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Introduction

Consider the massless, two-dimensional, real scalar field theory with
the following action:

S =

∫︁
d2x

[︂
1
2

(𝜕𝜇𝜑)2 − 𝜆

4!
𝜑4

]︂
, 𝜇 = 0, 1

with the scalar field 𝜑 satisfying the null boundary condition:

𝜑[t, z(t)] = 0,

where
(︀
t, z(t)

)︀
is a time-like curve (world-line of the mirror).

QFT is considered in the region to the right hand side of the
world-line.
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Introduction

The aim is to show that loop corrections to the Keldysh
propagator grow with time in this theory, which can
significantly change the vacuum expectation value of the
energy-momentum tensor, calculated in the tree-level
approximation.



Mode functions

Tree-level approximation (𝜆 = 0).

The quantized field can be represented as follows:

𝜑(u, v) =

∫︁ ∞

0

dk
2𝜋

[︀
hk(u, v) ak + h. c.

]︀
,

where ak, a†k are creation and annihilation operators, satisfying the
commutation relation [ak, a†k′ ] = 2𝜋𝛿(k − k′).

Modes hk(t, x) solve Klein-Gordon equation and satisfy the boundary
condition:

hk
(︀
t, z(t)

)︀
= 0,

where z(t) is a mirror world-line.



The canonical commutation relation

These mode functions can be calculated explicitly:

hk(u, v) =
i√
2k

[︀
e−ikv − e−ik(2tu−u)]︀,

where tu is a solution of the equation: tu − z(tu) = u.

The normalization factor i/
√

2k provides that the canonical
commutation relation is satisfied:

[𝜑(t, x), 𝜕t𝜑(t, y)] = i𝛿(x − y).

Denote
2tu − u ≡ p(u).



The energy flux (tree-level)

The calculation of the expectation value of T𝜇𝜈 is straightforward.
The energy flux from the mirror is described by its tx-component:

⟨Ttx⟩ = lim
𝜀→0

1
2
⟨𝜕t𝜑(t, x)𝜕x𝜑(t + i𝜀, x) + 𝜕x𝜑(t, x)𝜕t𝜑(t + i𝜀, x)⟩ ,

Using this formula and the expression of 𝜑 through mode functions,
we have:

⟨Ttx⟩ (u) =
1

24𝜋

[︂
p

′′′

p′ − 3
2

(︂
p

′′

p′

)︂2]︂
,

where p(u) = 2tu − u and p′(u) =
dp
du

.



The energy flux (tree-level)

The previous result can be expressed in terms of mirror velocity:

⟨Ttx⟩ (u) =
1

24𝜋

[︂
p

′′′

p′ −
3
2

(︂
p

′′

p′

)︂2]︂
= − 1

12𝜋
(1 + v)1/2

(1 − v)3/2
d
dt

v̇
(1 − v2)3/2

⃒⃒⃒⃒
t=tu

.

Notice that
v̇

(1 − v2)3/2
is the mirror acceleration in its instantaneous

rest frame.



Loop corrections

𝜆 ̸= 0

I will demonstrate the behaviour of loop corrections to the Keldysh
propagator, which is the following quantity:

GK
xy =

1
2
⟨{𝜑(x), 𝜑(y)}⟩ .

It relates to the 01-component of the energy-momentum tensor in the
following way:

⟨T01⟩ = lim
x→y

𝜕x0𝜕y1GK
xy.



Loop corrections to the Keldysh propagator

The exact Keldysh propagator can be represented in the following
way, when x0 = y0:

GK
xy
⃒⃒
x0=y0 = GK(0)

xy
⃒⃒
x0=y0+

+

∫︁∫︁
dk
2𝜋

dk′

2𝜋
[︀
nkk′ h̄k(x)hk′(y) + 𝜅kk′hk(x)hk′(y) + h. c.

]︀
,

where GK(0) is a tree-level Keldysh propagator, nkk′ = ⟨a†kak′⟩ are
occupation numbers, and 𝜅kk′ = ⟨akak′⟩ is an anomalous quantum
average.



Two-loop corrections

We consider corrections to nkk′ and 𝜅kk′ , coming from the following

two-loop diagram in the limit when
x0 + y0

2
≡ T → ∞ while |x0 − y0|

is kept fixed:

x z w y

The corrections depend on the mirror world-line.



Loop corrections for different world-lines

Consider corrections to nkk′ for the following world-line:

x(t) =

{︃
0 t < 0

−𝛽t + a(1 − e−𝛽t/a) t ≥ 0,

when the mirror eternally approaches to the line (t,−𝛽t + a) as t goes
to ∞.

The correction to nkk′ is as follows:

Δnkk′ ∝ 𝜆2T2
∫︁ 3∏︁

j=1

dpj

2𝜋
1

p1p2p3

1
24
√

kk′

[︂
v.p.

1
k + p1 + p2 + p3

]︂
×

[︂
v. p.

1
k′ + p1 + p2 + p3

]︂
+ O(T).

The correction to 𝜅kk′ is also proportional to 𝜆2T2.



Loop corrections for different world-lines



The mirror, approaching the speed of light

Consider the world-line, which approaches the light-like line as t goes
to infinity:

z(t) =

{︃
0 t < 0

−t + a(1 − e−t/a) t ≥ 0,

The correction to nkk′ is proportional to 𝜆2T4:

nkk′ ∝ 𝜆2T4 e−i(k−k′)a
√

kk′
·
∫︁ 3∏︁

j=1

dpj

2𝜋
1

p1p2p3
+ O(T3).

The correction to 𝜅kk′ is also proportional to 𝜆2T4.



The mirror, approaching the speed of light



One-loop corrections

Consider also one-loop corrections to nkk′ and 𝜅kk′ , coming
from the following diagram:

x z y



One-loop corrections

∆nkk′ ≈ 0.

For the first world-line:

∆𝜅kk′ ∝ −𝜆 T
∫︁

dp
2𝜋

1√︀
24 · kk′p2

·
[︂
− v. p.

i
k + k′ +

+
3 − 𝛽

1 − 𝛽
𝜋𝛿(k + k′)

]︂
+ O(1)

For the second world-line:

∆𝜅kk′ ∝ 𝜆T2ei(k+k′)a
∫︁

dp
2𝜋

1√︀
24 · kk′p2

+ O(T)



Conclusions

In the case of 𝜆𝜑4 theory, loop corrections to the Keldysh
propagator, which is closely connected to the energy flux,
are not suppressed given a sufficiently long time – in other
words, perturbation theory breaks down.

However, in order to make a definitive conclusion about
this effect it is necessary to consider the resummation of
the leading corrections from all loops.
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