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Each mixed symmetry higher-spin /N irreducible representa-
tion is described by a certain Young diagram

At the same time, each k-row diagram can be labeled by an
ordered length k partition of number N:

N=n;+n9+..+n;
ny > na... >np >0 (1)

where ny, ...n; are the lengths of the rows. Therefore,the prob-
lem of counting all the irreducible representations of spin N is
isomorphic to the problem of finding the number of the ordered
partitions of N.

The problems of interest are therefore to count both the to-
tal number A(/V) of the partitions of N and (more difficult) the
number A\(N|k) of the restricted partitions of the length k, that
determines the number of the mixed symmetry higher-spin ir-
reps with k& rows.

For example, A(4) = 5,A(5) = 7,A(5]|3) = 2. Both of these
problems are well-known in number theory, with no analytic
formula for arbitrary /N, k available.



For A(IV) some asymptotic expressions are known. The best-
known one is by Hardy-Ramanujan (1918):
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with some later improvements of this formula, in particular, by
the one proposed by Rademacher (1937) and proved by Erdos
(1942) expressing A(IV) in terms of the convergent series:
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with the notation (m|n) implying the sum over m taken over
the values of m relatively prime to n and
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is the Dedekind sum for co-prime numbers.

At the same time, no similar relations are known for A(N k),
although it is possible to write down the generating functions



both for A\(N) and A(NV|k):
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N=0,k=0;k<n

Unfortunately, however, one cannot elucidate the analytic ex-
pressions for A(N) and A(N|k) from these generating functions
for arbitrary N and k.

Our purpose is to deduce A(NN) and A(N|k) from conformal
transformations of certain correlator of irregular vertex oper-
ators in string field theory (which also can be understood as
generating vertices for higher-spin modes in string theory) such
that:

1. Computed on the upper half-plane, the correlator counts

the number of partitions, i.e. reproduces the generating function
F(z,y) for A(N|k).

2. Upon certain suitable conformal transformation (to be
identified) the correlator gives a calculable analytic expression,
allowing to deduce A\(N|k) by using the conformal symmetry.
Such is the strategy that we shall follow.
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With some effort, it is straightforward to identify the corre-
lator counting the number A(N|k) of partitions. In the upper
half-plane, it is given by

G(OC,B‘Z,UJ) =< Ua(z)‘//}(w) > ‘z:i;w:z'e

where
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where ¢ is 2d boson (e.g. a Liouville field or an open string’s

target space coordinate), ¢ — 0, « and 3 are the parameters
that are to control the generating function for the partitions.
Indeed, expanding in a:
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using the OPE:
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and introducing N = > ping



one easily calculates
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i.e. G is the generating function for restricted partitions with
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Side remark 1:

U, is an analytic solution of open cubic SFT QU,+ U, xU, = 0
for a &~ 4.6. Generalizations of U, to Toda theories (¢ — g; =
(¢1,...,6p)) are the solutions for certain values o = (D), with
a related to A and the solution interpolating between flat and
AdSp backgrounds (D.P., in progress) U, also can be regarded
as a generating vertex for the higher spin operators in bosonic
string.

Side remark 2:

V3 is a rank 1 irregular vertex operator satisfying

LaVs = L(B)Vi; LoV = L(B)Vs
LnVﬁ = O(n > 2)

It is physically a “dipole” with g being the dipole’s size



Now that we have identified the correlator generating A(N |k),
the next step is to identify the suitable conformal transforma-
tion, which turns out to be

1

z— f(z)=¢* (2)

(note that this transformation is well-behaved and nonsingular
in the upper half-plane)

Now we have to:
([
Compute infinitezimal transformations of U, and V3

Integrate them to get the finite transformations for U, and
Vs under f(2)

Since f(z) is not a fractional-linear transformation, integrate
the Ward identities for f(z), to ensure that the correlators match

upon f(z).

Compute the correlator in the new coordinates, in order to
obtain the analytic expression for G(a, fe).

Step 1. Infinitezimal transformations



The straightforward computation using the stress-energy ten-
sor

T(z) =5 :(09)":
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gives:
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Integrating these infinitezimal transformations, we obtain the
transformations of U, and Vj for the finite conformal transfor-
mation f(z) = e *;
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where
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are the generalized higher-derivative Schwarzians for log(— f'(2)),

an
5.(6.1) = 5 L00(1 (=)
LSS OO P b g
il (it '8z” '

B®)(f) and B*'(f)(I1<k) are the complete and incomplete Bell
polynomials respectively, defined according to:
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where ¢(k;) are the multiplicities of k; in the partition k& =
k1 +.....+ k. Next, the finite transformation of the dipole Vj is:

Va(w)|w=ie = PoLof(z )+ Sy (—log(2L)) |

where Sy); coincides with the ordinary Schwarzian. Explicitly,
in the new coordinates
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The crucial property of this transformation is that,
in the new cooordinates the dipole size shrinks to zero
as ¢ — 0 and in the correlator < U,V > all the contrac-
tions of derivatives of ¢ with d¢ in V3 produce terms
that are exponentially suppressed in this limit. There-
fore, only the non-contraction contributions, produced
by the zero modes of the both operators, survive in
this limit. This makes it an easy problem to compute the
correlator, despite the U,-operator by itself looking extremely
cumbersome. The final step is to integrate the Ward identities,
to ensure that the correlators, related by the conformal trans-
formation f(z) = e~* match. In general, integrating the Ward
identities is a hard problem, however, for the fiven f(z) the prob-
lem simplifies crucially due to the exponential suppressions and
the result is reduced to the shift
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for the generalized Schwarzians, where

f(z) =

The resulting expression for the generating function of the re-
stricted length k partitions of N is
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Upon differentiating in «, § and regularizing in €
A(N|k) = (14 ¢V 205G (o, B €)
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this gives the analytic expression for A(N|k) in terms of finite

series in generalized Schwarzians, that can be verified numeri-
cally. QED
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