
Various semiclassical limits of torus conformal blocks

Konstantin Alkalaev

Tamm Theory Department, Lebedev Physical Institute

K.Alkalaev, V. Belavin, arXiv:1603.08440
K. Alkalaev, R. Geiko, V. Rappoport, arXiv:1612.05891

Moscow 2017



Outline

• Short review of the sphere case duality

• Semiclassical conformal blocks on a torus

• Symmetry argument: Virasoro algebra contractions

• Holographic interpretation of the classical torus block

• Conclusions and outlooks



Heavy and light operators
The n-point correlation function of V∆i

(zi ), i = 1, ..., n are given by

〈V∆1
(z1) . . .V∆n (zn)〉 ∼

∑
∆̃

C ...C F

Conformal blocks
F(z1, ..., zn|∆1, ...,∆n; ∆̃1, ..., ∆̃n−3|c)

are conveniently depicted as (in a particular OPE channel)

Remarkably, the OPE ties monodromy of solutions around particular contours to dimen-

sions of the exchanged operators in a particularly simple way. For the degenerate primary

inserted as on Fig. 1 we find that the conformal block is dominated by (zm�y)�̃m+1��(1,2)��̃m .

By the OPE argument, moving y around zm is equivalent to moving around insertion points

of those operators which have been fused into the exchanged operator. Thus, computing the

monodromy of the above power-law function we easily find the monodromy along the contour

�k (2.1).

Indeed, using the Liouville parameterization2 we find that �(1,2) = �1/2 � 3b2/4, while

conformal dimensions of exchanged operators are related by the fusion rule as �̃m+1 � �̃m =

�b2/4 ± ibPm [21]. Then, the monodromy matrix associated with �k is given by

eM(�k) =

 
e2⇡iM+k 0

0 e2⇡iM�k

!
, M±k =

1

2
+

b2

2
± ibPk�1 . (2.2)

The classical conformal blocks arise in the limit when the central charge and conformal

dimensions simultaneously tend to infinity. Both external and exchanged dimensions �m and

�̃n grow linearly with the charge c in such a way that ratios ✏m = 6�m/c and ✏̃n = 6�̃n/c

called classical dimensions remain fixed in c ! 1. Then, the quantum conformal block is

represented as an exponential of the classical conformal block [17]. Operators with fixed

classical dimensions are heavy, while those with vanishing classical dimensions are light.
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Figure 2. The n-point conformal block. Two bold black lines are background heavy operators,

thin blue lines represent primary and exchanged perturbative heavy operators which are discussed in

Section 3.

In our case of the (n + 1)-point conformal block all operators are supposed to be heavy

while the degenerate operator is light, limb!0 �(1,2) = 1/2. Thus, in the semiclassical

limit it decouples from the other operators, while adjacent exchanged dimensions get equal

limb!0(�̃m � �̃m+1) = 0, see Fig. 1. The limiting (n+1)-point conformal block factorizes as

F(y, z|�m, �̃n)
���
c!1

!  (y|z) exp
⇥
� c

6
f(z|✏i, ✏̃j)

⇤
, (2.3)

where we denoted z = {z1, ... , zn}, function  (y|z) describes the semiclassical contribution

of the degenerate operator, while the exponential factor f(z|✏i, ✏̃j) is the n-point classical

2We change (�, c) ! (P, b) according to �(P ) = c�1
24

+ P 2 and c = 1 + 6(b + b�1)2 [21]. The limit c ! 1
can equivalently be described as b ! 0.
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Different semiclassical limits of the conformal blocks depend on the behavior of ∆i and ∆̃i .

• ∆, ∆̃ = O(c1): heavy operators
• ∆, ∆̃ = O(c0): light operators

Three types of blocks:

• Global conformal block — all operators are light
• Classical conformal block — all operators are heavy
• Heavy-light blocks interpolate between these two extreme regimes



Classical conformal block

In the semiclassical limit c →∞ the conformal blocks exponentiate as (Zamolodchikov 1986)

F(zi |∆i , ∆̃j ) = exp
[
− c f (zi |εi , ε̃j )

]
where εk = ∆k

c
and ε̃k = ∆̃k

c
are classical dimensions and f (z|ε, ε̃) is the classical conformal block.

