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AdS/CFT in HS

@ Weak-weak duality which does not require supersymmetry
(Sundborg, Klebanov, Polyakov, Leigh, Petkou, Sezgin,
Sundell)
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Locality issue

AdS/CFT in HS

@ Weak-weak duality which does not require supersymmetry
(Sundborg, Klebanov, Polyakov, Leigh, Petkou, Sezgin,
Sundell)

@ Vasiliev theory is dual to vectorial CFT models

Sus[o] ~ (J... Derr

@ Giombi and Yin tests from equations of motion: substantial
piece of evidence that many of 3pt functions match.

@ Generic structure of 3pt-correlators (Maldacena, Zhiboedov)

(JJJ) = cos® p(JJI)p + sin® ()¢ + %sin(2gb)(JJJ>o
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Introduction

Locality issue

Locality

@ GY: Interaction vertices are sometimes so nonlocal that
produce infinities in correlation functions. Some correlators
can be reached via analytic continuation, but some happened
to be inconsistent with crossing. Free boson and free fermion
were captured. Parity odd correlators (JyJs, Js,) were
accessible only in one channel.

o Locality

S = /¢D¢+D..D¢D..D¢D..D¢+D..D¢D..D¢D..D¢D..D¢

Vasiliev equation encode HS vertices in a field-redefinition
independent way through certain differential equations in a
twistor space. The price to pay — one has to specify solution
in a proper class of functions.
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Dw(Y|x)=—wsw+ T(w,w,C...C),
DC(Y|x) = —[w,Clx + T(w,C...C).

@ Origin of nonlocalities is the star-product

eV xe™ =00

@ Structure of perturbation theory
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Introduction

Locality issue

(Non)locality

@ Potential nonlocalities in Vasiliev system

Dw(Y|x)=—wsw+ T(w,w,C...C),
DC(Y|x) = —[w,Clx + T(w,C...C).

@ Origin of nonlocalities is the star-product

eV xe™ =00

@ Structure of perturbation theory
dzField(Z,Y)=1(Z,Y), Field(Z,Y)=dI(Z, Y)+H(Y)
If H(Y) =0, then T(C, C) is nonlocal.
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(Non)locality

@ Nonlocalities in w-sector (N. Boulanger, P. Kessel, E.D.
Skvortsov, M. Taronna)- Infinite coefficients in front of cubic
vertices within central gauge. Breakdown of predictivity of
Vasiliev theory — any coefficients result from nonlocal field
redefinitions.

@ Vasiliev+Gelfond: Unique field redefinition that brings
equations into a local form with fixed coefficients
C(Y|x)+n / ei”AVA5/(1—t1—tg—tg)./(t3u—|—t1y, v—ty,y+i,y+v)

[0,1?

J(y1, y2, 71, ¥2) = C(y1, 1) C(y2, 12)
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Introduction

Locality issue

(Non)locality

@ Nonlocalities in w-sector (N. Boulanger, P. Kessel, E.D.
Skvortsov, M. Taronna)- Infinite coefficients in front of cubic
vertices within central gauge. Breakdown of predictivity of
Vasiliev theory — any coefficients result from nonlocal field
redefinitions.

@ Vasiliev+Gelfond: Unique field redefinition that brings
equations into a local form with fixed coefficients
C(Y|x)—|—1] / eiuAvA(;/(l—tl—tg—t3)_/(t3u+t1y, V—tgy,}7+l77}7+\7)

[0,1?

J(y1, y2, 71, ¥2) = C(y1, 1) C(y2, 12)

o Fierz identities at higher orders bring in the new homotopy
operator that renders equations local automatically.
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Summary of results
y Goals

Results

Goals and summary

GOALS:

@ Study the local form of second order higher-spin equations
and their boundary limit

e AdS/CFT driven HS reductions

o Calculate three-point correlation functions
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RESULTS:

@ The local form of HS equations was shown to be perfectly
consistent with AdS/CFT expectations
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@ The local form of HS equations was shown to be perfectly
consistent with AdS/CFT expectations
@ Known bosonic truncations of Vasliev equations in four

dimensions admit no CFT duals other than free theories
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theory
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Summary of results
Y Goals

Results

Goals and summary

RESULTS:

@ The local form of HS equations was shown to be perfectly
consistent with AdS/CFT expectations

@ Known bosonic truncations of Vasliev equations in four
dimensions admit no CFT duals other than free theories

