
On the applications of AdS/CFT Quantum

Spectral Curve to BFKL spectrum of

N = 4 SYM
Based on M. Alfimov, N. Gromov and G. Sizov 1802.06908

Mikhail Alfimov,
NRU HSE, LPI RAS and ENS Paris

Higher Spin Theory and Holography,
Lebedev Physical Institute, Moscow, Russia, June 6, 2018

1/ 23



Motivation

I Using the methods of the Quantum Spectral Curve for N = 4 SYM (Gromov,
Kazakov, Leurent, Volin’13; Gromov, Kazakov, Leurent, Volin’14) analytically
continue the scaling dimensions of length-2 operators and reproduce the so-called
Pomeron eigenvalue of the BFKL equation with nonzero conformal spin (Kotikov,
Lipatov’00).

I Derive the generalization of the Faddeev-Korchemsky Baxter equation for the
Lipatov’s spin chain (known from the integrability of the gauge theory in the
BFKL limit) with nonzero conformal spin.

I Find a way for systematic expansion in the scaling parameter in the BFKL regime
and study the Pomeron trajectory by numerical and analytical algorithms of QSC.
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High-energy scattering

I In the beginning we are going to briefly describe the meaning of the quantities
studied in the context of high energy scattering. The total cross-section σ(s) for
the high-energy scattering of two colorless particles A and B can be written as
(Fadin, Lipatov’98; Kotikov, Lipatov’00)

σ(s) =

∫
d2qd2q ′

(2π)2q2q ′2
ΦA(q)ΦB(q

′)

a+i∞∫
a−i∞

dω

2πi

(
s

s0

)ω
Gω(q,q ′) ,

where s0 = |q||q ′| and s = 2pApB.

I For the t-channel partial wave there holds the Bethe-Salpeter equation

ωGω(q,q1) = δD−2(q−q1) +

∫
dD−2q2K(q,q2)Gω(q2,q1) .

I It appears to be possible to classify the Pomeron eigenvalues ω of the BFKL
kernel K using two quantum numbers: integer n (conformal spin) and real ν

ω =ω(n,ν) .

For the phenomenological applications of the BFKL kernel eigenvalues with
non-zero conformal spin see (Kepka, Marquet, Royon’10). In (Fadin, Lipatov’98;
Kotikov, Lipatov’00) the function ω is used with the different argument
γ = 1/2 + iν.
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Length-2 operators and BFKL regime in the N = 4 SYM

I We consider important class of length-2 operators

trZ(D+)S1(∂⊥)
S2Z+ permutations .

I Trajectory S(∆,n), where S = S1 and n = S2, corresponding to the length-2
operator trZ(D+)S(∂⊥)

nZ with the physical points depicted by the dots

S

-1

|n|+1-|n|-1

-|n|-2

The identification with the high-energy scattering regime is ω(n,ν) = S+ 1,
where ν = −i∆/2.

I BFKL scaling is determined by: S→ −1, g→ 0 and g2

S+1 is finite. Leading order

BFKL approximation corresponds to resumming all the powers
(
g2

S+1

)n
.
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Algebraic construction. Q-system and QQ-relations

I The AdS5/CFT4 Quantum Spectral Curve (Gromov, Kazakov, Leurent,
Volin’13; Gromov, Kazakov, Leurent, Volin’14) gives the generalization of the
Baxter equation describing the 1-loop spectrum of twist-2 operators to all loops.

I The AdS/CFT Q-system is formed by 28 Q-functions which we denote as
QA|J(u), where A, J ⊂ {1, 2, 3, 4} are two ordered subsets of indices. They
satisfy the QQ-relations

QA|IQAab|I =Q
+
Aa|I

Q−
Ab|I

−Q−
Aa|I

Q+
Ab|I

,

QA|IQA|Iij =Q
+
A|Ii
Q−
A|Ij

−Q−
A|Ii
Q+
A|Ij

,

QAa|IQA|Ii =Q
+
Aa|Ii

Q−
A|I

−Q+
A|I
Q−
Aa|Ii

.

In addition we impose the normalization constraint Q∅|∅ = 1.

I By applying the QQ-relations we are able to generate the whole Q-system from 8
basic Q-functions: Qa|∅(u) and Q∅|i(u).
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Algebraic construction. Hodge and H-symmetry

I By imposing the quantum unimodularity condition Q1234|1234 = 1 and using the
Hodge duality

Qa1,...,an|i1,...,im ↔Q
a1,...,an|i1,...,im ≡

≡ (−1)(4−n)mεbn+1...b4a1...anεjm+1...j4i1...imQbn+1,...,b4|jm+1,...,j4

we obtain the Hodge dual Q-system with the upper indices, which satisfies the
same QQ-relations.

I It also true that
Qa|iQa|j = −δij , Qa|iQb|i = −δab

and
Qa|∅ = (Qa|i)+Q∅|i , Q∅|i = (Qa|i)+Qa|∅ .

I The quantum unimodularity condition leads us to the following constraints for the
Q-functions

Qa|∅Q
a|∅ = 0 , Q∅|iQ

∅|i = 0 .

