On the applications of AdS/CFT Quantum Spectral Curve to BFKL spectrum of $\mathcal{N}=4$ SYM

Based on M. Alfimov, N. Gromov and G. Sizov 1802.06908

Mikhail Alfimov, NRU HSE, LPI RAS and ENS Paris

Higher Spin Theory and Holography, Lebedev Physical Institute, Moscow, Russia, June 6, 2018

Motivation

Using the methods of the Quantum Spectral Curve for N = 4 SYM (Gromov, Kazakov, Leurent, Volin'13; Gromov, Kazakov, Leurent, Volin'14) analytically continue the scaling dimensions of length-2 operators and reproduce the so-called Pomeron eigenvalue of the BFKL equation with nonzero conformal spin (Kotikov, Lipatov'00).

Derive the generalization of the Faddeev-Korchemsky Baxter equation for the Lipatov's spin chain (known from the integrability of the gauge theory in the BFKL limit) with nonzero conformal spin.

Find a way for systematic expansion in the scaling parameter in the BFKL regime and study the Pomeron trajectory by numerical and analytical algorithms of QSC.

High-energy scattering

In the beginning we are going to briefly describe the meaning of the quantities studied in the context of high energy scattering. The total cross-section σ(s) for the high-energy scattering of two colorless particles A and B can be written as (Fadin, Lipatov'98; Kotikov, Lipatov'00)

$$\sigma(s) = \int \frac{d^2q d^2q'}{(2\pi)^2 q^2 q'^2} \Phi_A(q) \Phi_B(q') \int_{a-i\infty}^{a+i\infty} \frac{d\omega}{2\pi i} \left(\frac{s}{s_0}\right)^{\omega} G_{\omega}(q,q') ,$$

where $s_0 = |\boldsymbol{q}| |\boldsymbol{q}'|$ and $s = 2 p_A p_B.$

For the t-channel partial wave there holds the Bethe-Salpeter equation

$$\omega G_{\omega}(q,q_1) = \delta^{D-2}(q-q_1) + \int d^{D-2}q_2 K(q,q_2) G_{\omega}(q_2,q_1) \ .$$

It appears to be possible to classify the Pomeron eigenvalues ω of the BFKL kernel K using two quantum numbers: integer n (conformal spin) and real ν

$$\omega = \omega(n, \nu)$$
.

For the phenomenological applications of the BFKL kernel eigenvalues with non-zero conformal spin see (Kepka, Marquet, Royon'10). In (Fadin, Lipatov'98; Kotikov, Lipatov'00) the function ω is used with the different argument $\gamma = 1/2 + i\nu$.

Length-2 operators and BFKL regime in the $\mathcal{N} = 4$ SYM

We consider important class of length-2 operators

 ${\rm tr} Z(D_+)^{S_1}(\partial_\perp)^{S_2} Z + {\rm permutations} \ .$

► Trajectory $S(\Delta, n)$, where $S = S_1$ and $n = S_2$, corresponding to the length-2 operator tr $Z(D_+)^S(\partial_\perp)^n Z$ with the physical points depicted by the dots

The identification with the high-energy scattering regime is $\omega(n,\nu)=S+1,$ where $\nu=-i\Delta/2.$

▶ BFKL scaling is determined by: $S \rightarrow -1$, $g \rightarrow 0$ and $\frac{g^2}{S+1}$ is finite. Leading order BFKL approximation corresponds to resumming all the powers $\left(\frac{g^2}{S+1}\right)^n$.

Algebraic construction. Q-system and QQ-relations

- The AdS₅/CFT₄ Quantum Spectral Curve (Gromov, Kazakov, Leurent, Volin'13; Gromov, Kazakov, Leurent, Volin'14) gives the generalization of the Baxter equation describing the 1-loop spectrum of twist-2 operators to all loops.
- ▶ The AdS/CFT Q-system is formed by 2^8 Q-functions which we denote as $Q_{A|J}(u)$, where $A, J \subset \{1, 2, 3, 4\}$ are two ordered subsets of indices. They satisfy the QQ-relations

$$\begin{split} & Q_{A|I}Q_{Aab|I} = Q^+_{Aa|I}Q^-_{Ab|I} - Q^-_{Aa|I}Q^+_{Ab|I} \,, \\ & Q_{A|I}Q_{A|Iij} = Q^+_{A|Ii}Q^-_{A|Ij} - Q^-_{A|Ii}Q^+_{A|Ij} \,, \\ & Q_{Aa|I}Q_{A|Ii} = Q^+_{Aa|Ii}Q^-_{A|I} - Q^+_{A|I}Q^-_{Aa|Ii}. \end{split}$$

In addition we impose the normalization constraint $Q_{\emptyset|\emptyset}=1.$

By applying the QQ-relations we are able to generate the whole Q-system from 8 basic Q-functions: Q_{a|∅}(u) and Q_{∅|i}(u).

