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Supersymmetry and non-renormalization

Higher spin theories are invariant under a some symmetry transformations.
These transformations can include supersymmetry. For example,
superstring theories can be considered as supersymmetric higher spin
theories. Absence of ultraviolet divergences in these theories makes them
especially interesting.

Even in usual quantum �eld theory, supersymmetry allows constructing
a theory �nite in all orders, namely, the N = 4 supersymmetric Yang�
Mills theory (SYM). The UV behaviour of other supersymmetric theories
is also better than in the non-supersymmetric case due to some non-
renormalization theorems.

For N = 2 SYM divergences appear only in the one-loop approximation.
N = 2 hypermultiplets are not renormalized.

Absence of higher loop quantum corrections in theories with extended
supersymmetry can essentially simplify the theoretical investigation of these
theories in some aspects.
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Non-renormalization theorems for N = 1 supersymmetry

Although theories with extended supersymmetry have a lot of very
interesting features, the low energy physics seems to be N = 1
supersymmetric. Even in this case supersymmetry leads to some non-
renormalization theorems.

The most known theorem is that there are no divergent quantum
corrections to the superpotential of N = 1 supersymmetric theories.

One more statement is that the β-function of N = 1 SYM is related to
the anomalous dimensions of the matter super�elds by the so called NSVZ
β-function. For pure N = 1 SYM theory it gives the exact expression for
the β-function in the form of the geometric series.

Here we argue that in N = 1 SYM theories the three-point ghost-gauge
vertices are �nite in all orders, where the gauge leg corresponds to the
quantum gauge super�eld.
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N = 1 supersymmetric gauge theories

Let us consider the N = 1 SYM theory described by the action

S =
1

2e2
0

Re tr

∫
d4x d2θW aWa +

1

4

∫
d4x d4θ φ∗i(e2V )i

jφj

+
{∫

d4x d2θ
(1

4
mij

0 φiφj +
1

6
λijk0 φiφjφk

)
+ c.c.

}
,

where the supersymmetric gauge �eld strength is de�ned as

Wa =
1

8
D̄2
(
e−2VDae

2V
)
.

We assume that the theory is invariant under the gauge transformations

φ→ eAφ; e2V → e−A
+

e2V e−A,

where the parameter A = ie0A
BTB is an arbitrary chiral super�eld.
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Higher covariant derivative regularization

We use the higher covariant derivative regularization

A.A.Slavnov, Nucl.Phys., B31, (1971), 301; Theor.Math.Phys. 13 (1972) 1064.

because it is consistent and does not break supersymmetry:

V.K.Krivoshchekov, Theor.Math.Phys. 36 (1978) 745;
P.West, Nucl.Phys. B268, (1986), 113.

It can be also used for theories with N = 2 supersymmetry

V.K.Krivoshchekov, Phys.Lett. B 149 (1984) 128; I.L.Buchbinder, K.S., Nucl.Phys.
B883 (2014) 20; I.L.Buchbinder, N.G.Pletnev, K.S., Phys.Lett. B751 (2015) 434.

To regularize the theory by higher derivatives, it is necessary to add a term
with higher degrees of covariant derivatives to the action. Then divergences
remain only in one-loop approximation. These remaining divergences are
regularized by inserting the Pauli�Villars determinants into the generating
functional.

A.A.Slavnov, Theor.Math.Phys. 33 (1977) 977.
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The background �eld method, regularization, and gauge �xing

Quantum-background splitting is made by the substitution

e2V → eΩ
+

e2V eΩ.

The background super�eld V is de�ned by e2V = eΩ
+

eΩ.
We choose the following higher derivative term

SΛ =
1

2e2
0

Re tr

∫
d4x d2θ eΩeΩW ae−Ωe−Ω

[
R
(
− ∇̄

2∇2

16Λ2

)
− 1
]
Adj

×eΩeΩWae
−Ωe−Ω +

1

4

∫
d4x d4θ φ+eΩ

+

eΩ+
[
F
(
− ∇̄

2∇2

16Λ2

)
− 1
]
eΩeΩφ,

and the gauge �xing term

Sgf =
1

e2
0

tr

∫
d4x d4θ

(
16ξ0 f

+
[
eΩ

+

K−1
(
− ∇̄2∇2

16Λ2

)
eΩ
]
Adj

f

+eΩfe−Ω∇2V + e−Ω
+

f+eΩ
+

∇̄2V
)
,

where the regulators R, F , and K have a rapid growth at in�nity.
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Ghost Lagrangian and BRST invariance

