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Classical Virasoro conformal block

The n-point correlation function of Va,(z;), i =1, ..., n can be decomposed into conformal blocks
F(z1y ooy Zn| D1,y ooy Dp; Aqy .oy Ap_3]c)
which are conveniently depicted as
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In the semiclassical limit ¢ — oo the conformal blocks exponentiate as
F(zi,Aj, Aj) = exp [ — cf(z,e€i, Ej)]
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where €, = = and & = =X are classical dimensions and f(z|e, €) is the classical conformal block.



Auxiliary Fuchsian equation
We consider (n+ 1)-point correlation functions with one degenerate operator. The singular vector
decoupling condition
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In the classical limit ¢ — oo the (n 4 1)-point auxiliary correlation function behaves as
(Viz(y)Va(z1) -+ Vi(2n)) ‘ ~ Y(ylz)exp [ — cf(zi, e, 8)]
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where f(z;,€j, ) is the classical block and v(y|z) is governed by the Fuchsian equation
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Here T(z) is the stress-energy tensor and ¢; are the accessory parameters
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The asymptotic behavior T(z) ~ z~# at infinity yields the constraints
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There are n — 3 independent accessory parameters, co,...,Ch—2.



Heavy-light approximation. We consider the case of two background operators. Let
€n—1 = €n = €5 be the background heavy dimension, while €;, i = 1,..., n — 2 be perturbative
heavy dimensions,

6;/6/, <1

Then, the Fuchsian equation can be solved perturbatively. We expand all functions as
W(y,2) =¥ O(y,2) + 9 W(y, 2) +
T(y,2) = TO(y,2) + TO(y,2) + ...
ci(z) = cl.(o)(z) + cl.(l)(z) + ..

f(z) = FO(2) + FD(z) + FO(2) + ...
where expansion parameters are perturbative heavy dimensions ¢;.

Accessory parameter equations. Using the monodromy method we find the constraints
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where quantities Ij([kj)[ are linear in the accessory parameters, e.g.,
n—2 k+1
/ikl ~ aa+ Y (G(l—z) =)= Y (1—2z)*(ci(l — z) — (1 + a))
i=2 i=2

Here a = /1 — 4¢p, parameterizes the background dimension.



Dual picture

The heavy operators with equal conformal dimensions €, = €,_1 = €, produce an asymptotically
AdS3 geometry identified either with an angular deficit or BTZ black hole geometry

parameterized by

® 2 > 0 for the conical singularity
® 2 < 0 for the BTZ black hole t{

The metric of the conical singularity reads
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The perturbative heavy operators are realized via particular network of worldlines of n — 3
classical point probes propagating in the background geometry formed by the two background
heavy operators. Points w; are boundary attachments of the perturbative operators.

The worldline action of a single massive particle with m ~ € is
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A geodesic is characterized by the endpoint coordinates and the angular momentum s = @. Its
length is given by the on-shell value S.

Most importantly, the time slice is the Poincare disk!



Cubic vertex on the disk

The vertex action for three distinct lines has the form
L[] L] L]
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with the vertex point e and outer endpoints oa, where A=/, J, K.
The equilibrium condition at the vertex point is given by J

P 4 p) 4 p(K) — ¢ |

where P,(,,A) = 8LA/8X(’;") are canonical momenta of
three particles with coordinates X(%, where m = p, ¢
and A=1,J,K.

Recalling that pA — +asy, where the overall sign depends on the direction of the flow, we find
that the radial and angular projections of the equilibrium condition are given by
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where n = cot? pvert- The solution reads
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Dual network

The total worldline action is given by the sum of n — 3
vertex actions, I.e.,

n—3
s=> s
m=1

where endpoints are connected to each other to form the
network shown on the figure.

Given that the action functional S is stationary we find the equilibrium conditions at each vertex
point

Piry +Po+ Py =0, 1=1.,n=3,

and out-flowing momenta in all attachment points on the boundary and at the center of the disk,
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where the last equality is assumed to be weak, i.e. the action S is evaluated on-shell. One can

show that
1 9S
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where wy are boundary attachment coordinates.



Angle separations
Angular separation of the geodesic segment with two endpoints having radial and angular
positions (qﬁ/,n/) and (d)H,n”) characterized by the angular parameter s can be represented as
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The angular positions satisfy the balance equation

ia(¢” —¢')=1n

(Wk — wi—1) + Agy_1 = Adp + Ay

All in all, we obtain the system of radical equations
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where we introduced notation

D; = (\/ 1-— S,%’I]k_l — isg+/1+ 77k_1)(1/1 — §;%_177k—1 — iSk_14/1+ 77k—1)
Df = (/1= stm—1 — isky/T+ m—1)(y/1 — 32_ymk—1 — i%k—2/1 + mk—1)



Two systems

The conformal block and the mechanical action (geodesic length) read
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On the boundary. The accessory equations
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where independent variables are ci, ..., ¢,—2. There are (n — 2) equations for (n — 2) variables.

In the bulk. The momentum equations

€iSi + €i—15-1 — €_25-2=0
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where independent variables are angular parameters sy, ..., s,—2, 51, ...,5,-3, and vertex positions

M, ..., Mn—3. There are (3n — 8) equations for (3n — 8) variables.



Weak equivalence

On the formal level, the problem is as follows. We consider a potential vector field

A(x) = U
ox!
and impose the algebraic constraints
cA,By=0, a=1,..,N,

where By are possible auxiliary variables, B = B(A). We consider two potential vector field
systems defined by two different sets

£, UG, AG), B, €M, {y, O(y), Aly), B(y), €M

Two systems are weakly equivalent if
cMpy=o, cM(AB) =0,
have at least one common root {A%(x)} — {Z?(y)} under transformations

X =y, U(x) — U(y)

In our case, the boundary system has no B-type variables which are characteristic of the bulk
system. This is quite natural from the AdS/CFT perspective in the sense that not all bulk
degrees of freedom are fundamental. Integrating out the local degrees of freedom identified here
with B-type variables we are left with A-type variables which are fundamental boundary variables.



The duality statement

The conformal map (cylinder < plane) is given by

w=1iln(l-2z2)
The correspondence between a CFT with two background operators in the large central charge
regime and dual geodesic networks on the conical singularity background claims that the

perturbative classical n-point block and the on-shell worldline action of the dual network be
related to each other as

f(z) = )+ Zskwk

The accessory and angular parameters are related as

1+ iasy
Ck = €k
11—z
with the convention that "—" at k =1 and "+4" at k # 1. In this case the bulk/boundary

systems are weakly equivalent.



Conclusions & outlooks
Conclusions

® Qur main result: n-point classical conformal blocks in the heavy-light approximation are
equal (modulo the conformal map) to the lengths of dual geodesic networks for any n.

® The duality is shown without knowing explicit expressions of quantities on the both sides.
We reformulated both bulk/boundary systems as the potential vector field equations, where
vector components are subjected to the algebraic equations (weak equivalence).

Outlooks

® A possible future direction is to apply our technique to semiclassical CFTs on higher genius
Riemann surfaces. In the torus case, one-point classical blocks were studied in

M.Piatek, 2013
while their holographic interpretation was proposed in
K.Alkalaev and V.Belavin, 2016

® The semiclassical correspondence considered along these lines can be extended by including
1/c corrections. The 4-point case was studied in
M.Beccaria, A.Fachechi, G.Macorini, 2015
A.Fitzpatrick, J.Kaplan, 2016

It would be interesting to understand how our results for n-point blocks connect with going
beyond the leading 1/c order.