Algebraic construction. Hodge and H-symmetry

 \blacktriangleright By imposing the quantum unimodularity condition $Q_{1234|1234}=1$ and using the Hodge duality

$$\begin{split} Q_{\mathfrak{a}_{1},\dots,\mathfrak{a}_{n}|\mathfrak{i}_{1},\dots,\mathfrak{i}_{m}} &\leftrightarrow Q^{\mathfrak{a}_{1},\dots,\mathfrak{a}_{n}|\mathfrak{i}_{1},\dots,\mathfrak{i}_{m}} \equiv \\ &\equiv (-1)^{(4-n)\mathfrak{m}} \varepsilon^{\mathfrak{b}_{n+1}\dots\mathfrak{b}_{4}\mathfrak{a}_{1}\dots\mathfrak{a}_{n}} \varepsilon^{\mathfrak{j}_{m+1}\dots\mathfrak{j}_{4}\mathfrak{i}_{1}\dots\mathfrak{i}_{m}} Q_{\mathfrak{b}_{n+1}\dots,\mathfrak{b}_{4}|\mathfrak{j}_{m+1}\dots,\mathfrak{j}_{4}|\mathfrakj_{m+1}\dots,\mathfrak{j}_{4}|\mathfrak{j}_{m+1}\dots,\mathfrak{j}_$$

we obtain the Hodge dual Q-system with the upper indices, which satisfies the same QQ-relations.

It also true that

$$Q^{\mathfrak{a}|\mathfrak{i}}Q_{\mathfrak{a}|\mathfrak{j}}=-\delta^{\mathfrak{i}}_{\mathfrak{j}}\,,\quad Q^{\mathfrak{a}|\mathfrak{i}}Q_{\mathfrak{b}|\mathfrak{i}}=-\delta^{\mathfrak{a}}_{\mathfrak{b}}$$

and

$$Q^{\mathfrak{a}|\emptyset} = (Q^{\mathfrak{a}|\mathfrak{i}})^+ Q_{\emptyset|\mathfrak{i}} \text{ , } \quad Q^{\emptyset|\mathfrak{i}} = (Q^{\mathfrak{a}|\mathfrak{i}})^+ Q_{\mathfrak{a}|\emptyset} \text{ .}$$

The quantum unimodularity condition leads us to the following constraints for the Q-functions

$$Q_{\mathfrak{a}|\emptyset}Q^{\mathfrak{a}|\emptyset} = \mathbf{0}$$
 , $Q_{\emptyset|\mathfrak{i}}Q^{\emptyset|\mathfrak{i}} = \mathbf{0}$

QQ-relations are also invariant with respect to the H-transformations

$$\begin{split} & Q_{\alpha|\emptyset} \to (H_B)^a_c Q_{c|\emptyset} \ , \quad Q^{\alpha|\emptyset} \to (H_B^{-1})^a_c Q^{c|\emptyset} \ , \\ & Q_{\emptyset|i} \to (H_F)^j_i Q_{\emptyset|j} \ , \quad Q^{\emptyset|i} \to (H_F^{-1})^i_j Q^{\emptyset|j} \ , \end{split}$$

where H_B and H_F are periodic matrices and det $H_B \det H_F = 1$.

Algebraic construction. 4th order Baxter equation

As a consequence of the Q Q-relations, Q-functions with one index are related through the following 4th order finite-difference Baxter equation

$$\begin{split} 0 &= Q_{\emptyset|j}^{[+4]} D_0 - Q_{\emptyset|j}^{[+2]} \left[D_1 - Q_{\alpha|\emptyset}^{[+2]} Q^{\alpha|\emptyset[+4]} D_0 \right] + \\ &+ \frac{1}{2} Q_{\emptyset|j} \left[D_2 - Q_{\alpha|\emptyset} Q^{\alpha|\emptyset[+4]} D_0 + Q_{\alpha|\emptyset} Q^{\alpha|\emptyset[+2]} D_1 \right] - \\ &- Q_{\emptyset|i}^{[-2]} \left[\bar{D}_1 + Q_{\alpha|\emptyset}^{[-2]} Q^{\alpha|\emptyset[-4]} \bar{D}_0 \right] + Q_{\emptyset|i}^{[-4]} = 0 , \end{split}$$

where

$$\begin{split} D_0 = \text{det} \left(\begin{array}{ccc} Q^{1|\emptyset[+2]} & \ldots & Q^{4|\emptyset[+2]} \\ Q^{1|\emptyset} & \ldots & Q^{4|\emptyset} \\ Q^{1|\emptyset[-2]} & \ldots & Q^{4|\emptyset[-2]} \\ Q^{1|\emptyset[-4]} & \ldots & Q^{4|\emptyset[-4]} \end{array} \right), \quad D_1 = \underset{1\leqslant i, j \leqslant 4}{\text{det}} Q^{\emptyset|j[4-2i+2\delta_{i,2}]}, \\ D_2 = \underset{1\leqslant i, j \leqslant 4}{\text{det}} Q^{\emptyset|j[4-2i+2\delta_{i,1}+\delta_{i,2}]}, \\ \bar{D}_k = \underset{1\leqslant i, j \leqslant 4}{\text{det}} Q^{\emptyset|j[-4+2i-2\delta_{i,k+1}]}, \ k = 0, 1 \,. \end{split}$$

After the exchange of the lower and upper indices we obtain the same equation for Q^{Ø|j}. The four solutions of each equation allow to find four functions Q_{Ø|j} and Q^{Ø|j} respectively.