Actions for the Faddeev�Popov and Nielsen�Kallosh ghosts have the form

SFP =
1

e2
0

tr

∫
d4x d4θ

(
eΩc̄e−Ω + e−Ω

+

c̄+eΩ
+
)

×
{( V

1− e2V

)
Adj

(
e−Ω

+

c+eΩ
+
)

+
( V

1− e−2V

)
Adj

(
eΩce−Ω

)}
;

SNK =
1

2e2
0

tr

∫
d4x d4θ b+

[
eΩ

+

K
(
− ∇̄2∇2

16Λ2

)
eΩ
]
Adj

b.

The total action of the gauge �xed theory is invariant under the BRST
transformations

δV = −ε
{( V

1− e2V

)
Adj

(
e−Ω

+

c+eΩ
+
)

+
( V

1− e−2V

)
Adj

(
eΩce−Ω

)}
;

δφ = εcφ; δc̄ = εD̄2(e−2V f+e2V ); δc̄+ = εD2(e2V fe−2V );

δc = εc2; δc+ = ε(c+)2; δf = 0; δb = 0; δΩ = 0,

where ε is an anticommuting scalar parameter.

K.V.Stepanyantz Finiteness of the triple ghost-gauge vertices



8

Renormalization

In our notation the renormalization constants are de�ned by the equations

1

α0
=
Zα
α

;
1

ξ0
=
Zξ
ξ

; V = VR; V = ZV Z
−1/2
α VR;

b =
√
ZbbR; c̄c = ZcZ

−1
α c̄RcR; φi = (

√
Zφ)i

j(φR)j ;

mij = mmn
0 (Zm)m

i(Zm)n
j ; λijk = λmnp0 (Zλ)m

i(Zλ)n
j(Zλ)p

k.

The subscript R denotes renormalized super�elds, α, λ, and ξ are the
renormalized coupling constant, the Yukawa couplings, and the gauge
parameter, respectively; m denotes renormalized masses.
It is possible to impose the following constrains to these renormalization
constants:

(Zm)i
j = (Zλ)i

j = (
√
Zφ)i

j ; Zξ = Z−2
V ; Zb = Z−1

α .
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Non-renormalization of the vertices with two ghost legs and one leg of the

quantum gauge super�eld

We will prove that the three-point vertices with two ghost legs and a single
leg of the quantum gauge super�eld are �nite in all orders.

K.S., Nucl.Phys. B909 (2016) 316.

There are 4 such vertices, c̄ V c, c̄+V c, c̄ V c+, and c̄+V c+.
They have the same renormalization constant Z

−1/2
α ZcZV . Therefore, the

above statement can be rewritten as

d

d ln Λ
(Z−1/2

α ZcZV ) = 0.

In the one-loop approximation this has �rst been noted in the paper

S.S.Aleshin, A.E.Kazantsev, M.B.Skopsov, K.S., JHEP 1605 (2016) 014.

Consequently, there is a subtraction scheme in which

−1

2
lnZα + lnZc + lnZV = 0.

Important: Below we will demonstrate that Zc is divergent. Therefore, The
Green functions of the structure c̄ V nc are divergent for n 6= 1.
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Slavnov�Taylor identities

The Slavnov�Taylor identity can be derived by making the substitution
coinciding with the BRST transformations in the generating functional
and is written as

0 =

∫
d4x d4θx

δΓ

δV Ax

〈
δV Ax

〉
+

∫
d4x d2θx

( 〈
δc̄Ax
〉 δΓ
δc̄Ax

+
〈
δcAx
〉 δΓ
δcAx

+ 〈δφi〉
δΓ

δφi

)
+

∫
d4x d2θ̄x

( 〈
δc̄∗Ax

〉 δΓ

δc̄∗Ax
+
〈
δc∗Ax

〉 δΓ

δc∗Ax
+
〈
δφ∗i

〉 δΓ

δφ∗i

)
,

where we keep the ε-dependence.
Also we will use the identity obtained by making the substitution c̄→ c̄+a,
where a is an arbitrary chiral super�eld:

