Conformal blocks and geodesic networks

Konstantin Alkalaev

Tamm Theory Department, Lebedev Physical Institute

K.Alkalaev, arXiv:1610.06717

Moscow 2016

The duality statement

$$f_1(z|\epsilon, \tilde{\epsilon}) = S(w|\epsilon, \tilde{\epsilon})$$

Outline

Classical conformal blocks

Zamolodchikov 1994 Fitzpatrick, Kaplan, Walters 2014 Alkalaev, Belavin 2015 Banerjee, Datta, Sinha 2016

Geodesic approximation

Hijano, Kraus, Snively 2015 Alkalaev, Belavin 2015

• Bulk/boundary correspondence in the *n*-point case

Conclusions and outlooks

Classical Virasoro conformal block

The *n*-point correlation function of $V_{\Delta_i}(z_i)$, i = 1, ..., n can be decomposed into conformal blocks

$$\mathcal{F}(z_1,...,z_n|\Delta_1,...,\Delta_n;\tilde{\Delta}_1,...,\tilde{\Delta}_{n-3}|c)$$

which are conveniently depicted as

In the semiclassical limit $c \to \infty$ the conformal blocks exponentiate as

$$\mathcal{F}(z_i, \Delta_i, \tilde{\Delta}_j) = \exp\left[-c f(z_i, \epsilon_i, \tilde{\epsilon}_j)\right]$$

where $\epsilon_k = \frac{\Delta_k}{c}$ and $\tilde{\epsilon}_k = \frac{\tilde{\Delta}_k}{c}$ are classical dimensions and $f(z|\epsilon, \tilde{\epsilon})$ is the classical conformal block.

Auxiliary Fuchsian equation

We consider (n + 1)-point correlation functions with one degenerate operator. The singular vector decoupling condition

$$\Big[c\frac{\partial^2}{\partial y^2} + \sum_{i=1}^5 \Big(\frac{\Delta_i}{(y-z_i)^2} + \frac{1}{y-z_i}\frac{\partial}{\partial z_i}\Big)\Big] \langle V_{12}(y)V_1(z_1)\cdots V_n(z_n)\rangle = 0.$$

In the classical limit $c o \infty$ the (n+1)-point auxiliary correlation function behaves as

$$\langle V_{12}(y)V_1(z_1)\cdots V_n(z_n)\rangle\Big|_{c\to\infty} \approx \psi(y|z)\exp\left[-cf(z_i,\epsilon_i,\tilde{\epsilon}_j)\right],$$

where $f(z_i, \epsilon_i, \tilde{\epsilon}_j)$ is the classical block and $\psi(y|z)$ is governed by the Fuchsian equation

$$\frac{d^2\psi(y|z)}{dy^2} + T(y|z)\psi(y|z) = 0, \qquad T(y|z) = \sum_{i=1}^n \left(\frac{\epsilon_i}{(y-z_i)^2} + \frac{c_i}{y-z_i}\right)$$

Here T(z) is the stress-energy tensor and c_i are the accessory parameters

$$c_i(z) = rac{\partial f(z)}{\partial z_i}, \qquad i = 1, ..., n$$

The asymptotic behavior $T(z) \sim z^{-4}$ at infinity yields the constraints

$$\sum_{i=1}^{n} c_i = 0 , \qquad \sum_{i=1}^{n} (c_i z_i + \epsilon_i) = 0 , \qquad \sum_{i=1}^{n} (c_i z_i^2 + 2\epsilon_i z_i) = 0$$

There are n-3 independent accessory parameters, c_2, \ldots, c_{n-2} .