Heavy-light perturbation expansion (Fitzpatrick, Kaplan, Walters’ 2014) We consider the case of two
background operators. Let εn−1 = εn ≡ εh be the background heavy dimension, while εi ,
i = 1, ... , n − 2 be perturbative heavy dimensions,

εi

εh
� 1

The classical conformal block is expanded as

f (z|ε, ε̃) = f (0)(z|ε, ε̃) + f (1)(z|ε, ε̃) + f (2)(z|ε, ε̃) + ... ,

The zeroth approximation corresponds to the classical conformal block of the 2-point function of
the background operators. Hence, f (0) = 0 and the first non-trivial correction is given by f (1).



Geodesic networks
The background heavy operators εn = εn−1 ≡ εh produce an asymptotically AdS3 geometry
identified either with an angular deficit or BTZ black hole (Fitzpatrick, Kaplan, Walters 2014)

α =
√

1− 4εh
Here

• α2 > 0 for an angular deficit

• α2 < 0 for the BTZ black hole

In the case of the angular deficit the metric reads

ds2 = α2 sec2 ρ (dt2 + sin2 ρdφ2 + α−2dρ2)
w2, ✏2

w1, ✏1

wn�2, ✏n�2

.
.

.
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.
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Figure: Multi-particle graph embedded into a constant time slice of a
conical defect geometry. Solid lines represent external particles, wavy lines
represent intermediate particles. The original heavy fields produce the
background geometry with the singularity placed in the center representing
a cubic vertex of two heavy fields and a light intermediate field.

Konstantin Alkalaev Classical conformal blocks via AdS/CFT correspondence

The perturbative heavy operators are realized via particular network of worldlines of point-like
probes propagating in the background geometry formed by the two background heavy operators.
Points wi are boundary attachments of the perturbative heavy operators.

See, e.g., (Hartman 2013, Asplund, Bernamonti, Galli, Hartman 2014, Caputa, Simon, Stikonas, Takayanagi 2014, Hijano,

Kraus, Snively 2015, Alkalaev, Belavin 2015, Banerjee, Datta, Sinha 2016, Chen, Wu, Zhang 2016)

The block/length correspondence

f (1) ∼= Sbulk , where Sbulk =

n−2∑
i=1

εi Li +

n−3∑
i=1

ε̃i L̃i ,

and Li and L̃i are lengths of different geodesic segments on a fixed time slice.



Large-c duality: sphere case

Remarkably, the OPE ties monodromy of solutions around particular contours to dimen-

sions of the exchanged operators in a particularly simple way. For the degenerate primary

inserted as on Fig. 1 we find that the conformal block is dominated by (zm�y)�̃m+1��(1,2)��̃m .

By the OPE argument, moving y around zm is equivalent to moving around insertion points

of those operators which have been fused into the exchanged operator. Thus, computing the

monodromy of the above power-law function we easily find the monodromy along the contour

�k (2.1).

Indeed, using the Liouville parameterization2 we find that �(1,2) = �1/2 � 3b2/4, while

conformal dimensions of exchanged operators are related by the fusion rule as �̃m+1 � �̃m =

�b2/4 ± ibPm [21]. Then, the monodromy matrix associated with �k is given by

eM(�k) =

 
e2⇡iM+k 0

0 e2⇡iM�k

!
, M±k =

1

2
+

b2

2
± ibPk�1 . (2.2)

The classical conformal blocks arise in the limit when the central charge and conformal

dimensions simultaneously tend to infinity. Both external and exchanged dimensions �m and

�̃n grow linearly with the charge c in such a way that ratios ✏m = 6�m/c and ✏̃n = 6�̃n/c

called classical dimensions remain fixed in c ! 1. Then, the quantum conformal block is

represented as an exponential of the classical conformal block [17]. Operators with fixed

classical dimensions are heavy, while those with vanishing classical dimensions are light.
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Figure 2. The n-point conformal block. Two bold black lines are background heavy operators,

thin blue lines represent primary and exchanged perturbative heavy operators which are discussed in

Section 3.

