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Motivation:
• understand properties of theories with infinite number of states:
e.g. consistent massless higher spin theory in AdS (vector dual)
or tensionless limit of string theory in AdS (adjoint dual)

• HS theory in AdS is complicated:
action? locality? consider some limit / simpler case

• HS theory in flat-space ... no-go theorems ...
such theory may exist if relax locality condition?
hidden symmetries?
trivial or nearly S-matrix?



Summary:
• construction of quartic HS interaction vertices
for single tower of massless even spins s = 0, 2, 4, ...

using Lorentz-covariant S-matrix approach
• 000s: minimal choice of 4-vertices required to make
amplitudes on-shell gauge invariant local for s = 2, 4 only
• locality may be restored by extending set of fields:
extra tower of (ghost-like) spins s > 0 with specific couplings
• indications that extended local action has trivial S-matrix
in agreement with soft limit constraints on S-matrix
from gauge invariance under assumption of locality
• underlying global symmetry of flat-space HS theory?
analogy with conformal extension of Einstein theory:
invariance under conformal HS algebra→ trivial S-matrix?
contact terms may still be allowed? their interpretation? AdS ?



Plan:
• scattering via massless HS exchanges:
0000 and 000s amplitudes

• constraints from gauge invariance of S-matrix in soft limit

• S-matrix approach to construction of gauge-invariant action:
non-local 000s 4-vertices

• resolving non-locality by introducing extra tower of states

• conformal off-shell extension:
Einstein theory and possible HS generalization



Massless higher spins in flat 4d space
• free theory: symmetric double-traceless rank s tensors
S =

∫
d4x ∂nφm1...ms∂nφm1...ms + ...

δφm1...ms = ∂(m1εm2...ms), s = 0, 1, 2, ...

• cubic interactions with linearized gauge invariance known
• quartic interactions? consistent interacting theory?
• various s > 2 “no-go theorems”
e.g. no minimal interactions – no long-range forces
[Weinberg; Cachazo, Benincasa ,...; Bekaert, Boulanger, Sundell 10]

• assumptions? locality of quartic and higher interactions
• demand gauge invariance: which type of non-locality required?
• resolve non-locality introducing new fields?
• then resulting S-matrix is trivial? underlying symmetries?



Why of interest?
• tensionless limit of string theory in flat space?
degenerate ... but well-defined in AdS:
“leading Regge trajectory” – massless tower of higher spins
• massless HS theory in AdS
• consistent non-linear equations known [Vasiliev]

but complicated, many auxiliary fields, so far no action
• action for physical Fronsdal fields

can be reconstructed in principle using AdS/CFT:
match correlators of boundary CFT
[Bekaert,Erdmenger,Ponomarev,Sleight 15; Taronna, Sleight 16,17]

• cubic vertices known; quartic are complicated
issue of locality is subtle / unclear – kernels f(a ∂), Λ = 1/a2

• flat-space limit of AdS HS theory?
non-local theory for HS tower s = 0, 1, 2, ...?



• consistent theory requires
– infinite tower of spins s = 0, 1, 2, 3, ...,∞
– higher derivative (non-minimal) cubic interactions (s16 s26 s3)
∂nφs1φs2φs3 , s2 + s3 − s16n6 s2 + s3 + s1

e.g. l.c. 2-2-2 vertex – ∂2, ∂4, ∂6 and 2-3-3 vertex – ∂4, ..., ∂6

[light-cone: Bengtsson, Bengtsson, Brink; Metsaev;
covariant: Fotopoulos, Tsulaia; Boulanger, Leclerc, Sundell;

Manvelyan, Mkrtchyan, Ruhl; Sagnotti, Taronna, ... ]

• Noether procedure: deform δφs = ∂εs−1 + ..., add 4-vertex,...
• 3-point coupling constants [Metsaev]

cs1s2s3 = g
`s1+s2+s3−1

(s1 + s2 + s3 − 1)!