@ Parity broken CFT's require different truncation of the full
Vasiliev system which is available at least in perturbation
theory

e Correlation functions (Js, Js, Js,) with s3 > s; + s, were found
including in the parity broken case
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Vasiliev equations

Vasiliev equations in d = 4

AW + W+ W =0,

dS +[W,S]. =0,

dB +[W,B]. =0,

S*S=—ify NOY(1 4 0B * ksc) — if4 A G¥(1 + 7B * k)
[S,B]. =0.
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Boundary conditions
Propagators

Second order

Vasiliev system in d = 4

Vasiliev equations

Vasiliev equations in d = 4

AW + W+ W =0,

dS +[W,S]. =0,

dB +[W,B]. =0,

S*S=—ify NOY(1 4 0B * ksc) — if4 A G¥(1 + 7B * k)
[S,B]. =0.

)

Note extra Klein operators k and k
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Second order

Vasiliev system in d = 4

Field-current correspondence

Free HS equations for O-form

DC(y,y: k., k) =0.
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Field-current correspondence

Free HS equations for O-form
DC(y,y; k,k) =0.
Using Poincare connection (Vasiliev)
Cly,y; k, k) = ze"¥" T(w, w; k, k),
w=/zy, w=/zy.
Gives current conservation

A, T — édxmaaéaT: 0, 9-J=0
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Free level

Boundary conditions
Propagators

Second order

Vasiliev system in d = 4

Field-current correspondence

Free HS equations for O-form
DC(y,y; k,k) =0.
Using Poincare connection (Vasiliev)
Cly,y; k, k) = ze"¥" T(w, w; k, k),
w=+zy, w=+zy.
Gives current conservation
dXT—édx‘maaéaT:m 0-J=0

Boundary HS connections

1 2
Dywy = =H% 0

4 xx W (ﬁT(W,O)E - 777_(07 ’W)k) .
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Vasiliev system in d = 4

Boundary conditions

@ Parity preserving casesn=1or n =1

T(w,w)k =+T(—iw, iw)k.
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@ Parity preserving casesn=1or n =1

T(w,w)k =+T(—iw, iw)k.

@ Parity broken case, nn # 1,1
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Boundary conditions
Propagators

Second order

Vasiliev system in d = 4

Boundary conditions

@ Parity preserving casesn=1or n =1

T(w,w)k =+T(—iw, iw)k.

@ Parity broken case, nn # 1,1

C(Y;k, k)= C(Y)k+ C(Y)k

C(Y) = CT(Y), C(Y):=C(Y),
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Second order

Vasiliev system in d = 4

Propagators

0-form A =1 propagators

CF = pKelfoay P HiEya = _ peituay 7o +iE s
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Vasiliev system in d = 4

Propagators

0-form A =1 propagators

Ct = nKeffaayo‘)_’o‘-i—i{aya ’

Free level

Boundary conditions
Propagators

Second order

C = ﬁKeifaaya)_/d-&-iE_d)'fa

z
e
frog = ,271(,( — x0)ad — ;wead ,
(x — x0)2 + 22 (x — x0)2 + 22
8 L ;
Ea =Na"pg, Map =K (E(X —X0)ag — ‘ﬁmﬁ)
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Free level

Boundary conditions
Propagators

Second order

Vasiliev system in d = 4

Propagators

0-form A =1 propagators

CF = pKelfoay P HiEya = _ peituay 7o +iE s

z
e
frog = ,271(,( — x0)ad — ;wead ,
(x — x0)2 + 22 (x — x0)2 + 22
8 L ;
Ea =Na"pg, Map =K (E(X —X0)ag — ‘ﬁmﬁ)

A = 2 scalar propagator

Ca—p = K2(1 + ifadya)_/d) X eif"“j‘yayd .
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Free level

Boundary conditions
Propagators

Second order

Vasiliev system in d = 4

Boundary limit

Current sources

TH = n efZi(xfxo);éW"‘vT/"Jri(Xfxo)aguﬁW“
|x — xol? ’

T — i e—2i(x—x0)géwav'v"‘—i—i(x—xo)aﬁﬁgv_vo‘
|x — xol?
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Free level

Boundary conditions
Propagators

Second order

Vasiliev system in d = 4

Boundary limit

Current sources

TH = n efZi(xfxo);éW"‘vT/"Jri(Xfxo)aguﬁW“
|x — xol? ’

T — i e—2i(x—x0)géwav'v"‘—i—i(x—xo)aﬁﬁgv_vo‘
|x — xol?