In our case of the (n + 1)-point conformal block all operators are supposed to be heavy

while the degenerate operator is light, limb!0 �(1,2) = 1/2. Thus, in the semiclassical

limit it decouples from the other operators, while adjacent exchanged dimensions get equal

limb!0(�̃m � �̃m+1) = 0, see Fig. 1. The limiting (n+1)-point conformal block factorizes as

F(y, z|�m, �̃n)
���
c!1

!  (y|z) exp
⇥
� c

6
f(z|✏i, ✏̃j)

⇤
, (2.3)

where we denoted z = {z1, ... , zn}, function  (y|z) describes the semiclassical contribution

of the degenerate operator, while the exponential factor f(z|✏i, ✏̃j) is the n-point classical

2We change (�, c) ! (P, b) according to �(P ) = c�1
24

+ P 2 and c = 1 + 6(b + b�1)2 [21]. The limit c ! 1
can equivalently be described as b ! 0.
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presence of conical singularity breaks the global AdS3 isometry (↵ = 1) down to Abelian

isometry R � o(2) generated by two Killing vectors @t and @�. On the conformal boundary,

the Abelian isometry is enhanced to full Virasoro algebra.

w3, ✏3

w2, ✏2
w1, ✏1
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✏̃n�3
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✏̃2
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.
..
..
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..
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Figure 3. Network of geodesic lines on the hyperbolic disk. Solid and wave lines denote respectively

external (✏m) and exchanged (✏̃k) particles, dotted lines denote the middle part of the graph. The

boundary attachment points are wm, m = 1, ... , n � 2.

A massive particle on the angle deficit space with the interval (4.1) is described by

the worldline action S = ✏

Z
d�

q
gttṫ2 + g���̇2 + g⇢⇢⇢̇2, where ✏ is a classical conformal

dimension identified with a mass, the metric coe�cients are read o↵ from (4.1), � is the

evolution parameter and the dot denotes di↵erentiation with respect to �, see Appendix A.1

for more details. The Abelian isometry guarantees that coordinates � and t are cyclic, i.e.

�S/�� ⌘ 0 and �S/�t ⌘ 0. It follows that the original mechanics can be reduced to a simpler

system described by the Routhian function, which means that we have to perform a partial

Legendre transformation with respect to �̇ and ṫ. Choosing the partial constraint ṫ = 0 we

arrive at the Routhian action, which describes a massive particle moving on the punctured

hyperbolic disk,

S =

Z
d�L , L = ✏

q
↵2 tan2 ⇢ �̇2 + sec2 ⇢ ⇢̇2 . (4.2)

The residual isometry is given by sl(2, R) at ↵ = 1 and o(2) at ↵ 6= 1.

We consider a set of massive point particles propagating around the conical singularity.

They interact to each other forming cubic vertices of worldlines. Of course, there are other

possible types of interaction including quartic and higher vertices. However, the block/length

correspondence singles out only cubic vertices. There are 2n � 5 particles corresponding to

the total number of external/exchanged lines of the dual n-point conformal block diagram

shown on Fig. 2. External n � 2 worldlines are attached to the conformal boundary at fixed

points w = (w1, ... , wn�2), where w = � + it. Exchanged n � 3 worldlines are stretched

– 10 –

f (1)(z|ε, ε̃) ∼= S(w |ε, ε̃)



Going beyond the spherical CFT: 1-point torus block

• Extend to Riemannian surfaces of genus g !

• Non-trivial 0-point and 1-point functions already on a torus

• Torus 1-point block ∼ sphere 4-point block (Fateev, Litvinov, Neveu, Onofri 2009, Poghossian 2009)

• Classical conformal blocks with any n and g? Quantum conformal blocks with any n and g
(Cho, Collier, Yin 2017)



Virasoro 1-point torus block
The 1-point torus correlation function is

〈φ∆(z, z̄)〉 ∼
∑

∆̃

C∆∆̃∆̃V(z|q)V(z̄|q̄)

(Holomorphic) 1-point conformal block is

V(∆, ∆̃, c|q) = q∆̃−c/24
∞∑
n=0

qnVn(∆, ∆̃, c) , where q = e2πiτ ,

is the elliptic parameter on a torus with the modulus τ , and the expansion coefficients are