Heavy-light approximation. We consider the case of *two* background operators. Let $\epsilon_{n-1} = \epsilon_n \equiv \epsilon_h$ be the background heavy dimension, while ϵ_i , i = 1, ..., n-2 be perturbative heavy dimensions,

$$\epsilon_i/\epsilon_h \ll 1$$

Then, the Fuchsian equation can be solved perturbatively. We expand all functions as

$$\begin{split} \psi(y,z) &= \psi^{(0)}(y,z) + \psi^{(1)}(y,z) + \dots \\ T(y,z) &= T^{(0)}(y,z) + T^{(1)}(y,z) + \dots \\ c_i(z) &= c_i^{(0)}(z) + c_i^{(1)}(z) + \dots \\ f(z) &= f^{(0)}(z) + f^{(1)}(z) + f^{(2)}(z) + \dots \end{split}$$

where expansion parameters are perturbative heavy dimensions ϵ_i .

Accessory parameter equations. Using the monodromy method we find the constraints

$$\left(I_{++}^{(k)}\right)^2 + I_{-+}^{(k)} I_{+-}^{(k)} = -4\pi^2 \tilde{\epsilon}_k^2, \qquad k = 1, \dots, n-3$$

where quantities $I_{\pm\pm}^{(k)}$ are linear in the accessory parameters, e.g.,

$$I_{+-}^{(k)} \sim lpha \epsilon_1 + \sum_{i=2}^{n-2} (c_i(1-z_i) - \epsilon_i) - \sum_{i=2}^{k+1} (1-z_i)^{lpha} (c_i(1-z_i) - \epsilon_i(1+lpha))$$

Here $\alpha = \sqrt{1-4\epsilon_h}$ parameterizes the background dimension.

Dual picture

The heavy operators with equal conformal dimensions $\epsilon_n = \epsilon_{n-1} \equiv \epsilon_h$ produce an asymptotically AdS_3 geometry identified either with an angular deficit or BTZ black hole geometry parameterized by

$$\alpha = \sqrt{1 - 4\epsilon_h}$$

- $\alpha^2 > 0$ for the conical singularity
- $\alpha^2 < 0$ for the BTZ black hole

The metric of the conical singularity reads

$$ds^2 = rac{lpha^2}{\cos^2
ho} \Big(- dt^2 + \sin^2
ho d\phi^2 + rac{1}{lpha^2} d
ho^2 \Big)$$

The perturbative heavy operators are realized via particular network of worldlines of n-3 classical point probes propagating in the background geometry formed by the two background heavy operators. Points w_i are boundary attachments of the perturbative operators.

The worldline action of a single massive particle with $m\sim\epsilon$ is

$$S = \epsilon \int_{\lambda'}^{\lambda''} d\lambda \sqrt{g_{tt}\dot{t}^2 + g_{\phi\phi}\dot{\phi}^2 + g_{\rho\rho}\dot{\rho}^2}$$

A geodesic is characterized by the endpoint coordinates and the angular momentum $s = \frac{|p_{\phi}|}{\alpha}$. Its length is given by the on-shell value S.

Most importantly, the time slice is the Poincare disk!

Cubic vertex on the disk

The vertex action for three distinct lines has the form

$$S_{\star} = \epsilon_I \int_{\circ I}^{\bullet} d\lambda \, L_I + \epsilon_J \int_{\circ J}^{\bullet} d\lambda \, L_J + \epsilon_K \int_{\circ K}^{\bullet} d\lambda \, L_K \, , \qquad I \neq J \neq K \, ,$$

with the vertex point \bullet and outer endpoints \circ_A , where A = I, J, K. The equilibrium condition at the vertex point is given by

$$P^{(I)} + P^{(J)} + P^{(K)} = 0 ,$$

where $P_m^{(A)} = \partial L_A / \partial \dot{X}_{(A)}^m$ are canonical momenta of three particles with coordinates $X_{(A)}^m$, where $m = \rho, \phi$ and A = I, J, K. Recalling that $P_{\phi}^{(A)} = \pm \alpha s_A$, where the overall sign depends on the direction of the flow, we find that the radial and angular projections of the equilibrium condition are given by

$$\epsilon_{I}\sqrt{1-s_{I}^{2}\eta}-\epsilon_{J}\sqrt{1-s_{J}^{2}\eta}+\epsilon_{K}\sqrt{1-s_{K}^{2}\eta}=0$$

$$\epsilon_{I}s_{I}+\epsilon_{J}s_{J}-\epsilon_{K}s_{K}=0$$

where $\eta = \cot^2 \rho_{vert}$. The solution reads

$$\eta = \frac{1 - \sigma_{IJ}^2}{s_I^2 + s_J^2 - 2\sigma_{IJ}s_Is_J} \;, \qquad \text{where} \qquad \sigma_{IJ} = \frac{\epsilon_I^2 + \epsilon_J^2 - \epsilon_K^2}{2\epsilon_I\epsilon_J}$$