• two constants (cf. string th.): g and `= length



general structure of action:

1

g2

∫
d4x
[∑

s

∂φs∂φs+
∑

`n−1∂nφs1φs2φs3+
∑

`k−2∂kφ4+...
]

effectively “non-local”: no. of ∂ grows with s and no. of φ

Aim: find minimal quartic vertex required by gauge invariance

Free higher spin action
• symmetric tensors φs(x, u) = φa1...as(x)ua1 . . . uas
• Fronsdal action: gauge-inv

∫
φs�φs, 2 d.o.f.

S(2)[φs] =

∫
d4xφs(x, ∂u) T̂

[
�x − (u · ∂x) D̂

]
φs(x, u)

∣∣∣
u=0

T̂ = 1− 1
4
u2∂2

u, D̂ ≡ (∂x · ∂u)− 1
2
(u · ∂x)∂2

u



• φs double-traceless (∂2
u)

2φs(x, u) = 0

• linearized gauge transformations

δ(0)
s φs(x, u) = (u · ∂x)εs−1(x, u)

with traceless parameter ∂2
u εs−1(x, u) = 0

• de Donder gauge:

D̂ φs(x, u) = 0 → ∂a1φa1...as + ... = 0

S(2)[φs] = s!

∫
d4x φs(x, ∂u) T̂ �x φs(x, u)

∣∣∣
u=0

Cubic interaction vertices:
• requiring gauge invariance of combined action
δ(0)S(3) + δ(1)S(2) = 0 [Manvelyan et al; Sagnotti,Taronna; Joung et al 11]



• traceless-transverse part of cubic vertex (∂xij ≡ ∂xi − ∂xj )

S(3)[φ0, φs2 , φs3 ] =c0s2s3

∫
ddx
[
(∂u2 · ∂x31)s2(∂u3 · ∂x12)s3

× φ0(x1)φs2(x2, u2)φs3(x3, u3)
]
ui=0
xi=x

• cs1s2s3 fixed in l.c. approach [Metsaev 91] cs1s2s3 = g `s1+s2+s3−1

(s1+s2+s3−1)!

• same cs1s2s3 for HS in AdS4 from AdS/CFT [Skvortsov 15; Sleight,Taronna]

HS propagator in de Donder gauge: Ds(u, u′; p) = − i
p2
Ps(u, u′)

Ps(u, u′) = 2
(s!)2

(
1
2

√
u2u′2

)s
Ts
(

u·u′√
u2u′2

)
Ts(z) ≡ 1

2

[(
z+
√
z2 − 1

)s
+
(
z−
√
z2 − 1

)s]
Ts – Chebyshev polynomial of 1st kind



Cubic 0s2s3 vertex : (pij ≡ pi − pj)

V(∂u2 , ∂u3 ; p1, p2, p3) = 2ic0s2s3(−ip31 · ∂u2)s2(−ip12 · ∂u3)s3

Consider scattering of spin 0 via all spin s exchanges



4-scalar scattering amplitude: exchange part
exchange of tower of higher spin fields
[Bekaert, Joung, Mourad 09; Ponomarev, AT 16]

• scalar: s = 0 member of HS tower
interactions with even spins only
• s-channel exchange of spin j field

≡ Ajexch(s, t, u)

Mandelstam variables (p2
i = p′2i = 0, s + t + u = 0)

s ≡ −(p1 + p2)2, t ≡ −(p1 + p′1)2, u ≡ −(p1 + p′2)2

Ajexch(s, t, u) = −
ic2

00j

s
2−j+1 (t + u)j Ts

(
t−u
t+u

)
Aexch(s, t, u) =

∞∑
j=0,2,4,...