ε
δΓ

δc̄Ax
=

1

4
D̄2
〈
δV Ax

〉
; ε

δΓ

δc̄∗Ax
=

1

4
D2
〈
δV Ax

〉
,

where, for simplicity, the background super�eld is set to 0.
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Slavnov�Taylor identities for the three-point functions

Let us di�erentiate the Slavnov�Taylor identity with respect to c̄∗By , cCz ,

and cDw , set the �elds to 0, and use the equations

δ2Γ

δc̄∗By δcAx
= −

D2
yD̄

2
x

16
Gcδ

8
xyδAB ;

δ

δcAx

〈
δV By

〉
= −ε · 1

4
Gc D̄

2δ8
xyδAB .

As a result we obtain the identity

ε ·Gc(∂2
w/Λ

2)D̄2
w

δ3Γ

δc̄∗By δV Dw δcCz
− ε ·Gc(∂2

z/Λ
2)D̄2

z

δ3Γ

δc̄∗By δV Cz δc
D
w

+
1

2
Gc
(
∂2
y/Λ

2
)
D2
y

δ2

δcCz δc
D
w

〈
δcBy

〉
= 0.

Similarly, di�erentiating with respect to c̄∗By , c∗Cz , and cDw gives

ε ·Gc(∂2
w/Λ

2)D̄2
w

δ3Γ

δc̄∗By δV Dw δc∗Cz
+ ε ·Gc(∂2

z/Λ
2)D2

z

δ3Γ

δc̄∗By δV Cz δc
D
w

+
1

2
Gc
(
∂2
y/Λ

2
)
D2
y

δ2

δc∗Cz δcDw

〈
δcBy

〉
= 0.
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Explicit expressions for the three-point ghost-gauge functions

To simplify these identities we use explicit expressions for the
Green functions. They can be derived using dimensional and chirality
considerations:

δ3Γ

δc̄∗Ax δV By δc
C
z

= − ie0

16
fABC

∫
d4p

(2π)4

d4q

(2π)4

(
f(p, q)∂2Π1/2

−Fµ(p, q)(γµ)ȧ
bD̄ȧDb + F (p, q)

)
y

(
D2
xδ

8
xy(q + p) D̄2

zδ
8
yz(q)

)
;

δ3Γ

δc̄∗Ax δV By δc
∗C
z

= − ie0

16
fABC

∫
d4p

(2π)4

d4q

(2π)4
F̃ (p, q)D2

xδ
8
xy(q + p)D2

zδ
8
yz(q),

where ∂2Π1/2 ≡ −DaD̄2Da/8 is the supersymmetric projection operator,
and

δ8
xy(p) ≡ δ4(θx − θy)eipα(xα−yα).

This implies that q + p is the momentum of c̄∗, −p is the momentum of
V , and −q is the momentum of c (or c∗).
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Explicit expressions for the ghost correlators

Let us introduce the chiral source J and add the term

−e0

2

∫
d4x d2θ fABCJ AcBcC + c.c.

to the action. From dimensional and chirality considerations we obtain

δ2

δcCz δc
D
w

〈
δcBy

〉
= −iε · δ3Γ

δcCz δc
D
w δJ By

= − ie0ε

4
fBCD

∫
d4p

(2π)4

d4q

(2π)4
H(p, q)D̄2

zδ
8
zy(q + p)D̄2

wδ
8
yw(q);

δ2

δc∗Cz δcDw

〈
δcBy

〉
= −iε · δ3Γ

δc∗Cz δcDw δJ By

= − ie0ε

64
fBCD

∫
d4p

(2π)4

d4q

(2π)4
H̃(p, q)D̄2

yD
2
y

(
D2
zδ

8
zy(q + p)D̄2

wδ
8
yw(q)

)
.

where [H(p, q)] = 1, [H̃(p, q)] = m−2, and, by construction,

H(p, q) = H(p,−q − p).
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The Slavnov�Taylor identities for the three-point ghost-gauge vertices

Substituting explicit expressions for the Green functions into the Slavnov�
Taylor identities, we can rewrite them in the form

Gc(q)F (q, p) +Gc(p)F (p, q) = 2Gc(q + p)H(−q − p, q);

Gc(q)F̃ (q, p)−Gc(p)
(
F (p, q)− 4pµFµ(p, q)

)
= 2Gc(q + p)(q + p)2H̃(−q − p, q).