Dual network

The total worldline action is given by the sum of n-3 vertex actions, *i.e.*,

$$S = \sum_{m=1}^{n-3} S_{\star}^{(m)}$$

where endpoints are connected to each other to form the network shown on the figure.

Given that the action functional S is stationary we find the equilibrium conditions at each vertex point

$$P_{(i+1)} + P_{(\tilde{i})} + P_{\widetilde{(i-1)}} = 0$$
, $i = 1, ..., n-3$,

and out-flowing momenta in all attachment points on the boundary and at the center of the disk,

$$P_{(A)} = \frac{\partial S}{\partial X_{(A)}}$$
, $A = 1, \dots, n-3, \widetilde{n-3}$,

where the last equality is assumed to be weak, *i.e.* the action S is evaluated on-shell. One can show that

$$s_k = rac{1}{lpha \epsilon_k} rac{\partial S}{\partial w_k}$$

where w_k are boundary attachment coordinates.

Angle separations

Angular separation of the geodesic segment with two endpoints having radial and angular positions (ϕ', η') and (ϕ'', η'') characterized by the angular parameter s can be represented as

$$i\alpha(\phi^{''} - \phi^{'}) = \ln \frac{\sqrt{1 - s^2 \eta^{''}} - is\sqrt{1 + \eta^{''}}}{\sqrt{1 - s^2 \eta^{'}} - is\sqrt{1 + \eta^{'}}}$$

The angular positions satisfy the balance equation

$$(w_k - w_{k-1}) + \Delta \phi_{k-1} = \Delta \phi_k + \Delta \tilde{\phi}_{k-2}$$

$$e^{i\alpha(w_k - w_{k-1})} \frac{1 - is_k}{1 - is_{k-1}} \frac{D_{k-1}^-}{D_k^+} = 1$$

where we introduced notation

$$egin{aligned} D_k^- &= (\sqrt{1-s_k^2\eta_{k-1}}-is_k\sqrt{1+\eta_{k-1}})(\sqrt{1- ilde{s}_{k-1}^2\eta_{k-1}}-i ilde{s}_{k-1}\sqrt{1+\eta_{k-1}}) \ D_k^+ &= (\sqrt{1-s_k^2\eta_{k-1}}-is_k\sqrt{1+\eta_{k-1}})(\sqrt{1- ilde{s}_{k-2}^2\eta_{k-1}}-i ilde{s}_{k-2}\sqrt{1+\eta_{k-1}}) \end{aligned}$$

Two systems

The conformal block and the mechanical action (geodesic length) read

$$c_k = rac{\partial f}{\partial z_k}$$
 $s_k = rac{1}{lpha \epsilon_k} rac{\partial S}{\partial w_k}$

On the boundary. The accessory equations

$$c_{1} = -\sum_{i=2}^{n-2} \left[c_{i}(1-z_{i}) - \epsilon_{i} \right] + \epsilon_{1} \qquad (I_{++}^{(k)})^{2} + I_{-+}^{(k)}I_{+-}^{(k)} = 4\pi^{2} \tilde{\epsilon}_{k}^{2}$$

where independent variables are $c_1, ..., c_{n-2}$. There are (n-2) equations for (n-2) variables. In the bulk. The momentum equations

$$\epsilon_i \mathbf{s}_i + \tilde{\epsilon}_{i-1} \tilde{\mathbf{s}}_{i-1} - \tilde{\epsilon}_{i-2} \tilde{\mathbf{s}}_{i-2} = \mathbf{0}$$