A = 2 source

yyies
Wy, W
Thoep = ——— X e

—2i(x—x0)&olé wewe
|x — xo*
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Free level
e . Boundary conditions
Vasiliev system in d = 4 y
Propagators
Second order

Boundary limit

Current sources

T+ — Ui - e*2l‘(X*Xo);éW&V_Va+l'(X7X0)a5uﬁW& ,
|x — X0l
T — ‘ n ‘2e—2i(x—xo)géwo‘v'v"‘—i—i(x—xo)aﬁﬁgv_vo‘
X —Xp
A = 2 source
Wo W —2i(x—X0)aa WO W
TA:2 = ﬁ X e 0jaa .
X — Xp

Boundary condition

AT (w,w) =nT (—iw,iw).
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Free level

Boundary conditions
Propagators

Second order

Vasiliev system in d = 4

Second order

Local form in the O-form sector

&

Ya(tda + (1 — t)7s)J(ty, —(1 = t)y,

<
+
&
<
+
=
-

2
J=CC

DC — inead/eiﬁdv
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Free level

Boundary conditions
Propagators

Second order

Vasiliev system in d = 4

Second order

Local form in the O-form sector
DC = éne“d / e’Eddea(tEd + (1= t))J(ty, —(1 = t)y,y + b,y + V)k
J=CC

Vertices in 1-form sector are phase-independent

Dw = nﬁ/eiﬁd‘_’d(...)
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Free level

Boundary conditions
Propagators

Second order

Vasiliev system in d = 4

Boundary limit: currents

Carrying out boundary limit in the 0-form sector z — 0

Cly.yik, k) = 27" T(w,w; k, k), =TT
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Boundary conditions
Propagators

Second order

Vasiliev system in d = 4

Boundary limit: currents

Carrying out boundary limit in the 0-form sector z — 0

Cly.yik, k) = 27" T(w,w; k, k), =TT

a7 — édxwaaéa T =

1
_ gdx‘mwa/ (30 — (1 — £)3a)l (tw, —(1 — )w, @ + i(1 — t)w, W — itw)k
0
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Free level

Boundary conditions
Propagators

Second order

Vasiliev system in d = 4

Boundary limit: currents

Carrying out boundary limit in the 0-form sector z — 0

Cly.yik, k) = 27" T(w,w; k, k), =TT

AT = 2dx* 0,0, T =
1
_ gdx‘mwa/ (30 — (1 — £)3a)l (tw, —(1 — )w, @ + i(1 — t)w, W — itw)k
0

HS currents do not conserve 0 - J # 0
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Free level

Boundary conditions
Propagators

Second order

Vasiliev system in d = 4

Boundary limit: currents

Carrying out boundary limit in the 0-form sector z — 0

Cly.yik, k) = 27" T(w,w; k, k), =TT

AT = 2dx* 0,0, T =
1
_ gdx‘mwa/ (30 — (1 — £)3a)l (tw, —(1 — )w, @ + i(1 — t)w, W — itw)k
0

HS currents do not conserve 0 - J # 0
They do for the free theories boundary conditions

T(w,w)k = +T(—iw,iw)k =0-J=0
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Free level

Boundary conditions
Propagators

Second order

Vasiliev system in d = 4

Boundary limit: HS connections

Boundary limit in the 1-form sector z — 0

: 2
i 0
Diwy = <nif [ d?td'(1 —t1 — L)HE [ —
w 87777/ (1-t1— b)HX <6u0‘> X
X {I(tl(w—l— u), —to(w + u), itow, —ityw)—

— I(tyw, —tow, ita(w + u), —ity (w + u))}

u=0
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Free level

Boundary conditions
Propagators

Second order

Vasiliev system in d = 4

Boundary limit: HS connections

Boundary limit in the 1-form sector z — 0

. 2

i 0
Dywy = =nij | d?t6'(1 —t; — t)HEY | —
w 87777/ (1-t1— b)HX <6u0‘> X

X {I(tl(w + u), —to(w + u), itow, —ityw)—

— I(tyw, —tow, ita(w + u), —ity (w + u))}

u=0

Again, for free theory boundary conditions

T(w,w)k = +T(—iw, iw)k = Dywy =0
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Free level