For simplicity, here we use the notation Gc(−q2/Λ2)→ Gc(q). The scalar
products are constructed by the help of the Minkowski metric with the
signature (+−−−).
The �rst identity will be used below for proving �niteness of the ghost-
gauge vertices.
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Finiteness of the function H

First, let us prove that the function H(p, q) is �nite. H is contributed by
diagrams in which one leg corresponds to the chiral source J and two
other legs correspond to chiral ghost super�elds c. These diagrams contain∫
d4y d2θy J Ay ·

D̄2
yD

2
y

4∂2
δ8
y1·
D̄2
yD

2
y

4∂2
δ8
y2 = −2

∫
d4y d4θy J Ay ·

D2
y

4∂2
δ8
y1·
D̄2
yD

2
y

4∂2
δ8
y2.

Therefore, the considered contribution can be presented as an integral
over the total superspace, which includes integration over∫

d4θ = −1

2

∫
d2θD̄2 + total derivatives in the coordinate space .

This implies that two left spinor derivatives should act to the chiral external
lines. Therefore, the non-vanishing result can be obtained only if two right
spinor derivatives also act to the external lines. Consequently, the result
should be proportional to, at least, second degree of the external momenta
and is �nite in the ultraviolet region.
Thus, the function H(p, q) is UV �nite.
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Non-renormalization of the three-point ghost-gauge vertices

Let us multiply the Slavnov�Taylor identity to the renormalization constant
Zc (such that (Gc)R = ZcG is �nite), di�erentiate the result with respect
to ln Λ, and take the limit Λ→∞. Due to �niteness of (Gc)R and H the
result is written as(

(Gc)R(q)
d

d ln Λ
F (q, p) + (Gc)R(p)

d

d ln Λ
F (p, q)

)∣∣∣
Λ→∞

= 0.

Setting p = −q, we obtain

d

d ln Λ
F (−q, q)

∣∣∣
Λ→∞

= 0.

Therefore, the corresponding renormalization constant is �nite

d

d ln Λ
(Z−1/2

α ZcZV ) = 0.

Thus, the function F (p, q) is also �nite. This implies that all three-point
ghost-gauge vertices are �nite.
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One-loop calculation: two-point ghost Green function

In the Euclidean space after the Wick rotation

Gc(p) = 1 + e2
0C2

∫
d4k

(2π)4

( ξ0
Kk
− 1

Rk

)(
− 1

6k4
+

1

2k2(k + p)2

− p2

2k4(k + p)2

)
+O(e4

0, e
2
0λ

2
0),

where Rk ≡ R(k2/Λ) and Kk ≡ K(k2/Λ2).
We see that this function is divergent in the ultraviolet region (at in�nite
Λ).

γc(α0, λ0) =
d lnGc
d ln Λ

∣∣∣∣
p=0;α,λ=const

= −α0C2(1− ξ0)

6π
+O(α2

0, α0λ
2
0).

K.V.Stepanyantz Finiteness of the triple ghost-gauge vertices



18

One-loop calculation: three-point gauge-ghost Green functions

ie0

4
fABC

∫
d4θ

d4p

(2π)4

d4q

(2π)4
c̄∗A(θ, p+ q)

(
f(p, q)∂2Π1/2V

B(θ,−p)

+Fµ(p, q)(γµ)ȧ
bDbD̄

ȧV B(θ,−p) + F (p, q)V B(θ,−p)
)
cC(θ,−q);

ie0

4
fABC

∫
d4θ

d4p

(2π)4

d4q

(2π)4
c̄∗A(θ, p+ q)F̃ (p, q)V B(θ,−p)c∗C(θ,−q).
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One-loop calculation: the functions F and F̃

Calculating these diagrams gives

F (p, q) = 1 +
e20C2

4

∫
d4k

(2π)4

{
− (q + p)2

Rkk2(k + p)2(k − q)2
− ξ0 p

2

Kkk2(k + q)2(k + q + p)2

+
ξ0 q

2

Kkk2(k + p)2(k + q + p)2
+

(
ξ0
Kk

− 1

Rk

)(
− 2(q + p)2

k4(k + q + p)2
+

2

k2(k + q + p)2

− 1

k2(k + q)2
− 1

k2(k + p)2

)}
+O(α2

0, α0λ
2
0).