Vn(∆, ∆̃, c) =
1

〈∆̃|φ∆(z)|∆̃〉
∑

n=|M|=|N|
BM|N 〈∆̃,M|φ∆(z)|N, ∆̃〉 ,

where |∆̃,M〉 = Li1−m1
....L

ik
−mk
|∆̃〉 are descendant vectors in the Verma module generated from

the primary state |∆̃〉. Here, M labels basis monomials, |M| = i1m1 + . . .+ ikmk denotes the sum
of the Virasoro generator indices. The matrix BM|N is the inverse of the Gram matrix
BM|N = 〈∆̃,M|N, ∆̃〉. Tadpole diagram:
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Non-conformal limit of AGT relation

from the 1-point torus conformal block
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Given a 4d N = 2 SUSY gauge theory, one can construct the Seiberg-Witten prepotentional, which involves

a sum over instantons. Integrals over instanton moduli spaces require regularisation. For UV-finite theories

the AGT conjecture favours particular, Nekrasov’s way of regularization. It implies that Nekrasov’s partition

function equals conformal blocks in 2d theories with WNc chiral algebra. For Nc = 2 and one adjoint multiplet

it coincides with a torus 1-point Virasoro conformal block. We check the AGT relation between conformal

dimension and adjoint multiplet’s mass in this case and investigate the limit of the conformal block, which

corresponds to the large mass limit of the 4d theory e.i. the asymptotically free 4d N = 2 supersymmetric

Yang-Mills theory. Though technically more involved, the limit is the same as in the case of fundamental

multiplets, and this provides one more non-trivial check of AGT conjecture.

PACS: 11.25.Hf, 11.15.-q

1. INTRODUCTION

N = 2 supersymmetric Yang-Mills (SYM) theories

have attracted attention for rather a long time, because

they are ideally suited for the study of interplay between

perturbative and non-perturbative effects and for man-

ifestation of various dualities [1]-[4]. Depending on the

fields content, these theories exhibit all types of renor-

malization behaviour of effective coupling constant g: it

may tend to infinity (Landau pôle), and to zero (asymp-

totic freedom with dimensional transmutation in IR) or

remain constant (UV-finite).

In N = 2 SYM theory the low-energy effective ac-

tion is Abelian and its most important part is expressed

in terms of the prepotential. Prepotential contains one-

loop perturbative contribution and a far more sophis-

ticated non-peturbative part, obtained as a sum over

instantons. It was explicitly found by N.Seiberg and

E.Witten (SW) [1, 2] with the help of duality arguments,

and the answer was soon reformulated in terms of the

spectral surfaces and simple integrable systems [5, 6].

The spectral curves were later interpreted in terms of

branes. Straightforward evaluation of instanton sums

is rather difficult, especially because some of the inte-

grals over instanton moduli spaces diverge. See [7] for

a comprehensive review and references.

A very successful direct caluculation was finally pro-

vided by N.Nekrasov [8]. He introduced a new partition

function, depending on additional parameters ϵ1 and ϵ2,

1)e-mail:alba@itp.ac.ru, e-mail:andrey.morozov@itep.ru

such that the limit ϵ1, ϵ2 −→ 0 reproduces SW prepo-

tential.

Recently F.Alday, D.Gaiotto and Y.Tachikawa

(AGT) made a ground-breaking conjecture that

Nekrasov functions coincide with conformal blocks [9]

of 2d Liouville/Toda models, and the ϵ-parameters

are needed to allow arbitrary values of the central

charge in their chiral WNc algebras (for Nc = 2 the

chiral algebra is just the ordinary Virasoro). AGT

suggest a non-trivial association of conformal blocks

with UV-finite 4d quiver models. The 4-point tree

Virasoro block is associated with the Nc = 2 gauge

theory with 2Nc = 4 additional fundamental matter

supermultiplets.

∆ext, 1

✫✪
✬✩

L−Y1 L−Y2∆
❅

❅
❅

"
"

"

∆ext, 1

L−Y1 , ∆1, ∞ L−Y2 , ∆2, 0

=⇒

Triple vertex with two Virasoro descendants and the 1-point
toric conformal block, obtained by taking a trace over Ver-
mat module with a given dimension ∆. Each line is chara-
terized by dimension, by Ferrers diagram and external legs
are also labeled by the position of the vertex operator on the
Riemann surface.
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Semiclassical torus blocks

Large-c expansions of the block function V(∆, ∆̃, c|q). Four types of blocks:

• ∆, ∆̃ = O(c0). In the limit c →∞ we distinguish between the global and light blocks. The
light block is the leading asymptotic in the c-recursive representation of the torus block.