Analytic structure. Asymptotics and analytic properties of the basic Q-functions

- ▶ We denote the functions $Q_{\alpha|\emptyset}(u)$, $Q_{\alpha|\emptyset}(u)$, $Q_{\theta|i}(u)$ and $Q^{\emptyset|i}(u)$ with prescribed analytical properties as $P_{\alpha}(u)$, $P_{\alpha}(u)$, $Q_{i}(u)$ and $Q^{i}(u)$ respectively.
- \blacktriangleright All the Q-functions including $P_{\alpha},$ $P^{\alpha},$ Q_{i} and Q^{i} have the power-like asymptotics at large u

$$P_{\mathfrak{a}} \simeq A_{\mathfrak{a}} \mathfrak{u}^{-\tilde{M}_{\mathfrak{a}}} \text{,} \quad P^{\mathfrak{a}} \simeq A^{\mathfrak{a}} \mathfrak{u}^{\tilde{M}_{\mathfrak{a}}-1} \text{,} \quad Q_{i} \simeq B_{i} \mathfrak{u}^{\hat{M}_{i}-1} \text{,} \quad Q^{i} \simeq B^{i} \mathfrak{u}^{-\hat{M}_{i}}$$

where

$$\begin{split} \tilde{M}_{\alpha} &= \left\{ \frac{J_{1+2-3}}{2} + 1, \frac{J_{1-2+3}}{2}, -\frac{J_{1-2-3}}{2} + 1, -\frac{J_{1+2+3}}{2} \right\} \,, \\ \hat{M}_{\mathfrak{i}} &= \left\{ \frac{\Delta - S_{1+2}}{2} + 1, \frac{\Delta + S_{1+2}}{2}, -\frac{\Delta + S_{1-2}}{2} + 1, -\frac{\Delta - S_{1-2}}{2} \right\} \,. \end{split}$$

As we know from the classical integrability of the dual superstring σ -model (see, for example, Gromov'17), the P- and Q-functions at least have the quadratic branch points at $u = \pm 2g$. Natural assumption about their analytic structure on the defining sheet

Analytic structure. Upper and lower half-plane analytic Q-systems

• The equation for the upper half-plane analytic $Q_{a|i}$ functions

$$\mathfrak{Q}^+_{\mathfrak{a}|\mathfrak{i}} - \mathfrak{Q}^-_{\mathfrak{a}|\mathfrak{i}} = P_\mathfrak{a} Q_\mathfrak{i} \;, \quad \mathfrak{Q}_{\mathfrak{a}|\mathfrak{i}} \simeq -\mathfrak{i} \frac{A_\mathfrak{a} B_\mathfrak{i}}{-\tilde{M}_\mathfrak{a} + \hat{M}_\mathfrak{i}} \mathfrak{u}^{-\tilde{M}_\mathfrak{a} + \hat{M}_\mathfrak{i}} \;, \quad \mathfrak{u} \to \infty \;.$$

 ${\rm Q}_{\alpha|i}$ are the Q-functions from the generated UHPA Q-system.

Substitution of the asymptotics of Q_{a|i} allows to find the products of A and B coefficients in terms of the charges for a₀, i₀ = 1, ..., 4

$$A_{\alpha_0}A^{\alpha_0} = i \frac{\prod\limits_{j=1}^4 \left(\tilde{M}_{\alpha_0} - \hat{M}_j\right)}{\prod\limits_{\substack{b=1\\b \neq \alpha_0}} \left(\tilde{M}_{\alpha_0} - \tilde{M}_b\right)} , \quad B_{i_0}B^{i_0} = -i \frac{\prod\limits_{a=1}^4 \left(\hat{M}_{i_0} - \tilde{M}_a\right)}{\prod\limits_{\substack{j=1\\j \neq i_0}} \left(\hat{M}_{i_0} - \hat{M}_j\right)}$$

► Hodge-dual system is also UHPA. Q_i and Q^i coincide with $-Q^+_{\alpha|i}P^{\alpha}$ and $Q^{\alpha|i+}P_{\alpha}$ in the UHP. In the UHP and LHP respectively we have

$$\hat{\mathbf{Q}}_i=\check{\mathbf{Q}}_i\;,\quad \hat{\mathbf{Q}}^i=\check{\mathbf{Q}}^i\;,\quad \mathrm{Im}\;\mathfrak{u}>0\;,\quad \tilde{\hat{\mathbf{Q}}}_i=\check{\mathbf{Q}}_i\;,\quad \tilde{\hat{\mathbf{Q}}}^i=\check{\mathbf{Q}}^i\;,\quad \mathrm{Im}\;\mathfrak{u}<0\;.$$

Analytic structure. Gluing conditions

Complex conjugation generates the LHPA Q-systems with lower and upper indices

$$\begin{split} & \mathfrak{Q}_{\mathfrak{a}_1,\dots,\mathfrak{a}_n|\mathfrak{i}_1,\dots,\mathfrak{i}_m}(\mathfrak{u}) \to (-1) \frac{(\mathfrak{m}+\mathfrak{n})(\mathfrak{m}+\mathfrak{n}-1)}{2} \bar{\mathfrak{Q}}_{\mathfrak{a}_1,\dots,\mathfrak{a}_n|\mathfrak{i}_1,\dots,\mathfrak{i}_m}(\mathfrak{u}) \text{ , } \\ & \mathfrak{Q}^{\mathfrak{a}_1,\dots,\mathfrak{a}_n|\mathfrak{i}_1,\dots,\mathfrak{i}_m}(\mathfrak{u}) \to (-1) \frac{(\mathfrak{m}+\mathfrak{n})(\mathfrak{m}+\mathfrak{n}-1)}{2} \bar{\mathfrak{Q}}^{\mathfrak{a}_1,\dots,\mathfrak{a}_n|\mathfrak{i}_1,\dots,\mathfrak{i}_m}(\mathfrak{u}) \text{ . } \end{split}$$