Ajexch(s, t, u)



Aexch(s, t, u) = − i
s

[
F
(√

s + t+
√

t
)
+F
(√

s + t−
√

t
)]

F (z) ≡
∞∑

j=0,2,4,...

c2
00 j ( z

2

4
)j = 1

8
g2 (`z)2

[
I0(`z)− J0(`z)

]
full exchange amplitude

Âexch(s, t, u) = Aexch(s, t, u) +Aexch(t, s, u) +Aexch(u, t, s)

• Regge limit of exchange part: t→∞, s=fixed

Âexch(s, t, u) ∼ −ig
2

s
`2t I0(`

√
8t) ∼ −ig

2

s

(`2t)3/4

25/4π1/2
e`
√

8t

• fixed angle limit:
s, t, u→∞, t

s
= − sin2 θ

2
, u

s
= − cos2 θ

2
, θ =fixed

Âexch(s, t, u) ∼ ig2|s|3/4 e`
√
|s| f(θ) →∞ , f(θ) > 0



• exponential growth: indication of UV divergences in loops
[cf. string theory: Shapiro-Virasoro amplitude is UV-soft]

A4 = g2 Γ(−1− 1
4
α′s)Γ(−1− 1

4
α′s)Γ(−1− 1

4
α′s)

Γ(2+ 1
4
α′s)Γ(2+ 1

4
α′s)Γ(2+ 1

4
α′s)

→ g2|s|−6(sin θ)−6e−α
′|s|h(θ) → 0

h(θ) = −1
4

(
sin2 θ

2
log sin2 θ

2
− cos2 θ

2
log cos2 θ

2

)
> 0

But this is not full amplitude: still to add 4-vertex contribution

0000-vertex contribution

• expected to be effectively non-local: infinite series in ∂n

• may cancel or “soften” large p behaviour of exchange?
• need extra input to fix 4-scalar vertex in flat-space HS action



• guess from flat limit of AdS action constructed from AdS/CFT
[Bekaert, Erdmenger, Ponomarev, Sleight 2015]: ∇ → ∂

S(4)[φ0] = g2
∫
d4x
[∑∞

j=0 f2j

(
∆x34

) (
∂x12 · ∂x34

)2j

×φ0(x1)φ0(x2)φ0(x3)φ0(x4)
]
xi=x

∆x34 ≡ (∂x3 + ∂x4)
2, ∂x12 ≡ ∂x1 − ∂x2

• choose z →∞ : f2j(z)→ c2j
`4j−2

z
, c2j = 1

[(2j−1)!]2

• then contribution to 4-scalar amplitude∑∞
j=0 f2j(s) (t− u)2j = 2t+s

2s

[
I0

(
2`
√

2t + s
)
− J0

(
2`
√

2t + s
)]

may cancel against the exchange? total amplitude trivial?



S-matrix approach to gauge-invariant interactions
• direct construction of gauge-inv action via Noether procedure:
ties construction of action to that of gauge transformations
• more efficient approach: start with S-matrix and demand its
on-shell gauge invariance: advantage - only linearized
transformations δ(0) act on physical amplitudes
non-linear φε terms in δφ ∼ ∂ε+ φ ε+ . . . ,

projected out by leg amputation to get S-matrix element
• linearized gauge transformations

δ(0)φs = ∂εs−1 → δφµ1···µs(p) = p(µ1εµ2···µs)(p)

• non-trivial case: if S3 is invariant under linearized g.t.
only up to eqs of motion – p2 × 1

p2
– higher point violation

of invariance – add higher vertex to cancel



Example: scalar electrodynamics

L = ∂mφ∗∂mφ+ iAm(φ∗∂mφ− φ∂mφ∗) + AmAmφ
∗φ

δAm = ∂mε, δφ = iφε

A(1)φ(2)φ(3)A(4) scattering amplitude:
Am → ζm(p)eip·x, p · ζ = 0

Aexch =
1

p2
12

ζ1 · p2 ζ4 · p3 +
1

p2
13

ζ1 · p3 ζ4 · p2

• gauge transformation in leg 1: δζ1 = p1ε1, δφ = 0

δAexch = (ζ4 · p3 + ζ4 · p2)ε1 = −ζ4 · p1 ε1
• can be cancelled by adding contact AmAmφ∗φ vertex
Acont = ζ1 · ζ4 → δAcont = p1 · ζ4 ε1
• thus 4-point vertex can be found from condition
of linearized gauge invariance of on-shell amplitude