F̃ (p, q) = 1 − e20C2

4

∫
d4k

(2π)4

{ p2

Rkk2(k + q)2(k + q + p)2
+

ξ0 (q + p)2

Kkk2(k − p)2(k + q)2

+
ξ0 q

2

Kkk2(k + p)2(k + q + p)2
+

2ξ0
Kkk2(k + p)2

− 2ξ0
Kkk2(k + q + p)2

+

(
ξ0
Kk

− 1

Rk

)
×
(

2q2

k4(k + q)2
+

1

k2(k + q + p)2
− 1

k2(k + q)2

)}
+O(α2

0, α0λ
2
0).

We see that these expressions are �nite in the ultraviolet region.
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One-loop calculation: the function f

The expressions for the functions f and Fµ are very large and in writing
them we will use the notation

∆q ≡
ξ0
Kq
− 1

Rq
.

The function f has the form

f(p, q) =
1

4

∫
d4k

(2π)4
e20C2

k2(k + q)2(k + q + p)2

{ 2kµqµ
(k + q)2

∆k+q +
2k2

(k + q + p)2
∆k+q+p

+Rp
( 2kµ(q + p)µ

(k + q + p)2Rk+q
∆k+q+p +

2k2

(k + q)2Rk+q+p
∆k+q +

(kµ(k + q + p)µ

(k + q + p)2

+
kµ(k + q)µ

(k + q)2

)
∆k+q∆k+q+p

)
− 2kµ(k + q)µ

Rk+qRk+q+p
· Rk+q+p −Rk+q

(k + q + p)2 − (k + q)2

− 2(Rk+q+p −Rp)

(k + q + p)2 − p2
· 1

Rk+q+p

(kµqµ(k + q + p)2 − kµq
µp2

(k + q)2
∆k+q +

kµp
µ

Rk+q

)
−2(Rk+q −Rp)

(k + q)2 − p2
· 1

Rk+q

(k2(k + q)2 − k2p2

(k + q + p)2
∆k+q+p +

kµ(k + q)µ

Rk+q+p

)}
+O(e40, e

2
0λ

2
0).
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One-loop calculation: the function Fµ

Fµ(p, q) =
1

16

∫
d4k

(2π)4
e20C2

k2(k + q)2(k + q + p)2

{ 2

k2
∆k

[
(q + p)µ kα(k + q)α + qµ kα

×(k + q + p)α + kµ
(
k2 − q2 − qαp

α
)]

− 4kµ
Rk+q

+
2

(k + q)2
∆k+q

[
− qµkαp

α + pµk
2

+kµqαp
α − kµ(k + q)2 + kαq

α(2q + 2k + p)µ
]

+
2

(k + q + p)2
∆k+q+p

[
qµkα(q + p)α

+(q + p)µkαq
α − kµ(q2 + qαp

α + k2) − pµk
2
]
− Rk+q+p −Rk+q

(k + q + p)2 − (k + q)2
(2q + 2k + p)µ

× 4kαqα
Rk+qRk+q+p

+
2Rp

(k + q)2(k + q + p)2
∆k+q+p∆k+q

[
(pµp

ν − δνµp
2)
(

(k2 + q2)(kν + qν)

−(k + q)2qν
)

+ p2(qµkαp
α − kµqαp

α)
]

+
4Rp

(k + q)2Rk+q+p
∆k+q (qµkαp

α − kµqαp
α)

+
4(Rk+q −Rp)

(k + q)2 − p2
(kµqαp

α − qµkαp
α)

Rk+qRk+q+p
+

4(Rk+q+p −Rp)

(k + q + p)2 − p2

( (pµp
ν − δνµp

2)kν

Rk+q+pRk+q
+ ∆k+q

×
(
(k + q + p)2 − p2

)
(k + q)2Rk+q+p

(
qµkαp

α − kµqαp
α
))}

+O(e40, e
2
0λ

2
0).
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One-loop calculation: �niteness of the function H

H(p, q) = 1− e2
0C2

4

∫
d4k

(2π)4

{
p2

Rkk2(k + q)2(k + q + p)2

+
(q + p)2

k4(k + q + p)2

( ξ0
Kk
− 1

Rk

)
+

q2

k4(k + q)2

( ξ0
Kk
− 1

Rk

)}
+O(e4

0, e
2
0λ

2
0);

H̃(p, q) =
e2

0C2

4

∫
d4k

(2π)4

1

Kkk2(k + q)2(k + q + p)2
+O(e4

0, e
2
0λ

2
0).