As there is no principal difference between the UHPA and LHPA Q-systems and due to the unitarity of N = 4 SYM they are connected by the combination of Hodge and H-symmetry

$$ilde{\mathbf{Q}}^i = \mathcal{M}^{ij} \mathbf{\hat{\bar{Q}}}_j$$
 , $\quad \mathbf{\hat{\bar{Q}}}_i = \left(\mathcal{M}^{-t}\right)_{ij} \mathbf{\hat{\bar{Q}}}^j$.

b By using the analyticity properties of the Q-functions we are able to show that the matrix $M^{ij}(u)$ is i-periodic, analytic and hermitian

$$\bar{M}^{ij}(\mathfrak{u}) = M^{ji}(\mathfrak{u})$$

as a function.

Complex conjugation and parity symmetries

Due to the determined conjugation properties of the P-functions

$$ar{\mathbf{P}}_a = C^b_a \mathbf{P}_b$$
 , $ar{\mathbf{P}}^a = -C^a_b \mathbf{P}^b$, $C = ext{diag}\{1, 1, -1, -1\}$,

 $\bar{\mathbf{Q}}_i(u)$ also the solutions to the 4th order Baxter equation. Thus, there exist i-periodic matrices that

$$ar{\mathbf{Q}}_{\mathfrak{i}}(\mathfrak{u}) = \Omega^{\mathfrak{j}}_{\mathfrak{i}}(\mathfrak{u}) \mathbf{Q}_{\mathfrak{j}}(\mathfrak{u})$$
, $\Omega^{\mathfrak{j}}_{\mathfrak{i}} = ar{\mathfrak{Q}}^{-}_{\mathfrak{a}|\mathfrak{i}} C^{\mathfrak{a}}_{\mathfrak{b}} \mathfrak{Q}^{\mathfrak{b}|\mathfrak{j}-1}$

For the length-2 operators in question $(J_1 = 2, J_2 = J_3 = 0)$ the P-functions possess the certain parity

$$\mathbf{P}_{\mathfrak{a}}(-\mathfrak{u}) = (-1)^{\mathfrak{a}+1} \mathbf{P}_{\mathfrak{a}}(\mathfrak{u})$$
, $\mathbf{P}^{\mathfrak{a}}(-\mathfrak{u}) = (-1)^{\mathfrak{a}} \mathbf{P}^{\mathfrak{a}}(\mathfrak{u})$.

Thus, $Q_i(-u)$ are also solutions to the 4th order Baxer equation and

$$Q_i(-\mathfrak{u})=\Theta_i^j(\mathfrak{u})Q_j(\mathfrak{u})\,,\quad \Theta_i^j(\mathfrak{u})=(-1)^{\mathfrak{a}+1}\mathfrak{Q}_{\mathfrak{a}|\mathfrak{i}}^-(-\mathfrak{u})\mathfrak{Q}^{\mathfrak{a}|\mathfrak{j}-}(\mathfrak{u})\,.$$

Constraining the gluing matrix

• The matrix $M^{ij}\Omega_i^k$ satisfies the equation

$$\mathcal{M}^{ij}\tilde{\Omega}^k_j-\mathcal{M}^{ij}\Omega^k_j=-\mathbf{Q}^i\tilde{\mathbf{Q}}^k+\mathbf{Q}^k\tilde{\mathbf{Q}}^i\;,$$

and possesses the property of antisymmetry $M^{ij}\Omega^k_j=-M^{kj}\Omega^i_j.$

• Using the matrix $\Theta^j_i(u)$ we are able to introduce another gluing matrix

$$\tilde{\mathbf{Q}}^{i}(\mathfrak{u}) = L^{ij}(\mathfrak{u})\mathbf{Q}_{j}(-\mathfrak{u}) \text{ , } \quad \tilde{\mathbf{Q}}_{i} = \left(L^{-t}\right)_{ij}(\mathfrak{u})\mathbf{Q}^{j}(-\mathfrak{u}) \text{ }$$

where

$$L^{\text{il}}(\mathfrak{u})=M^{\text{ij}}(\mathfrak{u})\Omega_j^k(\mathfrak{u})\Theta_k^l(-\mathfrak{u})$$
 ,

which after going under the cut on the real axis twice gives $L^{ji}(u) = L^{ij}(-u)$.

Summarizing the gluing conditions and the obtained constraints for the gluing matrix we have

$$\begin{split} \bar{M}^{ji}(\boldsymbol{u}) &= M^{ij}(\boldsymbol{u}) \text{,} \\ M^{ij}(\boldsymbol{u}) \Omega_j^k(\boldsymbol{u}) &= -M^{kj}(\boldsymbol{u}) \Omega_j^i(\boldsymbol{u}) \text{,} \ \left(\Omega^{-1}\right)_i^j(\boldsymbol{u}) = \bar{\Omega}_i^j(\boldsymbol{u}) \\ L^{il}(\boldsymbol{u}) &= M^{ij}(\boldsymbol{u}) \Omega_j^k(\boldsymbol{u}) \Theta_k^l(-\boldsymbol{u}) \text{,} \\ L^{li}(-\boldsymbol{u}) &= L^{il}(\boldsymbol{u}) \text{,} \ \left(\Theta^{-1}\right)_j^k(\boldsymbol{u}) = \Theta_j^k(-\boldsymbol{u}) \text{.} \end{split}$$