• To get information about structure of possible 4-vertices
consider 0-0-0-s tree-level amplitude:
(i) find exchange contribution
(ii) add general 4-vertex contribution
(iii) impose on-shell gauge invariance w.r.t. spin s leg
(iv) determine “minimal” 4-vertex required by gauge invariance

• Parametrization of 000s 4-vertex in momentum space:

L000s =
s−2∑
k=0

Vsk(p1, p2, p3)

× φ0(p1) (2ip2 · ∂u)kφ0(p2) (2ip3 · ∂u)s−kφ0(p3) φj(p4, u)

• Aim: constrain coefficient functions Vsk
by demanding that S-matrix element 000s is gauge invariant



Gauge-invariance constraints on S-matrix
• soft momentum expansion of massless higher spin amplitudes
and gauge invariance constraints: [Low 58; Weinberg 64; Bern et al 14]

• soft limit of massless HS theory with generic 3-couplings
• assume locality: all poles in momentum in
amplitudes may only come from on-shell propagators
of particles in original action
• restrict to leading order of soft momentum expansion:
extends [Weinberg 64] to arbitrary couplings of HS [Taronna 11]

Soft momentum expansion of 0...0s amplitude
n spin-0 and one spin-s with pn+1 ≡ q → 0

two contributions: with pole at q → 0 and without pole



n + 1

i

n + 1

i

Aµ1...µs(p1, . . . , pn, q) = Pµ1...µs(p1, . . . , pn, q) +Rµ1...µs(p1, . . . , pn, q)

Pµ1...µs →
∑
i

∑
s′i

pµ1i . . . pµsi
q · pi

Ps′i(u, u
′)
[
(pi − q) · ∂u

]s′i Ws′i
(pi + q, ∂u′)

(pi + q)2 = 2q · pi + q2 → 2q · pi , q → 0

Ps(u, u
′) – projector in spin-s propagator

Ws′i
– Green’s function with all but i-th leg (pi + q) on shell

• for q = 0: W is n-point amplitude
W is then gauge-invariant: (Ws′i

)q→0 = Ws′i
(pi, ∂u′)



Ws′i
(pi, ∂u′)Ps′i(pi, u

′) = 0 , s′i 6= 0

Ws′i
(pi, ∂u′)(pi · u′)kPs′i−k(pi, u

′) = 0 , k = 1, . . . s′i
• gauge invariance of full amplitude requires for any q

qµsAµ1...µs(p1, . . . , pn, q) = 0

leading term in q → 0:∑
i

∑
s′i

pµ1i . . . p
µs−1

i s′i! Ws′i
(pi, ∂u′)Ps′i(pi, u

′) = 0

• assumed locality: droppedR-term that has no poles in q
• gauge inv of Ws′i

(q = 0): only terms with s′i = 0 non-zero
• left with W0 = A0...0(p1, . . . , pn)

A0...0(p1, . . . , pn)
∑
i

pµ1i . . . p
µs−1

i = 0



• as
∑

i p
µ1
i . . . p

µs−1

i does not, in general, vanish if s > 2:

A0...0(p1, . . . , pn) = 0

local action→ scattering amplitude =0 [Weinberg]

Soft momentum expansion of s1...sns amplitude
again A = P +R, for q → 0

Pµ1...µs(p1, . . . , pn, q)→
∑
i,s′i

V µ1...µs
s,si,s′i

(q, pi, ∂u)
Ps′i(u, u

′)

q · pi
Ws′i

(pi+q, ∂u′)

Ws′i
: all but the i-th leg (q + pi) on shell

for q = 0 subject to gauge-invariance constraints
3-vertices V µ1...µs

s,si,s′i
(q, pi, ∂u) gauge inv on shell [Manvelyan et al]

non-trivial contribution to spin s gauge inv constraint



leading order at q → 0: using explicit form of vertices

0 =
∑
i

cssisi
1
si!