Boundary conditions
Propagators

Second order

Vasiliev system in d = 4

Boundary limit: HS connections

Boundary limit in the 1-form sector z — 0

. 2

i 0
Dywy = =nij | d?t6'(1 —t; — t)HEY | —
w 87777/ (1-t1— b)HX <6u0‘> X

X {I(tl(w + u), —to(w + u), itow, —ityw)—

— I(tyw, —tow, ita(w + u), —ity (w + u))}

u=0
Again, for free theory boundary conditions

T(w, W)k = =T (—iw, iw)k = Dywy =0
For parity broken theory n # 1,/

Dywy # 0
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Green'’s function
Correlators

Green's function

@ Giombi-Yin: Correlators from equations of motion

DC =J[C,C],  (JJJ) ~ lim z  G(wz" 7, wz"2)

z—0 w=0
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@ Giombi-Yin: Correlators from equations of motion

DC =J[C,C],  (JJJ) ~ lim z  G(wz" 7, wz"2)

z—0 w=0

e G(w,w|x,z) —is the Green's function, w, — to be associated
with outgoing spinor polarization
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Green'’s function
Correlators

Green's function

@ Giombi-Yin: Correlators from equations of motion

DC =J[C,C],  (JJJ) ~ lim z  G(wz" 7, wz"2)

z—0 w=0

e G(w,w|x,z) —is the Green's function, w, — to be associated
with outgoing spinor polarization

dzod3x
Czs()’\XJ) — 2t / %G(ya 3yo\X — X0, 20)J(yo|%0, 20)

2
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Green'’s function
Correlators

Green's function

@ Giombi-Yin: Correlators from equations of motion

DC =J[C,C],  (JJJ) ~ lim z  G(wz" 7, wz"2)

z—0 w=0

e G(w,w|x,z) —is the Green's function, w, — to be associated
with outgoing spinor polarization

dzod3x
Czs()’\XJ) — 2t / %G(ya 3yo\X — X0, 20)J(yo|%0, 20)

2

oo dt { (yr8)*

Gs(ys Alx, 2) ~ _/0 (1+16)~2 L (25)

[I'[2 - 25])(25—3 sin(2(s — 1) arctan z)}}

z—(2t+1)z
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Green's function

@ Giombi-Yin: Correlators from equations of motion

DC =J[C,C],  (JJJ) ~ lim z  G(wz" 7, wz"2)

z—0 w=0

e G(w,w|x,z) —is the Green's function, w, — to be associated
with outgoing spinor polarization
dzod3xq
Czs()’\XJ) — 2 / 74(;()’7 Dy|x — %o, 20)J(yo|xo0, 20)

2

dt { (yr8)*

TEET 29! [I'[2 - 25])(25—3 sin(2(s — 1) arctan z)}}

oo
G, A ~
s(, Alx, 2) _/0 2> (2t+1)z

GY Green's function does not take into account consistency
constraint on J[C, C]
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Green'’s function
Correlators

Homotopy Green's function

Equation to solve

DG = éead / %"y (tTs + (1~ £)7a)J(ty, —(1— t)y, 7+ 8,7 + V)k.
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Green'’s function
Correlators

Homotopy Green's function

Equation to solve

DG:é@a/a%wnﬂmd+ufﬂ%ﬂ@%*ﬂ*ﬂ%7+iy+ﬂk

J=CC, DC=0
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Green'’s function
Correlators

Homotopy Green's function

Equation to solve

DG = éead / %"y (tTs + (1~ £)7a)J(ty, —(1— t)y, 7+ 8,7 + V)k.

J=CC, DC=0
We're looking for solution outside a spin triangle

$>s5+5
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Homotopy Green's function

Equation to solve

DG:é@a/a%wnﬂmd+ufﬂ%ﬂ@%*ﬂ*ﬂ%7+iy+ﬂk

J=CC, DC=0

We're looking for solution outside a spin triangle

sZs+s
The Green's function:
1 .
G = 5 / 5/(1—t1—t2—t3)e’uAVAJ(U+t1y, ts3v—toy, y+u, )7—|—\7)k
[0,1]3xR
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Green'’s function
Correlators

Homotopy Green's function

Equation to solve

DG:é@a/a%wnﬂmd+ufﬂ%ﬂ@%*ﬂ*ﬂ%7+iy+ﬂk

J=CC, DC=0

We're looking for solution outside a spin triangle

sZs+s
The Green's function:
1 .
G = 5 / 5/(1—t1—t2—t3)e’uAVAJ(U+t1y, ts3v—toy, y+u, )7—|—\7)k
[0,1]3xR