Constraining matrix. Gluing matrix for integer and non-integer spins

For the integer spins S_1 and S_2 of the same parity we obtain

$$\mathcal{M}^{ij} = \begin{pmatrix} 0 & \mathcal{M}^{12} & 0 & 0 \\ \bar{\mathcal{M}}^{12} & 0 & 0 & 0 \\ 0 & 0 & 0 & \mathcal{M}^{34} \\ 0 & 0 & \bar{\mathcal{M}}^{34} & 0 \end{pmatrix}$$

supplemented by the fixed phases of non-zero matrix elements

$$M^{12} = |M^{12}| e^{i\left(\pm \frac{\pi}{2} + \phi_{B_1} - \phi_{B_2}\right)}, \quad M^{34} = |M^{34}| e^{i\left(\pm \frac{\pi}{2} + \phi_{B_3} - \phi_{B_4}\right)}$$

For non-integer spins S_1 and S_2 we have

$$\begin{split} M^{ij}(\mathfrak{u}) &= \begin{pmatrix} M_1^{11} & M_1^{12} & M_1^{13} & M_1^{14} \\ \bar{M}_1^{12} & 0 & 0 & 0 \\ \bar{M}_1^{13} & 0 & M_1^{33} & M_1^{34} \\ \bar{M}_1^{14} & 0 & \bar{M}_1^{34} & M_1^{44} \end{pmatrix} + \\ \begin{pmatrix} 0 & 0 & M_2^{13} & M_2^{14} \\ 0 & 0 & 0 & 0 \\ \bar{M}_2^{13} & 0 & 0 & 0 \\ \bar{M}_2^{13} & 0 & 0 & 0 \\ \bar{M}_2^{14} & 0 & 0 & 0 \end{pmatrix} e^{2\pi\mathfrak{u}} + \begin{pmatrix} 0 & 0 & M_3^{13} & M_3^{14} \\ 0 & 0 & 0 & 0 \\ \bar{M}_3^{13} & 0 & 0 & 0 \\ \bar{M}_3^{14} & 0 & 0 & 0 \end{pmatrix} e^{-2\pi\mathfrak{u}} \,, \end{split}$$

where the matrix elements are determined by

$$\begin{split} \mathsf{M}_{3}^{ij} &= -\mathsf{M}_{2}^{ij} \, e^{i\pi(\hat{\mathsf{M}}_{j} - \hat{\mathsf{M}}_{i})} \,, \\ \mathsf{M}_{2}^{13} &= \left|\mathsf{M}_{2}^{13}\right| \, e^{i\left(\pm \frac{\pi}{2} + \phi_{B_{1}} - \phi_{B_{3}}\right)} \,, \quad \mathsf{M}_{2}^{14} = \left|\mathsf{M}_{2}^{14}\right| \, e^{i\left(\pm \frac{\pi}{2} + \phi_{B_{1}} - \phi_{B_{4}}\right)} \,. \end{split}$$

Numerical solution. Method description

The P-functions have the following form on their defining sheet with one short cut

$$\begin{split} P_{\mathfrak{a}}(\mathfrak{u}) &= x^{-\tilde{M}_{\mathfrak{a}}} \left(g^{-\tilde{M}_{\mathfrak{a}}} A_{\mathfrak{a}} \left(1 + \frac{\delta_{\mathfrak{a},4}}{x^2} \right) + \sum_{k=1}^{+\infty} \frac{c_{\mathfrak{a},k}}{x^{2k}(\mathfrak{u})} \right) \,, \\ P^{\mathfrak{a}}(\mathfrak{u}) &= x^{\tilde{M}_{\mathfrak{a}}-1} \left(g^{\tilde{M}_{\mathfrak{a}}-1} A^{\mathfrak{a}} \left(1 + \frac{\delta_{\mathfrak{a},1}}{x^2} \right) + \sum_{k=1}^{+\infty} \frac{c_k^{\mathfrak{a}}}{x^{2k}(\mathfrak{u})} \right) \end{split}$$

and satisfy the condition $\mathbf{P}_{\alpha}\mathbf{P}^{\alpha}=0$.

▶ In the limit $u \to \infty$ in the UHP we have the following expansion of $Q_{\alpha|i}$

$$\mathfrak{Q}_{\mathfrak{a}|\mathfrak{i}}(\mathfrak{u}) \simeq \mathfrak{u}^{-\tilde{M}_{\mathfrak{a}} + \hat{M}_{\mathfrak{i}}} \sum_{l=0}^{+\infty} \frac{B_{\mathfrak{a}|\mathfrak{i},2l}}{\mathfrak{u}^{2l}} \,, \quad B_{\mathfrak{a}|\mathfrak{j},0} = -\mathfrak{i} \frac{A_{\mathfrak{a}}B_{\mathfrak{j}}}{-\tilde{M}_{\mathfrak{a}} + \hat{M}_{\mathfrak{j}}}$$

Using the equation

$$\boldsymbol{\Omega}_{a|i}^{-} = \left(\boldsymbol{\delta}_{a}^{b} + \boldsymbol{P}_{a}\boldsymbol{P}^{b}\right)\boldsymbol{\Omega}_{a|i}^{+}$$

we find the value of ${\rm Q}_{\alpha|i}$ on the real axis.