• ∆ = O(c0) and ∆̃ = O(c1). In the limit c →∞ we obtain the heavy-light block. It follows
that

∆/∆̃� 1

The opposite regime of heavy external operator and light exchanged operator does not
exist! The vacuum approximation (Hartman 2013) does not exist as well.

• ∆, ∆̃ = O(c1). The large-c expansion is the exponential of the classical conformal block.

• ∆, ∆̃ = O(c1) and ∆/∆̃� 1. This is the linearized classical conformal block (we will
describe the holographic interpretation in the thermal AdS3 space).

All four types of semiclassical torus blocks are connected by various links!



Global torus block

• A finite-dimensional subalgebra sl(2,C) ⊂ Vir . The associated block is global.

• Does not depend on the central charge. Note that the general conformal block of higher
dimensional CFT being restricted to two dimensions yields the global block.

The general Virasoro block simplifies to yield

F(∆, ∆̃|q) =
∞∑
n=0

qnFn(∆, ∆̃) , Fn(∆, ∆̃) =
1

〈∆̃|φ∆(z)|∆̃〉
〈∆̃|Ln1φ∆(z)Ln−1|∆̃〉
〈∆̃|Ln1Ln−1|∆̃〉

,

where L0,±1 are sl(2,C) basis elements. The coefficients can be packed into the hypergeometric
function

F(∆, ∆̃|q) = (1− q)−∆
2F1(2∆̃−∆, 1−∆, 2∆̃ | q)

In the the limiting case ∆→ 0 we arrive at the zero-point block coinciding with the sl(2,C)
character,

F(∆, ∆̃|q)
∣∣∣
∆→0

=
1

1− q
= 1 + q + q2 + q3 + . . . ,

which indicates that there is just one state on each level of the corresponding sl(2,C) module.



Large dimension expansion
The second order ODE for the global block

F ′′
+ 2

(
∆̃

q
− 1

1− q

)
F ′ −

(
∆(∆− 1)

q(1− q)2
+

2∆̃

q(1− q)

)
F = 0

We consider the regime where dimensions ∆ and ∆̃ tend to infinity in a coherent manner:

∆ = κσ ∆̃ = κ σ̃ where σ, σ̃ are rescaled conformal dimensions

Proposition. The large-k asymptotic expansion of the global block function is exponentiated

F(∆, ∆̃|q) = exp [κ g(σ, σ̃|q)] , κ→∞

where g(σ, σ̃|q) is formally given by

g(σ, σ̃|q) =

∫ q

0
dx

(
− σ̃

x
+

√
σ̃2

x2
+

σ2

x(1− x)2

)
Comments:

• Global sphere blocks satisfy the sl(2) Casimir equation (Dolan, Osborn 2003).

• Expansion in σ/σ̃ yields the linearized classical torus block.



Light torus block

In general, the light block can be defined as the c →∞ limit of the quantum conformal block.
We expand conformal blocks given that

∆ = O(c0) and ∆̃ = O(c0) as c →∞

In this regime the quantum torus block is

qc/24−∆̃ V(∆, ∆̃, c|q) = L(∆, ∆̃|q) +O(c−1)

where the leading term is the one-point light torus block.

Proposition. The global and light blocks are related as

L(∆, ∆̃|q) =
1− q

ϕ(q)
F(∆, ∆̃|q) ,

where ϕ(q) =
∞∏
n=1

(1− qn) is the Euler function.

• The c-recursive relations for 1-pt torus blocks (Alkalaev, Rappoport, Geiko 2016)

• The factorization property persists for any n and g (Cho, Collier, Yin 2017)



Virasoro algebra contractions

Virasoro algebra commutation relations are given by

[Lm, Ln] = (m − n)Lm+n +
c

12
m(m2 − 1)δm+n,0 , m, n ∈ Z

while primary operators transform as

[Lm, φ∆] = zm(z∂z + (m + 1)∆)φ∆

Inönu-Wigner contraction for the Virasoro algebra, where the deformation parameter is c−1.