Valid for opposite helicity signs only!
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Green'’s function
Correlators

3pt functions

@ Recall that propagators get naturally split into positive and
negative helicity parts

Y SN e SR ote s _ _ S e R Te ST Is Rvil
C+ :nKe’faay ye+ig }/a’ C :nKe’faay YO+iEY s,
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Correlators

3pt functions

@ Recall that propagators get naturally split into positive and
negative helicity parts

Y SN e SR ote s _ _ S e R Te ST Is Rvil
C+ :nKe’faay ye+ig }/a’ C :nKe’faay YO+iEY s,

o all different three-point correlators arrange in
(J49) boson ~ G +G +G6GT+G6 7 )
<JJJ>fermion ~ G++ + G — G+_ - G_+>
<JJJ>odd ~GTt -G~ ,
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Green'’s function
Correlators

3pt functions

@ Recall that propagators get naturally split into positive and
negative helicity parts

Y SN e SR ote s _ _ S e R Te ST Is Rvil
C+ :nKe’faay ye+ig }/a’ C :nKe’faay YO+iEY s,

o all different three-point correlators arrange in
(J49) boson ~ G +G +G6GT+G6 7 )
<JJJ>fermion ~ G++ + G — G+_ - G_+>
<JJJ>odd ~GTt -G~ ,

@ Simple Gaussian integration gives
Gt = /dstK1K26,(1_t1_t2_t3)62%o+%((1—t3)P1+zt3§1)—%((1—t3)P2+zt35"2)
A
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Correlators

3pt functions

G++ E 05—51752 /oo 7— ,,.p1 +51)251(_7_P2 +52)252
27%2% |xoq [ %02 %12 (1 4 72)stsi+a+l ’
6 =k G /oo (P — S (= TP — $)*2
22% Iy [ %0212 (14 72)stsitatl ’
¢t =%k o /oc (TPt 51)¥L(=TP2 — $2)*2
27%2% x| [x02 1 x12| Jo (1 4 72)stsitsatl ’
¢+ =12k o /oo dr TP = S)PL(=7P2 + $2)*2
271%2% x| [x02 %12 Jo (1 + r2)stortoatl :
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Green'’s function
Correlators

3pt functions

¢t = 2k o /AOO dr (TP S)PL(=TP + 5)*2
- 51525
2712 |xq [[x02 x12| Jo (1 4 72)stsi+a+l ’
G~ — ZK QS s1—%2 /oo dr 7_25(7_,;»1 _ 51)251(77_',;2 _ 52)252
— S Msysps
2% Ixon |[x02[x12] Jo (14 72)stsitatl ’
T EKS .. QSS1—%2 /oc 0 TZS(TPI + 51)251(77—P2 _ 52)252
272 Ix01 [ x02| 12| Jo (1 4 72)stsitsptl ’
p— EKS . QSs1—%2 /oo i 7_25(7_,31 _ 51)251(77_1;,2 + 52)252
272 Ix1 [ x02| %12 Jo (1+ r2)sts1¥a+l :

25751752(5_‘_ s+ 52)!
(25)!(251)1(2s2)!

Kslszs -
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Correlators

Green'’s function

3pt functions

e+t = k. QT2 /‘°° J (7P + S1)*L(—TP2 + 5)°2
- - T
22 oy o2 [ 312 Jo (1 + r2)statatl ’
- ZK 05751752 /oo J 7_25(7_,:,1 _ 51)251(77_'92 _ 52)252
= - T
22 g [ [0z | 312 Jo 1+ r2)statat '
- _ 7k Qs—s1—=2 /oc , T25(7Py 4 §1)%L (= 1Py — 5,)2%2
= = T
22 o1 Ix02 12| Jo (1 +r2)statatt ’
Y Q@512 /oo J 25(1Py — $1)%1(—7P; + 5)*2
= - T .
22 xg1 [x02 12| Jo (1 + r2)statatt
5—8S1—§
K 272 (s + 51 + 5)!
5155 —
(25)!(251)1(2s2)!
p I.(Xm)aau{)’#f‘ I.(on)aaué"ug“ ) X01 X02 e
) = 0 oerbo M1 y = 2okl Ha = _
[x01]2 %0212 ot Ixe2l2) . 0 °
s (x02)% (x12)a Y p1~ Hop s (%01)P% (x12)a ¥ 2~ b0
1 = ) 2 = .