(uq · pi)s−1φsi(pi, ∂
si
u ) Ws′i

(pi, ∂u′) Ps′i(u, u
′)

= As1....sn(p1, . . . , pn)
∑
i

cssisi(uq · pi)s−1

• s = 2: c2sisi must be same for all si (can use
∑

k pk = 0)
– spin 2 coupling must be universal
• s > 2: sum cannot vanish for generic on-shell momenta
• thus gauge invariance requires that either As1...sn = 0

or constraint on coupling consts: cssisi = 0 , si < s

– no cubic diagonal coupling of spin-s with si < s fields



• 0...0s amplitude as special case:
if cs00 6= 0 and assume locality then A0...0

n = 0

n = 3: trivially absent
n = 4: vanishing comes from constraint on 5-point 0000s

• assumed locality (no massless poles) of vertices in action:
i.e. may still get gauge-inv S-matrix in a non-local theory

• if manage to recover locality
(adding extra fields, relaxing unitarity)
but preserving gauge invariance
then total amplitude should still vanish

• gauge invariance itself is not enough to fix S-matrix
locality is standard (strong) extra assumption – implying S=1



0-0-0-s exchange amplitude: [Roiban, AT 17]

• no constraint from soft limit: A000
3 ≡ 0

need to go beyond soft limit
• use 0-0-s′ and 0-s′-s: φs → ζs(p) e

ip·x

ζs(p, q
s) ≡ ζm1...ms(p) q

m1 ...qms , pij = pi · pj, p2
i = 0

• s-channel:

Aexch = − ig
2

p2
12

∑
s′

`2s
′+s−2

(s′−1)!(s+s′−1)!
(p2

12)s
′
Ts′(

p213−p223
p212

) ζs(p4, p
s
3)

Ts(z) = 1
2

[
(z +

√
z2 − 1)s + (z −

√
z2 − 1)s

]
Aexch = −2ig2

p2
12

[
Fs(z+) + Fs(z−)

]
ζs(p4, p

s
3)

Fs(z) = z2−s[Is(z)− Js(z)
]
, z± = `(

√
p2

13±
√
p2

12 + p2
13)



• add t and u channels: full Aexch

• impose linearized gauge invariance condition
δζm1...ms(p) = p(m1εm2...ms)

on full amplitude: A4 = Aexch +Acont

δAexch = −2sg2
[
Fs(z+) + Fs(z−)

]
εs−1(p4, p

s−1
3 ) + ...

cancel this against variation of contribution of 0-0-0-s vertex∑s/2
k=0 Vsk(p1, p2, p3)φ0(p1)(p2·∂u)kφ0(p2)(p3·∂u)s−kφ0(p3) ζs(p4, u)

δAcont = sVs0(p1, p2, p3) p2
24 ζs−1(p4, p

s−1
2 ) + ...

• find required 4-point vertex V000s

get “minimal” solution consistent (?) with locality
• gauge-invariance: gives relation of Vsk to Bessels in Aexch

• local solution for 4-vertex exists only for s = 2 and s = 4



• s = 2:
local 4-vertex required by gauge invariance exists:

V20 = g2

p212

(
F2(z+) + F2(z−)− 1

2

[
p2

13R2(p2
13) + cycle

])
Rs(x) ≡ 1

2x

[
Is(
√
−x)− Js(

√
−x)

]
x→ 0 residue of F2(x)

• particular form of gauge-invariant 0-0-0-2 amplitude:
for special choice of local 4-vertex

A = g2
[
p2

13R2(p2
13) + p2

23R2(p2
23) + p2

12R2(p2
12)
]

×
( ζ2(p4,p23)

p212
+

ζ2(p4,p22)

p213
+

ζ2(p4,p21)

p223

)
• still not full amplitude: need to fix possible extra terms
in 4-vertex – requires study of other amplitudes



• s = 4:
local 4-vertex ∼ R4 ∼ Bessels
particular form of gauge-invariant exch + cont 0004 amplitude:

A = U(p1, p2, p3) ζ4

(
p4, (p

2
12p2−p2

13p3)4
)
− ip212

15p213
ζ4(p4, p

4
2)+...