We see that the functionH is �nite in the ultraviolet region and is quadratic
in external momenta.
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One-loop calculation: Slavnov�Taylor identities

One can verify that the above functions satisfy the Slavnov�Taylor
identities

Gc(−q − p)H(−q − p, q) = 1 +
e20C2

4

∫
d4k

(2π)4

{
− (q + p)2

Rkk2(k + p)2(k − q)2

+
( ξ0
Kk

− 1

Rk

)( 2

k2(k + q + p)2
− 2(q + p)2

k4(k + q + p)2
− p2

k4(k + p)2
− q2

k4(k − q)2

− 2

3k4

)}
+O(α2

0, α0λ
2
0) =

1

2

(
Gc(q)F (q, p) +Gc(p)F (p, q)

)
.

Gc(q)F̃ (q, p) −Gc(p)
(
F (p, q) + 4pµFµ(p, q)

)
= −e

2
0C2

2

∫
d4k

(2π)4
(q + p)2

Kkk2(k − p)2(k + q)2
+O(α2

0, α0λ
2
0)

= −2Gc(q + p)(q + p)2H̃(−q − p, q).

Note that earlier we use Minkowski momenta, while here the momenta are
Euclidian. Therefore, due to the identity (aµb

µ)M = −(aµb
µ)E some signs

are di�erent.
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NSVZ β-function

In N = 1 supersymmetric theories the β-function is related to the
anomalous dimension of the matter super�elds by the equation

β(α) = −
α2
(

3C2 − T (R) + C(R)i
jγj

i(α)/r
)

2π(1− C2α/2π)
.

V.Novikov, M.A.Shifman, A.Vainshtein, V.I.Zakharov, Nucl.Phys. B 229, (1983),
381; Phys.Lett. 166B, (1985), 329; M.A.Shifman, A.I.Vainshtein, Nucl.Phys. B 277,
(1986), 456.

The NSVZ β-function have been derived from various general arguments:
instantons, anomalies, etc.
For N = 1 SQED, regularized by higher derivatives, the NSVZ relation
has been obtained by explicit summation of supergraphs

K.S., Nucl.Phys. B 852 (2011) 71; JHEP 1408 (2014) 096.

Generalization of this result to the case of using the dimensional reduction
is a complicated and so far unsolved problem

S.S.Aleshin, A.L.Kataev, K.S., JETP Lett. 103 (2016) 77.

K.V.Stepanyantz Finiteness of the triple ghost-gauge vertices



25

Derivation of the NSVZ β-function in the Abelian case by summing

supergraphs

Qualitative picture:

A.V.Smilga, A.I.Vainshtein, Nucl.Phys. B 704 (2005) 445.
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Renormalization group functions de�ned in terms of the bare coupling

constants

β(α0, λ0) ≡ dα0

d ln Λ
= α2

0

d

d ln Λ

(
d−1(α0, λ0,Λ/p)− α−1

0

)∣∣∣
p=0

;

(γφ)i
j(α0, λ0) ≡ −d ln(Zφ)i

j(α, λ,Λ/µ)

d ln Λ
=
d ln(Gφ)i

j(α0, λ0,Λ/p)

d ln Λ

∣∣∣
p=0

;

γV (α0, λ0) ≡ −d lnZV (α, λ,Λ/µ)

d ln Λ
=

1

2
· d lnGV (α0, λ0,Λ/p)

d ln Λ

∣∣∣
p=0

;

γc(α0, λ0) ≡ −d lnZc(α, λ,Λ/µ)

d ln Λ
=
d lnGc(α0, λ0,Λ/p)

d ln Λ

∣∣∣
p=0

.

where the di�erentiation is made at �xed values of α and λijk.
There renormalization group functions are
1. scheme independent at a �xed regularization;
2. depend on a regularization;
3. satisfy the NSVZ relation in all orders for N = 1 SQED with Nf �avors,
regularized by higher derivatives.
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Renormalization group functions de�ned in terms of the renormalized

coupling constant

The renormalization group functions are standardly de�ned in terms of the
renormalized coupling constants by the equations