I QQ-relations are also invariant with respect to the H-transformations

Qa|∅→ (HB)
c
aQc|∅ , Qa|∅→ (H−1

B )acQ
c|∅ ,

Q∅|i→ (HF)
j
iQ∅|j , Q∅|i→ (H−1

F )ijQ
∅|j ,

where HB and HF are periodic matrices and detHB detHF = 1.
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Algebraic construction. 4th order Baxter equation

I As a consequence of the QQ-relations, Q-functions with one index are related
through the following 4th order finite-difference Baxter equation

0 =Q
[+4]
∅|j D0 −Q

[+2]
∅|j

[
D1 −Q

[+2]
a|∅ Q

a|∅[+4]D0

]
+

+
1

2
Q∅|j

[
D2 −Qa|∅Q

a|∅[+4]D0 +Qa|∅Q
a|∅[+2]D1

]
−

−Q
[−2]
∅|i

[
D̄1 +Q

[−2]
a|∅ Q

a|∅[−4]D̄0

]
+Q

[−4]
∅|i = 0 ,

where

D0 = det


Q1|∅[+2] . . . Q4|∅[+2]

Q1|∅ . . . Q4|∅

Q1|∅[−2] . . . Q4|∅[−2]

Q1|∅[−4] . . . Q4|∅[−4]

 , D1 = det
16i,j64

Q∅|j[4−2i+2δi,2] ,

D2 = det
16i,j64

Q∅|j[4−2i+2δi,1+δi,2] ,

D̄k = det
16i,j64

Q∅|j[−4+2i−2δi,k+1] , k = 0, 1 .

I After the exchange of the lower and upper indices we obtain the same equation
for Q∅|j. The four solutions of each equation allow to find four functions Q∅|j
and Q∅|j respectively.
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Analytic structure. Asymptotics and analytic properties of the basic
Q-functions

I We denote the functions Qa|∅(u), Qa|∅(u), Q∅|i(u) and Q∅|i(u) with

prescribed analytical properties as Pa(u), Pa(u), Qi(u) and Qi(u) respectively.
I All the Q-functions including Pa, Pa, Qi and Qi have the power-like asymptotics

at large u

Pa 'Aau−M̃a , Pa 'AauM̃a−1 , Qi ' BiuM̂i−1 , Qi ' Biu−M̂i ,

where

M̃a =

{
J1+2−3

2
+ 1,

J1−2+3

2
,−
J1−2−3

2
+ 1,−

J1+2+3

2

}
,

M̂i =

{
∆− S1+2

2
+ 1,

∆+ S1+2

2
,−
∆+ S1−2

2
+ 1,−

∆− S1−2

2

}
.

I As we know from the classical integrability of the dual superstring σ-model (see,
for example, Gromov’17), the P- and Q-functions at least have the quadratic
branch points at u = ±2g. Natural assumption about their analytic structure on
the defining sheet

Pa Pa

−2g 2g −2g 2g

Qi Qi
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Analytic structure. Upper and lower half-plane analytic Q-systems

I The equation for the upper half-plane analytic Qa|i functions

Q+
a|i

−Q−
a|i

= PaQi , Qa|i ' −i
AaBi

−M̃a + M̂i

u−M̃a+M̂i , u→∞ .

Qa|i are the Q-functions from the generated UHPA Q-system.

I Substitution of the asymptotics of Qa|i allows to find the products of A and B
coefficients in terms of the charges for a0, i0 = 1, . . . , 4

Aa0A
a0 = i

4∏
j=1

(
M̃a0 − M̂j

)
∏
b=1
b6=a0

(
M̃a0 − M̃b

) , Bi0B
i0 = −i

4∏
a=1

(
M̂i0 − M̃a

)
4∏
j=1
j 6=i0

(
M̂i0 − M̂j

) .

I Hodge-dual system is also UHPA. Qi and Qi coincide with −Q+
a|i

Pa and

Qa|i+Pa in the UHP. In the UHP and LHP respectively we have

Q̂i = Q̌i , Q̂i = Q̌i , Im u > 0 , ˜̂Qi = Q̌i , ˜̂Qi = Q̌i , Im u < 0 .
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Analytic structure. Gluing conditions

I Complex conjugation generates the LHPA Q-systems with lower and upper indices

Qa1,...,an|i1,...,im(u)→ (−1)
(m+n)(m+n−1)

2 Q̄a1,...,an|i1,...,im(u) ,

Qa1,...,an|i1,...,im(u)→ (−1)
(m+n)(m+n−1)

2 Q̄a1,...,an|i1,...,im(u) .

I As there is no principal difference between the UHPA and LHPA Q-systems and
due to the unitarity of N = 4 SYM they are connected by the combination of
Hodge and H-symmetry

˜̂Qi =Mij ¯̂Qj , ˜̂Qi =
(
M−t

)
ij

¯̂Qj .