U = ( 1
p213

+ 1
p223

)R4(p2
12) + cycle

• s > 4: no local 4-vertex needed for gauge invariance exists
[Roiban, AT 17; Taronna 11,17]

• cf. constraint of soft theorem:
if assume locality then gauge invariance of 000ss′

implies vanishing of 000s



Minimal required non-local 4-vertex for s> 6

to make 000s amplitude gauge invariant
coefficient functions Vs0(pi) should have poles (` = 1)

V nonloc
s0 = − 1

p12

s/2−3∑
l=0

κsl
(
p2l+2

13 + p2l+2
23

)
κsl = 1

2s/2−1l!(2l+1)!!(l+ s
2

)!(2l+s+1)!!
, p1 + p2 + p3 + p4 = 0

• 4-vertex in position space φ(u) ≡ φ(x, u)

Lnonloc
000s = g2

s/2−3∑
l=0

φ0 (∂µ1 . . . ∂µ2l+2φ0)
1

�

[
∂µ1 . . . ∂µ2l+2

(∂u·∂)sφ0

]
φs(u)



• observe factorization in sum over s: Csl ≡
√

8g
2s/2−l(l+ s

2
)!(2l+s+1)!!∑

s=6,8,...

Lnonloc
000s =

∞∑
l=0

C0l φ0 (∂µ1 . . . ∂µ2l+2φ0)

× 1

�

∞∑
s=6+2l

Csl

[
∂µ1 . . . ∂µ2l+2

(∂u · ∂)sφ0

]
φs(u)

• suggests that one may eliminate non-locality by introducing
additional tower of s = 2, 4, 6, ... ghosts-like fields ψs

L(φ, ψ) = −1
2

∞∑
l=0

ψ2l+2�ψ2l+2 −
∞∑
l=0

[
C0l φ0(∂ · ∂v)2l+2φ0

+
∞∑

s=2l+6

Csl

(
(∂u · ∂)s(∂v · ∂)2l+2φ0

)
φs(u)

]
ψ2l+2(v)



• integrating out ψj gives also other non-local terms

Lnonloc
0000 =

∞∑
l=0

(C0l)
2 φ0∂

µ1 . . . ∂µ2l+2φ0
1

�
φ0∂µ1 . . . ∂µ2l+2

φ0

Lnonloc
00s1s2

=
∞∑
l=0

Cs1l Cs2l

[
(∂u1 · ∂)s1∂µ1 . . . ∂µ2l+2

φ0

]
φj1(u1)

× 1

�

[
(∂u2 · ∂)s2∂µ1 . . . ∂µ2l+2

φ0

]
φs2(u2)

• assume that these non-local quartic terms are indeed present
then extra contact contribution to 0000 amplitude

(Aexch
s )0000

∣∣∣
pole

= −2ig2

p12

s13

[
I0(
√

8p13)− J0(
√

8p13)
]

(Act
s )0000

∣∣∣
pole

= 4i
∞∑
l=0

(C0l)
2(p13)2l+2 = 2ig2p13

p12

[
I0(
√

8p13)− J0(
√

8p13)
]



• total vanishes – cancellation of s-channel pole in 0000

suggests full 0000 amplitude should vanish ?
• same may expect for s > 0 – if add proper non-minimal terms
• if local and gauge-invariant but non-unitary extended action
exists – such theory may have a trivial S-matrix
in agreement with expectations based on soft theorem

• other options? gauge-invariant but non-local HS action?
which are the principles that fix it?
hidden symmetry?



