plectic structures on the equation manifold E. It is enough to consider

the first order Lagrangian. The respective presymplectic structure reads

as

χ = ((dx)n−1
a V aλ du

λ)
∣∣∣
E
= (dx)n−1

a V aλ du
λ

Hamiltonian:

H = ((dx)nV aλ u
λ
a − Lfirst)|E = (dx)nH

Finally:

LC = (dx)n(V aλ ∂au
λ −H(φ))

and explicitly coincides with the starting point first order Lagrangian.



BRST extension and frame-like Lagrangians

To make our picture more geometrical let us introduce ghosts:

xa, ψA → xa, ψA, Cα

Q ≡ dH → Q = dH + γ , γ = CαRAα(ψ)
∂

∂ψA
+ CαCβU

γ
αβ(ψ)

∂

∂Cγ

d2H = 0 = γ2 dHγ + γdH = 0

Geometrically: E is now equipped with two integrable distributions: Car-

tan (dH) and gauge (γ)



AKSZ sigma model with the target E

ψA → ψA(x) Cα → Aαa(x)dx
a

If ΨI = {ψA, Cα}, equations of motion:

dΨI = QI(Ψ) →

dAα = dHA
α+ U

γ
αβ(ψ)A

γAβ , dψB = dHψ
B +RBα (Ψ)Aα

(Nonminimal) unfolded formulation Vasiliev

Construction and equivalence proof

Barnich, M.G.,Semikhatov, Tipunin 2004, Barnich, M.G 2010



Example of gravity

After elimination of contractible pairs for Q the manifold E

ea, ωab, W cd
ab , W cd

ab|e, W cd
ab|e...

– ghosts to which frame field and spin connection are associated and

Weyl tensor and its covariant derivatives.

Qea = ωac e
c , Qωab = ωac ω

cb+ ecedW ab
cd , . . . ,

Presymplectic potential χ and form Alkalaev, M.G. 2013

χ =
1

2
ǫabcddω

abeced , σ = dωabdecǫabcde
d

Hamiltonian (term with Weyl tensor vanishes)

H = QAχA =
1

2
ωacω

cbǫabcde
ced

Intrinsic action (frame-like GR action):

SC =
∫
χA(dψ

A+QA) = SGR[e, ω] =
∫
(dωab+ ωacω

cb)ǫabcde
ced



Conclusions

- A Lagrangian system can be defined in terms of its equation manifold

E without refereeing to any particular realization of E in one or another

set of fields and choice of the Lagrangian. While the structure of the

equation is encoded in the differential Q the Lagrangian is encoded in the

compatible presymplectic structure σ.

- In particular, when looking for a Lagrangian for an equation E it is

enough to study compatible presymplectic structures on E. No need to

study possible explicit realizations of E.

- Easy to see whether Lagrangian systems are equivalent or not.

- BRST extension to manifestly gauge systems. Intrinsic Lagrangian =

Frame-like Lagrangian.

- The presymplectic form can be seen to originate from the odd symplectic

form of the Batalin-Vilkovisky formalism.



Parent Lagrangian

One way to understand where do the structure of the intrinsic Lagrangian

comes from is to consider “parent” action for L = L(φ, φa, φab):

SP =
∫

(L(φ, φa, φab) + πa(∂aφ− φa) + πac(∂aφc − φac) + . . .) .

Its equations of motion read as

∂L

∂φ
− ∂aπ

a = 0 ,

πa −
∂L

∂φa
+ ∂cπ

ca = 0 , πab −
∂L

∂φab
= 0 , πab... = 0

φa = ∂aφ , φab = ∂(aφb) , . . .

Using the last line the derivatives in the first two lines can be replaced with

the total derivatives. Using the second line the first equation becomes

EL

∂L

∂φ
− ∂Ta

∂L

∂φa
+ ∂Tc ∂

T
a
∂L

∂φca
= 0 .



Introduce 1-form of degree n− 1:

χ̄ = (dx)n−1
a (πadφ+ πabdφb+ . . .)

”parent” Hamiltonian

H̄ = (πaφa+ πabφab+ . . .− L(φ, φa, φab))(dx)
n .

The parent action can be written as

SP =
∫
(χ̄AdΨ

A − H̄) ,

where ΨA stand for all the coordinates φ, φ..., π....



Consider the following submanifold of the space of xa, dxa, φ, π..., φ...

πa −
∂L

∂φa
+ ∂Tc

∂L

∂φca
= 0 , πab −

∂L

∂φab
= 0 , πab... = 0 ,

∂Ta1 . . . ∂
T
ak
(EL) = 0 ,

These are consequences of the parent action equations of motion.

The submanifold they single out is E (equation manifold of L).

χ = χ̄|E Presymplectic potential for L

One can show

iQdσ = dH , H = H̄|E , σ = dχ

Furthermore, χ and H determine the intrinsic action

SC[ψ] =
∫ (

χA(x, dx
a, ψ)dψA −H(x, dxa, ψ)

)
,

where xa, ψA are coordinates on E. This can be independently arrived at

by eliminating auxiliary fields starting from the parent action.