Rescaled Virasoro generators are Lm → c−γ(m)Lm, where γ(m) is some function of m ∈ Z. There
are two choices:

• Case (A): L0,±1 → l0,±1 = L0,±1 , Lm → am = Lm/c1 , |m| ≥ 2

• Case (B): L0,±1 → l0,±1 = L0,±1 , Lm → am = Lm/c1/2 , |m| ≥ 2

The transformation law is also rescaled. In the limit c →∞, keeping the conformal dimension ∆
finite we find that in both cases (A) and (B) the primary operator transforms as

[lm, φ∆] = zm(z∂z + (m + 1)∆)φ∆ , [am, φ∆] = 0 .

It follows that φ∆ are sl(2) conformal operators and am−singlets.



• Case (A): the contracted Virasoro algebra splits into sl(2) algebra and the
infinite-dimensional Abelian algebra A,

[lm, ln] = (m − n)lm+n , [am, an] = 0 ,

[lm, an] = (m − n)am+n , |m + n| ≥ 2 ; [lm, an] = 0 , |m + n| ≤ 1 .

It is the semidirect sum VirA = sl(2) nA, while the ± branches of A are lowest weight
sl(2)–modules.

• Case (B): the contracted Virasoro algebra splits into sl(2) algebra and the inf-dimensional
Heisenberg algebra H,

[lm, ln] = (m − n)lm+n , [am, an] =
m(m2 − 1)

12
δm+n,0 ,

[lm, an] = (m − n)am+n , |m + n| ≥ 2 ; [lm, an] = 0 , |m + n| ≤ 1 .

It is the semidirect sum VirB = sl(2) nH, while the ± branches of H are lowest weight
sl(2)–modules.

Proposition. The contracted algebras VirA and VirB underlie the global and light torus blocks:

Case A: Global torus block

Case B: Light torus block

Comments:

• We note that truncating the Virasoro algebra to the sl(2) subalgebra is equivalent to
considering the contracted VirA with trivially realized Abelian factor.

• The Heisenberg factor H is non-trivially realized and the global block associated to the
sl(2) factor and the block of the full VirB = sl(2) nH are related.



Heavy-light torus block
The heavy-light limit is defined by

∆ = O(c0) and ∆̃ = O(c1) as c →∞

The heavy-light torus block is defined as

H(∆, ε̃ |q) = lim
c→∞

∆,ε̃−fixed

qc/24−∆̃ V(∆, c ε̃, c |q) = 1 + q + 2q2 + 3q3 + 5q4 + . . . = ϕ−1(q)

Proposition. The heavy-light block is the limiting case of the light block

H(q) = lim
∆̃→∞

L(∆, ∆̃|q) .

Comments:

• The heavy-light block is just the zero-point block, or, equivalently, the Virasoro character.
• Similar to the 4-pt sphere blocks (Fitzpatrick, Kaplan, Walters 2015).

The heavy-light block is related to the particular contracted Virasoro algebra

L0 → l0 = L0/c , Lm → lm = Lm/
√

2c , m 6= 0 ,

In the limit c →∞ the contracted Virasoro algebra commutation relations read

[lm, ln] = mδm+n,0 l0 +
m(m2 − 1)

24
δm+n,0 , [lm, φ∆(z)] = 0 , m, n ∈ Z

The contracted Virasoro algebra is the infinite-dimensional Heisenberg algebra H.



Classical torus block
Now all conformal dimensions grow linearly with the central charge

∆ = O(c1) and ∆̃ = O(c1)

The Laurent series around c =∞ reads

V(∆, ∆̃, c|q) =
∑
n∈N

vn(ε, ε̃|q)

cn
where finite parameters ε =

∆

c
and ε̃ =

∆̃

c

are classical conformal dimensions, and vn(ε, ε̃|q) are formal power series in the modular
parameter q with expansion coefficients being rational functions in ε and ε̃.

Exponentiation hypothesis. At large c the principle part goes to zero. Less obvious is the fact
that the regular part exponentiates. It follows that the one-point torus block is asymptotically
equivalent to

V(∆, ∆̃, c|q) ∼ exp
[
c f (ε, ε̃|q)

]
at c � 1

Function f (ε, ε̃|q) is the classical conformal block

f (ε, ε̃|q) = (ε̃− 1/4) log q +
∞∑
n=1

qnfn(ε, ε̃) = (ε̃− 1/4) log q +
ε2

2ε̃
q + . . .

Comments:

• Global, light, and heavy-light blocks (c →∞), classical block (c � 1).