The loss function

$$S = \sum_{i,j} |F^i(\mathfrak{u}_j)|^2 , \quad F^i(\mathfrak{u}) = \mathfrak{Q}^{\mathfrak{a}|i+}(\mathfrak{u}) \tilde{P}_\mathfrak{a}(\mathfrak{u}) + M^{ij}(\mathfrak{u}) \bar{\mathfrak{Q}}^-_{b|i}(\mathfrak{u}) \bar{P}^b(\mathfrak{u}) ,$$

where u_j is a set of points on the interval [-2g, 2g], is minimized by the optimization procedure (Levenberg-Marquardt algorithm).

Numerical solution. Intercept function

Intercept S(0, n) as the function of the coupling constant g for conformal spins n = 0, n = 3/2, n = 2 and n = 3 (dots), weak coupling expansion of the intercept (dashed lines) and strong coupling expansion (continuous lines).

Weak coupling expansion. Asymptotics, symmetries and LO solution

The length-2 operators are not left-right symmetric. But there is still some symmetry

$$P^{\mathfrak{a}}(\mathfrak{n},\mathfrak{u})=\chi^{\mathfrak{a}\mathfrak{c}}P_{\mathfrak{c}}(-\mathfrak{n},\mathfrak{u})\;,\quad Q^{\mathfrak{i}}(\mathfrak{n},\mathfrak{u})=\chi^{\mathfrak{i}\mathfrak{j}}Q_{\mathfrak{j}}(-\mathfrak{n},\mathfrak{u})\;.$$

The asymptotics are simplified to

$$\begin{array}{lll} P_{\alpha} &\simeq & (A_{1}u^{-2},A_{2}u^{-1},A_{3},A_{4}u)_{\alpha}\,, \\ Q_{j} &\simeq & (B_{1}u^{\frac{\Delta-n+1-w}{2}},B_{2}u^{\frac{\Delta+n-3+w}{2}},B_{3}u^{\frac{-\Delta+n+1-w}{2}},B_{4}u^{\frac{-\Delta-n-3+w}{2}})_{j}\,, \end{array}$$

where w = S + 1.

After some demanding calculations we get the result for the P-functions

$$\begin{split} P_1 &\simeq \frac{1}{u^2} + \frac{2\Lambda w}{u^4} \,, \quad P_2 \simeq \frac{1}{u} + \frac{2\Lambda w}{u^3} \,, \quad P_3 \simeq A_3^{(0)} + A_3^{(1)} w \,, \\ P_4 &\simeq A_4^{(0)} u - \frac{i((\Delta^2 - 1)^2 - 2(\Delta^2 + 1)n^2 + n^4)}{96u} + \\ &+ \left(A_4^{(1)} u + \frac{c_{4,1}^{(2)}}{u\Lambda} - \frac{i((\Delta^2 - 1)^2 - 2(\Delta^2 + 1)n^2 + n^4)\Lambda}{48u^3}\right) w \,. \end{split}$$

where $\Lambda = rac{\mathrm{g}^2}{w}$ and

$$c_{4,1}^{(2)} = -\frac{i\Lambda}{24} (\Delta^2 + n^2 + 2((\Delta - n)^2 - 1)((\Delta + n)^2 - 1)\Lambda - 1)$$

Weak coupling expansion. Factorization of the 4th order Baxter equation

 \blacktriangleright Thus, we get the equation for $\mathbf{Q}_1^{(0)}$ and $\mathbf{Q}_3^{(0)}$ in the LO

$$\mathbf{Q}_{j}^{(0)}\frac{(\Delta-n)^{2}-1-8u^{2}}{4u^{2}}+\mathbf{Q}_{j}^{(0)--}+\mathbf{Q}_{j}^{(0)++}=0\,,$$

and for $\mathbf{Q}^{(0)2}$ and $\mathbf{Q}^{(0)4}$ in the LO

$$\mathbf{Q}^{(0)j} \frac{(\Delta+n)^2 - 1 - 8u^2}{4u^2} + \mathbf{Q}^{(0)j--} + \mathbf{Q}^{(0)j++} = \mathbf{0} + \mathbf{Q}^{(0)j++} = \mathbf{$$

Substituting $\mathbf{Q}_j = u^2 Q_j$ and n = 0 we immediately see the Baxter equation from (Faddeev, Korchemsky'94) and (Derkachov, Korchemsky, Kotanski, Manashov'01-02).

In the NLO the 4-th order Baxter equations also factorize and we obtain the following 2nd order Baxter equation

$$\begin{aligned} \mathbf{Q}^{(1)2,4++} + \mathbf{Q}^{(1)2,4--} + \left(-2 + \frac{(\Delta+n)^2 - 1}{4u^2}\right) \mathbf{Q}^{(1)2,4} = \\ = -\frac{i}{2(u+i)} \mathbf{Q}^{(0)2,4++} + \frac{i}{2(u-i)} \mathbf{Q}^{(0)2,4--} + \frac{u^2 - \Lambda(\Delta+n)^2 - 1}{2u^4} \mathbf{Q}^{(0)2,4--} \end{aligned}$$

Weak coupling expansion. Gluing conditions and LO BFKL eigenvalue

Two gluing conditions in the LO in the scaling parameter w

$$egin{array}{l} ilde{\mathbf{Q}}^{(0)2} = ar{\mathcal{M}}_1^{(0)12} ar{\mathbf{Q}}_1^{(0)} \ extsf{,} \ ilde{\mathbf{Q}}^{(0)4} = ar{\mathcal{M}}_1^{(0)34} ar{\mathbf{Q}}_3^{(0)} \ . \end{array}$$