Conformal off-shell extension
• candidate symmetry: higher spin conformal symmetry –
symmetry of conformal higher spins

∫
d4xφ�s φ

• analogy: Weyl gravity and conformal extension of Einstein∫
d4x
√
g (Rφ2 + 6∂mφ∂mφ) have same symmetries

• similar conformal extension of Fronsdal ∂2 theory?
requires tower of auxiliary ghost fields – analogs of φ
• if one eliminates (integrates out) ghost fields →
non-local action with extra gauge symmetry but same S-matrix

• SE(h) =
∫
d4x
√
gR

hmn = tmn + 1
4
ηmnh , tmn ≡ hmn − 1

4
ηmnh , h ≡ hmm

• h – unphysical – can be gauged away on shell:
does not appear as asymptotic state in S-matrix



• integrate out h – non-local effective action for tmn
produces same Einstein S-matrix

S̄E(t) =
∫
d4x(t∂2t+ ∂∂t∂−2∂∂t+ ∂2ttt

+∂2t∂−2∂t∂t+ ∂2tttt+ ∂t∂t∂−2∂t∂t+ ...)

cf. SW (t) =
∫
d4x
√
g C2 =

∫
d4x(t∂4t+ ∂4ttt+ ∂4tttt+ ...)

• closed form of such action: [Fradkin, Vilkovisky 75]

S ′ =
∫
d4x
√
g
(
R− 1

6
R∆−1R

)
Weyl-invariant off shell extension of Einstein theory
• generalize to HS case: quadratic plus cubic action for
Fronsdal HS fields φm1...ms subject to double-tracelessness
(i) split into “physical” traceless ts + “ghost-like” trace hs−2

(ii) integrate out hs−2

• resulting non-local action for ts should lead to same S-matrix:
analog of conformal off-shell extension of Einstein theory
invariant under (spont broken) conformal HS symmetry?



Integrating out the trace from the Einstein action

LE(h) =
√
gR = X1 +X2 +X3 +X4 + ... ,

X1 = ∂m∂nhmn − ∂2h = ∂m∂ntmn − 3
4
∂2h

X2 = 3
4
∂ktmn∂ktmn − 1

2
∂ktmn∂ntmk + tmn∂

2tmn − ∂ntkn∂mtkm
+ 3

32
(∂kh)2 + 1

4
∂mtmn∂nh + 1

2
tmn∂m∂nh

X3 = 3
4
tmn∂mtsr∂ntsr + tms∂mtnr∂ntsr + 1

2
tns∂mtnr∂rtsm + ...

Solving for h:

L̄E(t) = L̄
(2)
E (t) + L̄

(3)
E (t) + L

(4)
E (t) + ...

L̄
(2)
E (t) = −1

4
∂ktmn∂ktmn + 1

2
∂ktmk∂ntmn + 1

6
∂m∂ntmn∂

−2∂k∂rtkr

= 1
2
Cmnkl∂

−2Cmnkl = 1
4
tabP

ab
mn∂

2tmn

P ab
mn = P a

(mP
b
n) −

1
3
P abPmn , Pmn = ηmn − ∂m∂n

∂2

L̄
(3)
E (t) = X3(t)+1

3
X1(t)∂−2X2(t) , Xn(t) ≡ Xn(t, h = 0)



• in transverse gauge ∂mtmn = 0

X̄1 = 0 , X̄2 = 3
4
∂ktmn∂ktmn − 1

2
∂ktmn∂ntmk + tmn∂

2tmn ,

X̄3 = −1
4
tab∂atmn∂btmn + tab∂atmn∂ntmb − 1

2
tab∂ntma∂ntmb + ...

X̄4 = − 1
16
tmntmn(∂rtab∂rtab − 2∂rtab∂btar) + ...