β̃(α, λ) ≡ dα

d lnµ
;

(γ̃φ)i
j(α, λ) ≡ d ln(Zφ)i

j(α, λ,Λ/µ)

d lnµ
;

γ̃V (α, λ) ≡ d lnZV (α, λ,Λ/µ)

d lnµ
;

γ̃c(α, λ) ≡ d lnZc(α, λ,Λ/µ)

d lnµ
.

where the di�erentiation is made at �xed values of α0 and λijk0 .
There renormalization group functions are
1. scheme dependent;
2. satisfy the NSVZ relation only in a special subtraction scheme, which is
called the NSVZ scheme.
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New form of the NSVZ β-function

The NSVZ β-function can be equivalently rewritten in the form

β(α0, λ0)

α2
0

= −3C2 − T (R) + C(R)i
j(γφ)j

i(α0, λ0)/r

2π
+
C2

2π
· β(α0, λ0)

α0
.

Let us express the β-function in the right hand side in terms of the
renormalization constant Zα:

β(α0, λ0) =
dα0(α, λ,Λ/µ)

d ln Λ

∣∣∣
α,λ=const

= −α0
d lnZα
d ln Λ

∣∣∣
α,λ=const

.

Then, using the identity d(Z
−1/2
α ZV Zc)/d ln Λ = 0 we obtain

β(α0, λ0) = −2α0
d ln(ZcZV )

d ln Λ

∣∣∣
α,λ=const

= 2α0

(
γc(α0, λ0)+γV (α0, λ0)

)
,

where γc and γV are anomalous dimensions of the Faddeev�Popov ghosts
and of the quantum gauge super�eld (de�ned in terms of the bare coupling
constants), respectively.
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New form of the NSVZ β-function and its graphical interpretation

Substituting this expression into the right hand side of the NSVZ relation
we obtain

β(α0, λ0)

α2
0

= − 1

2π

(
3C2 − T (R)− 2C2γc(α0, λ0)

−2C2γV (α0, λ0) + C(R)i
j(γφ)j

i(α0, λ0)/r
)
.

From this form of the NSVZ β-function we see that the matter super�elds
and ghosts similarly contribute to the right hand side.

Let us assume that this equation is valid with the higher derivative
regularization similarly to the Abelian case.
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The NSVZ scheme in the non-Abelian case

The RG functions de�ned in terms of the renormalized coupling constant
are scheme dependent and satisfy the NSVZ relation only in a certain
subtraction scheme. Similarly to

A.L.Kataev and K.S., Nucl.Phys. B875 (2013) 459; Phys.Lett. B730 (2014) 184.

we see that in the non-Abelian case the RG functions de�ned in terms
of the bare coupling constant coincide with ones de�ned in terms of the
renormalized coupling constants if the boundary conditions

Zα(α, λ, x0) = 1; (Zφ)i
j(α, λ, x0) = δi

j ; Zc(α, λ, x0) = 1,

where x0 is a �xed value of ln Λ/µ, are imposed on the renormalization
constants. (For example, it is possible and convenient to choose x0 = 0.)
We also assume that the renormalization constants satisfy the equation

ZV = Z1/2
α Z−1

c ,

Possibly, these conditions give the NSVZ scheme with the higher covariant
derivative regularization.
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Conclusion

X For N = 1 SYM the three-point vertices with two ghost legs and a
single leg of the quantum gauge super�eld are �nite. This has been
proved in all orders using the Slavnov�Taylor identities and has been
veri�ed by an explicit one-loop calculation.

X Due to non-renormalization of the three-point ghost-gauge
vertices the renormalization constants can be chosen so that
Z
−1/2
α ZV Zc = 1.

X The NSVZ β-function can be rewritten in terms of the anomalous
dimensions of the quantum gauge super�eld, of the Faddeev�Popov
ghosts, and of the matter super�elds. The resulting expression for the
NSVZ β-function has a simple qualitative interpretation.

X Using the above results it is possible to suggest a simple prescription
giving the NSVZ scheme in the non-Abelian case, if the higher
covariant derivative method is used for regularization.
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Thank you for the attention!
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