▶ To find $M_1^{(0)12}$ and $M_1^{(0)34}$ we can use the continuity on the cut $\tilde{\mathbf{Q}}^2(0) = \mathbf{Q}^2(0)$ and $\tilde{\mathbf{Q}}^4(0) = \mathbf{Q}^4(0)$. The result is

$$\mathsf{M}_1^{(0)12} = \mathsf{M}_1^{(0)34} = \frac{\cos\frac{\pi(\Delta+n)}{2}}{\cos\frac{\pi(\Delta-n)}{2}}\frac{(\Delta-n)^2 - 1}{(\Delta+n)^2 - 1} \, .$$

After some calculations, we obtain

$$\begin{split} \frac{1}{4\Lambda} &= \frac{1}{2} \left(\Psi(\Delta + n) + \Psi(\Delta - n) \right) + \mathcal{O}(g^2) = \\ &= -\psi\left(\frac{1 + n - \Delta}{2}\right) - \psi\left(\frac{1 + n + \Delta}{2}\right) + 2\psi(1) + \mathcal{O}(g^2) \;. \end{split}$$

Weak coupling expansion. BFKL intercept j(n) for general conformal spin n

Using the binomial harmonic sums

$$\mathbb{S}_{\mathfrak{i}_1,\dots,\mathfrak{i}_k}(M) = (-1)^M \sum_{j=1}^M (-1)^j \left(\begin{array}{c} M\\ j \end{array}\right) \left(\begin{array}{c} M+j\\ j \end{array}\right) S_{\mathfrak{i}_1,\dots,\mathfrak{i}_k}(j) \;.$$

The known intercept functions in the LO and NLO can be expressed in terms of the binomial harmonic sums with the argument M = (n-1)/2

$$\label{eq:jloss} \boldsymbol{j}_{\text{LO}} = 4 \mathbb{S}_1 \text{,} \quad \boldsymbol{j}_{\text{NLO}} = 2(\mathbb{S}_{2,1} + \mathbb{S}_3) + \frac{\pi^2}{3} \mathbb{S}_1 \text{,}$$

and allows to formulate an ansatz for NNLO intercept.

To calculate the intercept the modified iterative procedure from (Gromov, Levkovich-Maslyuk, Sizov'15) was used. The NNLO intercept is

$$j_{\mathsf{NNLO}} = 32(\mathbb{S}_{1,4} - \mathbb{S}_{3,2} - \mathbb{S}_{1,2,2} - \mathbb{S}_{2,2,1} - 2\mathbb{S}_{2,3}) - \frac{16\pi^2}{3}\mathbb{S}_3 - \frac{32\pi^4}{45}\mathbb{S}_1$$

This result is in complete agreement with (Caron-Huot, Herranen'16). The partial result at the NNNLO order

$$\begin{split} j_{NNNLO}^{non-rat.}\left(4k\!+\!1\right) &= -\frac{32\pi^2}{3}\left(3\mathbb{S}_{1,4} - 3\mathbb{S}_{2,3} - \mathbb{S}_{3,2} + \mathbb{S}_{1,1,3} - 2\mathbb{S}_{1,2,2} + \mathbb{S}_{2,2,1} - \mathbb{S}_{3,1,1}\right) + \\ &+ \frac{16\pi^4}{15}\left(4\mathbb{S}_3 - \mathbb{S}_{2,1}\right) + \frac{56\pi^6}{135}\mathbb{S}_1 + \frac{32\pi^2\zeta_3}{3}\mathbb{S}_{1,1} + 224\zeta_5\mathbb{S}_{1,1} - 128\zeta_3\left(S_{-3,1} + 2S_{-2,2} - S_{1,-3} - 15S_{1,3} - 4S_{2,-2} - 12S_{2,2} - 15S_{3,1} - 4S_{-2,1,1} + 2S_{1,-2,1} + 8S_{1,1,-2} + \\ &+ 12S_{1,1,2} + 12S_{1,2,1} + 12S_{2,1,1} + S_{-4} + 9S_4\right) \;. \end{split}$$

Near-BPS all loop expansion. Slope-to-intercept and curvature functions

- ► Knowing that P_{α} and P^{α} are $O(n-1)(O(\Delta))$ in the LO, we find that $Q_{\alpha|i}^{(0)}$ to be a constant matrix.
- ▶ This allows us to rewrite the equations $\tilde{P}_a = \Omega^+_{a|i} M^{ij} \bar{\Omega}^-_{b|j} \bar{P}^b$ in the form

$$\begin{split} \tilde{\mathbf{P}}_{a}^{(0)} &= \mathfrak{Q}_{a|i}^{(0)+} \mathcal{M}^{(0)ij} \bar{\mathfrak{Q}}_{b|j}^{(0)-} \bar{\mathbf{P}}^{(0)b} , \quad \tilde{\mathbf{P}}_{a}^{(1)} &= \mathfrak{Q}_{a|i}^{(0)+} \mathcal{M}^{(0)ij} \bar{\mathfrak{Q}}_{b|j}^{(0)-} \bar{\mathbf{P}}^{(1)b} + \\ &+ \left(\mathfrak{Q}_{a|i}^{(1)+} \mathcal{M}^{(0)ij} \bar{\mathfrak{Q}}_{b|j}^{(0)-} + \mathfrak{Q}_{a|i}^{(0)+} \mathcal{M}^{(0)ij} \bar{\mathfrak{Q}}_{b|j}^{(1)-} + \mathfrak{Q}_{a|i}^{(0)+} \mathcal{M}^{(1)ij} \bar{\mathfrak{Q}}_{b|j}^{(0)-} \right) \bar{\mathbf{P}}^{(0)b} \end{split}$$