L̄E(t) = −1
4
∂ktmn∂ktmn+X̄3(t)+X̄4(t)+Y4 , Y4 = 1

6
X̄2∂

−2X̄2

• non-local contribution Y4 to 4-graviton amplitude

Y4 = 1
6

[
3
8
∂2(tmntmn)− 1

2
∂k∂n(tmntmk)

]
1
�

[
3
8
∂2(tabtab)− 1

2
∂r∂b(tabtar)

]
• complete 4-graviton amplitude =
tmn exchange X̄3∂

−2X̄3 + local X̄4(t) + non-local Y4(t)

is physical and gauge-independent
but split between exchange and contact contributions depends
on (on-shell) gauge or particular choice of polarization tensors



Conformal off-shell extension of Einstein theory
• same L̄E(t) obtained by integrating out h can be found
from Weyl-invariant off-shell extension of Einstein theory

S(g, φ) = SE(φ2g) =

∫
d4x
√
g
(
Rφ2 + 6 ∂mφ∂mφ

)
invariant under g′mn = λ2(x)gmn, φ

′ = λ−1(x)φ

• perturbatively equivalent to the Einstein theory if assume φ
has a non-zero constant vacuum value in flat space
i.e. expansion gmn = ηmn + hmn, φ = 1 + ϕ

• if fix the Weyl gauge ϕ = 0→ Einstein theory
or if solve for ϕ in terms of the metric→

non-local “conformal off-shell extension” of Einstein gravity
• gives equivalent S-matrix but has an additional Weyl symm



φ(g) = 1 + ϕ(g) , −∇2ϕ+ 1
6
R(1 + ϕ) = 0

ϕ = −1
6
∆−1R , ∆ ≡ −∇2 + 1

6
R

Sc(g) ≡ S(g, φ(g)) =

∫
d4x
√
g
(
R− 1

6
R∆−1R

)
•Weyl symmetry – can fix traceless gauge on hmn:
Sc depends only on traceless graviton tmn even off-shell
• resulting action is equivalent to S̄E =

∫
d4xL̄E(t)

found by integrating out h from the Einstein action:
either gauge-fixing ϕ = 0 and solving for h

or first gauge-fixing h = 0 and solving for ϕ:
gives same action for tmn



Higher spin generalization?
•Weyl gravity→ conformal higher spin theory
invariant under conformal higher spin symmetry
• conformal extension of Einstein theory→
2-derivative higher spin generalization?
with extra tower of ghost-like “compensator” fields
• solving for extra tower of fields should give
non-local action with extra higher spin conformal symmetry
depending on “physical” traceless parts ts of Fronsdal fields φs
• equivalent action (leading to same S-matrix)
from integrating out traces hs−2 of the fields φs in
massless HS Lagrangian L =

∑
s φs∂

2φs+V3(φ)+V4(φ)+ ...



• kin term in non-local action depends only on traceless ts
represented in terms of linearized Weyl tensors Cs ∼ ∂sts
conf HS theory: L2 = CsCs = ts�sts + ...

conf Fronsdal: L2 = Cs�1−sCs = ts�ts + ...

• some analogy with “extended” cubic+ quartic theory from
condition of on-shell gauge invariance:
also has extra “ghost-like” HS fields ψj needed for locality
• suggests interpretation of ψj as
conformal compensators of conformal off-shell extension
that should not appear as asymptotic states in S-matrix
• this proposal may be explaining possible triviality of
resulting S-matrix on the basis of extra hidden symmetry:
allowed terms in amplitudes then are delta-functions of s,t,u
as in conformal higher spin theory
[Joung, Nakach, AT 15; Beccaria, Nakach, AT 16]



Conclusions
• gauge invariance + locality→ triviality of S-matrix
• using S-matrix gauge invariance to constrain Lagrangian:
0002 and 0004 amplitudes are gauge invariant for local V4

but 000s with s > 4 require non-local 4-vertices
• may be eliminated by extra tower of ghost-like HS fields
• this requires, in particular, additional 0000 vertex that cancels
exchange part of 0000 amplitude
if locality can be restored→ S-matrix is trivial?
• further tests required – e.g. gauge inv of 00s1s2 amplitude
• analogy with conformal off-shell extension of Einstein theory:
higher symmetry explaining triviality of S-matrix?
• theory with “trivial” S-matrix up to contact δ-function terms?
• is there non-local gauge-invariant HS action? symmetry?



• lessons for AdS where “S-matrix” is known
– given by boundary CFT
is there a flat-space limit? is it trivial?