[x01 | Ix02]x12]
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Green'’s function
Correlators

3pt functions

@ Free theory correlators

G++_+_fo _ }<S1525QS_51_S2 o d 7—25(7-"31 + 51)251 (TPZ + 52)252
%01 |[x02|[x12| /-0 (1+ 72)stortatl

G 4G 1 = Kags @272 [ TT2S(TP1 + 51)%1 (1P — ;)%
[xo1[[x02|[x12| J-o0 (14 72)stsitstl
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Green'’s function
Correlators

3pt functions

@ Free theory correlators

Kslsngs_sl_s2 o d 7'25(7'Pl + 51)251 (7—P2 + 52)2s2
T — T

|xo01|[%02/[x12] /-0 (1+ 72)ststet
KSlsszS—Sl—SQ [e¢) 7_25(7_'131 4 51)251 (TP2 . 52)252
(1 + T2)s+51+52+1

Gt 4+G6 T~ =

G +G T="22"
%o1|[x02/[x12] J_0o

Match with free boson and free fermion
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Correlators

3pt functions

@ Parity broken correlators n # 1,/

T

(Jsy Joy Js) N1K51525/°° dr S, S
s17s27s/ odd 2 ’X01HX02HX12| 0 (1+7—2)s+51+52+1

(TP + S1)*H(TP2 — $)*2 — (1Py — 51)*'(7P2 + $2)*%)
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Green'’s function
Correlators

3pt functions

@ Parity broken correlators n # 1,/

T

(Jsy Joy Js) N1K51525/°° dr S, S
s17s27s/ odd 2 ’X01HX02HX12| 0 (1+7—2)s+51+52+1

(TP + S1)*H(TP2 — $)*2 — (1Py — 51)*'(7P2 + $2)*%)

00 7_25
(Jsy sy Js) ~ /0 dT(l + 7_2)5—1-514-52_5_1 (ra+ b)251 (tc+ d)252
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Green'’s function
Correlators

3pt functions

@ Parity broken correlators n # 1,/

(Jor Sy Ji) Nle/oo dr ~ Qo x
s17s27s/ odd 2 ’X01HX02HX12| 0 (1+7—2)s+51+52+1

(TP + S1)*H(TP2 — $)*2 — (1Py — 51)*'(7P2 + $2)*%)

00 7_25
(Jsy sy Js) ~ /0 dT(l + 7_2)5—1-514-52_5_1 (ra+ b)251 (tc+ d)252

/2
| dosin® 6 sin® (6 + n)sin® (6 + 62), 7 =tang
0
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Green'’s function
Correlators

Examples

@ Quasi-bosonic scalar (S. Giombi 1, V. Gurucharan, V. Kirilin,
S. Prakash, E.D. Skvortsov)

(hdos) ~ @352,

(JodoJa) ~ Q35:(4P3 + Q1Q3),
(hdoJs) ~ Q352
(S3d0J5)
(S2JoJs)
(UndoJs) ~

(2P3 + @1Q3)(6P3 + &1 @3),
(6P3 + Q1@3),
(107P5 Q1 Qs + 40P Q2 Q2 + 102P5 + 3Q3 Q3)

~ Q3 S2
~ Q3 52
Q3 52
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Green'’s function
Correlators

Examples

@ Quasi-bosonic scalar (S. Giombi 1, V. Gurucharan, V. Kirilin,
S. Prakash, E.D. Skvortsov)

(hdoh3) ~ @3Sy,

(Jodods) ~ @3S:(4P2 + Q1Qs),

(hdods) ~ Q352

(J3doJs) ~ Q35:(2P3 + Q1Q3)(6P3 + Q1 Q3),

(Jrdods) ~ Q352(6P; + Q1 Q3),

(JadoJs) ~ @35>(107P5 Q1 Qs + 40P Q3 Q3 + 102P§ + 3Q7 Q3)
All match.
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Conclusion

Conclusion

@ Vasiliev equations are analyzed in the current interaction
sector s > s; + s, to the second order. Perfect agreement
with CFT expectation is found.

o Boundary limit of equations was investigated. It is shown that
known bosonic HS system has no CFT dual other than free
theories. Parity broken CFTs result from different truncation
of Vasiliev equations. Boundary conditions require nonlinear
modifications at higher orders.

@ Homotopy Green's function in the current interaction sector is
found.

@ Parity broken three-point functions (Js, Js, Js) were extracted
from equations of motion.
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