Solving this system, we obtain the slope-to-intercept function

$$\theta(g) = 1 + \frac{I_1(4\pi g)I_2(4\pi g)}{\sum\limits_{k=1}^{+\infty} (-1)^k I_k(4\pi g)I_{k+1}(4\pi g)}$$

Similar calculations give the curvature function

$$\begin{split} \gamma(g) &= \frac{1}{4\pi g^4 I_2^2} \oint\limits_{-2g}^{2g} d\nu (\text{cosh}_-^\nu \nu \Gamma[\text{cosh}_-^u u](\nu) - \text{cosh}_-^\nu \nu^2 \Gamma[\text{cosh}_-^u](\nu)) + \\ &+ \frac{1}{16\pi g^5 I_2} \oint\limits_{-2g}^{2g} d\nu \left(\frac{\nu^3 \Gamma[\text{cosh}_-^u](\nu) - 2\nu^2 \Gamma[\text{cosh}_-^u u](\nu) + \nu \Gamma[\text{cosh}_-^u u^2]}{x_\nu - \frac{1}{x_\nu}} \right), \end{split}$$

where

$$\Gamma[h(\nu)](u) = \oint_{-2g}^{2g} \frac{d\nu}{2\pi i} \partial_u \log \frac{\Gamma[i(u-\nu)+1]}{\Gamma[-i(u-\nu)+1]} h(\nu) .$$

Weak and strong coupling expansion of the non-perturbative quantities

Weak coupling expansion of the slope-to-intercept and curvature functions

$$\begin{split} \theta(g) &= -\frac{2\pi^2}{3}g^2 + \frac{4\pi^4}{9}g^4 - \frac{28\pi^6}{135}g^6 + \frac{8\pi^8}{405}g^8 + \mathcal{O}\left(g^{10}\right) \ , \\ \gamma(g) &= 2\zeta_3g^2 + \left(-\frac{2\pi^2}{3}\zeta_3 - 35\zeta_5\right)g^4 + \left(\frac{16\pi^4}{45}\zeta_3 + \frac{22\pi^2}{3}\zeta_5 + 504\zeta_7\right)g^6 + \\ &+ \left(-\frac{28\pi^6}{135}\zeta_3 - \frac{8\pi^4}{3}\zeta_5 - 56\pi^2\zeta_7 - 6930\zeta_9\right)g^8 + \mathcal{O}\left(g^{10}\right) \ . \end{split}$$

 \blacktriangleright The strong coupling expansion of the nonperturbative quantities in $\lambda = (4\pi g)^2$ is given by

$$\begin{split} \theta &= -1 + \frac{3}{\lambda^{1/2}} - \frac{3}{2\lambda} - \frac{9}{8\lambda^{3/2}} - \frac{9}{4\lambda^2} - \frac{711}{128\lambda^{5/2}} + \mathcal{O}\left(\frac{1}{\lambda^3}\right) \,, \\ \gamma &= \frac{1}{2\lambda^{1/2}} - \frac{1}{4\lambda} - \frac{33}{16\lambda^{3/2}} - \frac{81}{16\lambda^2} - \frac{2265}{256\lambda^{5/2}} + \\ &+ \frac{1440\zeta_5 - 765}{64\lambda^3} + \frac{207360\zeta_5 - 22545}{2048\lambda^{7/2}} + \mathcal{O}\left(\frac{1}{\lambda^4}\right) \,. \end{split}$$

It is in complete agreement with the corresponding expansion of the intercept found from the numerics

$$\begin{split} S(0,n) &= -n + \frac{(n-1)(n+2)}{\lambda^{1/2}} - \\ &- \frac{(n-1)(n+2)(2n-1)}{2\lambda} + \frac{(n-1)(n+2)(7n^2 - 9n - 1)}{8\lambda^{3/2}} + \mathcal{O}\left(\frac{1}{\lambda^2}\right) \,. \end{split}$$

Conclusions and outlook

- We developed a framework for the QSC for both integer and non-integer spins $S_1 = S$ and $S_2 = n$.
- ▶ QSC numerical algorithm allowed to calculate S for different values of Δ , n and coupling g.
- We reproduced the dimension of length-2 operator with non-zero conformal spin in the LO of the BFKL regime directly from the QSC.
- Using the iterative procedure, there was obtained the BFKL intercept for arbitrary conformal spin up to NNLO order and partially at NNNLO order.
- We found two new non-perturbative quantities: slope-to-intercept and curvature functions and calculated their weak and strong coupling expansions.
- Find an algorithmic way of generation of any BFKL Pomeron eigenvalue with non-zero conformal spin (NNLO, NNNLO, etc.) on Mathematica program.
- Consider the states with the bigger number of reggeized gluons (Odderon etc.) which means $J_1 \ge 3$.
- Incorporate the triple Pomeron vertex into the QSC framework.

Thanks for your attention!