$$\begin{split} \tilde{\epsilon}_{k-1}\sqrt{1-\tilde{s}_{k-1}^2\eta_{k-1}} &-\tilde{\epsilon}_{k-2}\sqrt{1-\tilde{s}_{k-2}^2\eta_{k-1}} - \epsilon_k\sqrt{1-\tilde{s}_k^2\eta_{k-1}} = 0\\ e^{i\alpha(w_k - w_{k-1})}\frac{1-is_k}{1-is_{k-1}}\frac{D_{k-1}^-}{D_k^+} = 1 \end{split}$$

where independent variables are angular parameters $s_1, \ldots, s_{n-2}, \tilde{s}_1, \ldots, \tilde{s}_{n-3}$, and vertex positions $\eta_1, \ldots, \eta_{n-3}$. There are (3n-8) equations for (3n-8) variables.

Weak equivalence

On the formal level, the problem is as follows. We consider a potential vector field

$$A_i(x) = \frac{\partial U(x)}{\partial x^i}$$

and impose the algebraic constraints

$$\mathcal{C}^{(\mathcal{N})}_lpha(\mathcal{A},\mathcal{B})=0\;,\qquad lpha=1,\ldots,\mathcal{N}\;,$$

where B_k are possible auxiliary variables, B = B(A). We consider two potential vector field systems defined by two different sets

$$\{x, U(x), A(x), B(x), C^{(N)}\}, \qquad \{y, \widetilde{U}(y), \widetilde{A}(y), \widetilde{B}(y), \widetilde{C}^{(\widetilde{N})}\}$$

Two systems are weakly equivalent if

$$C^{(N)}_lpha(A,B)=0\;,\qquad C^{(\widetilde{N})}_{\widetilde{eta}}(\widetilde{A},\widetilde{B})=0\;,$$

have at least one common root $\{A_i^0(x)\} \to \{\widetilde{A}_i^0(y)\}$ under transformations

$$x \to y$$
, $U(x) \to \widetilde{U}(y)$

In our case, the boundary system has no B-type variables which are characteristic of the bulk system. This is quite natural from the AdS/CFT perspective in the sense that not all bulk degrees of freedom are fundamental. Integrating out the local degrees of freedom identified here with B-type variables we are left with A-type variables which are fundamental boundary variables.

The duality statement

The conformal map (cylinder \leftrightarrow plane) is given by

$$w=i\ln(1-z)$$

The correspondence between a CFT with two background operators in the large central charge regime and dual geodesic networks on the conical singularity background claims that the perturbative classical n-point block and the on-shell worldline action of the dual network be related to each other as

$$f(z) = S(w) + i \sum_{k=1}^{n-2} \epsilon_k w_k$$

The accessory and angular parameters are related as

$$c_k = \epsilon_k \, \frac{1 \pm i \alpha s_k}{1 - z_k}$$

with the convention that "-" at k = 1 and "+" at $k \neq 1$. In this case the bulk/boundary systems are weakly equivalent.

Conclusions & outlooks

Conclusions

- Our main result: *n*-point classical conformal blocks in the heavy-light approximation are equal (modulo the conformal map) to the lengths of dual geodesic networks for any *n*.
- The duality is shown without knowing explicit expressions of quantities on the both sides. We reformulated both bulk/boundary systems as the potential vector field equations, where vector components are subjected to the algebraic equations (weak equivalence).

Outlooks

• A possible future direction is to apply our technique to semiclassical CFTs on higher genius Riemann surfaces. In the torus case, *one-point* classical blocks were studied in

M.Piatek, 2013

while their holographic interpretation was proposed in

K.Alkalaev and V.Belavin, 2016

• The semiclassical correspondence considered along these lines can be extended by including 1/c corrections. The 4-point case was studied in

M.Beccaria, A.Fachechi, G.Macorini, 2015

A.Fitzpatrick, J.Kaplan, 2016

It would be interesting to understand how our results for *n*-point blocks connect with going beyond the leading 1/c order.