• Contracted Virasoro algebra + deformations in small c−1



Linearized classical torus block
The torus one-point linearized classical block is defined by introducing the lightness parameter
δ = ∆/∆̃� 1. Change from (ε, ε̃) to (δ, ε̃). We find a double series expansion in δ and ε̃ and fix
the terms at most linear in ε̃: the linearized block

f (ε, ε̃|q) = f lin(δ, ε̃|q) +O(ε̃2)

where

f lin(δ, ε̃|q) ≡ (ε̃− 1/4) log q + ε̃
∞∑
n=1

f
(1)
n (q)δ2n

Conjecture. Provided that (κ, σ, σ̃) of the global block changes to (c, ε, ε̃) of the classical block,
the linearized block is related to the exponential factor of the global block at large dimensions

g0(ε, ε̃|q) = f lin(ε, ε̃|q)− (ε̃− 1/4) log q .

Comments:

• Conjectured integral form for the linearized classical block

f lin(ε, ε̃|q) =

∫ q

0
dx

(
− ε̃
x

+

√
ε̃2

x2
+

ε2

(1− x)2x

)

• The proposition is analogous to the sphere case (Fitzpatrick, Kaplan, Walters 2015, Alkalaev, Belavin

2015)



Large-c duality: torus case

toroidal theory characterized by parameters of the given particular solution [13]. In this paper we
are interested in toroidal conformal blocks and their dual realization. For the previous studies of the
toroidal conformal blocks in the framework of CFT see [14, 15, 16, 17, 18, 19, 20, 21].

We propose the following holographic interpretation of the linearized classical 1-point block on a
torus. The bulk geometry is identified with the thermal AdS, while both intermediate and external
fields of the classical block are represented by propagating massive particles with masses given by
classical conformal dimensions. Note that in the toroidal case the background is not produced by
fields of the 1-point function, both the external and intermediate particles are dynamical. This is
in contrast with conformal blocks on the Riemann sphere appeared in the AdS/CFT context, where
two heavy fields create singularities of the corresponding angle deficit/BTZ geometries. It is clear
that the presence of the heavy fields in that case was aimed to produce a cylindrical topology for the
boundary CFT which is appropriate for the consideration in the AdS/CFT context.

r�

�

Toroidal CFT

Semiclassical
AdS/CFT

Thermal AdS

r✏

✏

Figure 1: One-point conformal block realized as the tadpole graph embedded into the thermal AdS.
The loop of the conformal block graph is identified with the non-contractible circle of the thermal
AdS. � and r� are external and intermediate conformal dimensions, ✏ “ k� and r✏ “ k r� are classical
conformal dimensions (k “ c{6).

The main result can be formulated as follows. We find that modulo regulator dependent (infinite)
terms the linearized version of 1-point classical block function f lin with ✏,r✏ being external and
intermediate classical conformal dimensions is given by

´ f lin “ Sthermal ` r✏ Sloop ` ✏ Sleg , (1.1)

where the first term is the holomorphic part of the 3d gravity action evaluated on the thermal AdS
space, while the second and third terms give the length of the tadpole graph attached at some
boundary point, see Fig. 1.

The outline of this paper is as follows. In section 2 we introduce the 1-point block on a torus,
discuss its classical limit and then define linearized version of the block. In general, the definition
requires introducing certain hierarchy of the conformal dimensions. In the case under consideration
it can be described by the ratio of the external and internal conformal dimensions of the fields. We
describe the series expansion of the block in terms of this parameter. In section 3 we develop the

2

−f lin = Sthermal + ε̃ Sloop + ε Sleg



Concluding comments

Conclusions
• There are four different types of semiclassical torus blocks related to each other by a chain

of connections. The Virasoro algebra contractions underlie three of them. (The same
should be in the sphere case.)

• Classical torus blocks can be expanded around the heavy exchanged channel. The
holographic dual is the tadpole graph stretched on the thermal AdS space.

Outlooks
• Higher-point torus blocks in the semiclassical regime

• The monodromy method for torus blocks and its holographic counterpart

• Understand classical blocks using the symmetry argument

• The semiclassical correspondence considered along these lines can be extended by 1/c
corrections. The 4-point sphere case was studied in ( Beccaria, Fachechi, Macorini 2015, Fitzpatrick,

Kaplan 2016)