I By using the analyticity properties of the Q-functions we are able to show that
the matrix Mij(u) is i-periodic, analytic and hermitian

M̄ij(u) =Mji(u)

as a function.
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Complex conjugation and parity symmetries

I Due to the determined conjugation properties of the P-functions

P̄a = CbaPb , P̄a = −CabP
b , C = diag{1, 1,−1,−1} ,

Q̄i(u) also the solutions to the 4th order Baxter equation. Thus, there exist
i-periodic matrices that

Q̄i(u) =Ωji(u)Qj(u) , Ω
j
i = Q̄−

a|i
CabQ

b|j− .

I For the length-2 operators in question (J1 = 2, J2 = J3 = 0) the P-functions
possess the certain parity

Pa(−u) = (−1)a+1Pa(u) , Pa(−u) = (−1)aPa(u) .

Thus, Qi(−u) are also solutions to the 4th order Baxer equation and

Qi(−u) = Θji(u)Qj(u) , Θ
j
i(u) = (−1)a+1Q−

a|i
(−u)Qa|j−(u) .
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Constraining the gluing matrix

I The matrix MijΩkj satisfies the equation

MijΩ̃kj −MijΩkj = −QiQ̃k +QkQ̃i ,

and possesses the property of antisymmetry MijΩkj = −MkjΩij.

I Using the matrix Θji(u) we are able to introduce another gluing matrix

Q̃i(u) = Lij(u)Qj(−u) , Q̃i =
(
L−t

)
ij
(u)Qj(−u) ,

where
Lil(u) =Mij(u)Ωkj (u)Θ

l
k(−u) ,

which after going under the cut on the real axis twice gives Lji(u) = Lij(−u).

I Summarizing the gluing conditions and the obtained constraints for the gluing
matrix we have

M̄ji(u) =Mij(u) ,

Mij(u)Ωkj (u) = −Mkj(u)Ωij(u) ,
(
Ω−1

)j
i
(u) = Ω̄ji(u) ,

Lil(u) =Mij(u)Ωkj (u)Θ
l
k(−u) ,

Lli(−u) = Lil(u) ,
(
Θ−1

)k
j
(u) = Θkj (−u) .

12/ 23



Constraining matrix. Gluing matrix for integer and non-integer spins
I For the integer spins S1 and S2 of the same parity we obtain

Mij =


0 M12 0 0
M̄12 0 0 0

0 0 0 M34

0 0 M̄34 0


supplemented by the fixed phases of non-zero matrix elements

M12 =
∣∣M12

∣∣ei(±π2 +φB1
−φB2

)
, M34 =

∣∣M34
∣∣ei(±π2 +φB3

−φB4

)
.

I For non-integer spins S1 and S2 we have

Mij(u) =


M11

1 M12
1 M13

1 M14
1

M̄12
1 0 0 0

M̄13
1 0 M33

1 M34
1

M̄14
1 0 M̄34

1 M44
1

+


0 0 M13

2 M14
2

0 0 0 0
M̄13

2 0 0 0
M̄14

2 0 0 0

e2πu +


0 0 M13

3 M14
3

0 0 0 0
M̄13

3 0 0 0
M̄14

3 0 0 0

e−2πu ,

where the matrix elements are determined by

M
ij
3 = −Mij

2 e
iπ(M̂j−M̂i) ,

M13
2 =

∣∣M13
2

∣∣ei(±π2 +φB1
−φB3

)
, M14

2 =
∣∣M14

2

∣∣ei(±π2 +φB1
−φB4

)
.
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Numerical solution. Method description
I The P-functions have the following form on their defining sheet with one short cut

Pa(u) = x−M̃a

(
g−M̃aAa

(
1 +

δa,4

x2

)
+

+∞∑
k=1

ca,k

x2k(u)

)
,

Pa(u) = xM̃a−1

(
gM̃a−1Aa

(
1 +

δa,1

x2

)
+

+∞∑
k=1

cak
x2k(u)

)
,

and satisfy the condition PaP
a = 0.

I In the limit u→∞ in the UHP we have the following expansion of Qa|i

Qa|i(u) ' u−M̃a+M̂i

+∞∑
l=0

Ba|i,2l

u2l
, Ba|j,0 = −i

AaBj

−M̃a + M̂j

.

Using the equation

Q−
a|i

=
(
δba + PaP

b
)
Q+
a|i

we find the value of Qa|i on the real axis.

I The loss function

S =
∑
i,j

|Fi(uj)|
2 , Fi(u) = Qa|i+(u)P̃a(u) +M

ij(u)Q̄−
b|i

(u)P̄b(u) ,

where uj is a set of points on the interval [−2g, 2g], is minimized by the
optimization procedure (Levenberg-Marquardt algorithm).
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Numerical solution. Intercept function

I Intercept S(0,n) as the function of the coupling constant g for conformal spins
n = 0, n = 3/2, n = 2 and n = 3 (dots), weak coupling expansion of the
intercept (dashed lines) and strong coupling expansion (continuous lines).

0.2 0.4 0.6 0.8 1.0
g

-2.5

-2.0

-1.5

-0.5

0.0

S

n=0

n=1.5

n=2

n=3
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Weak coupling expansion. Asymptotics, symmetries and LO solution
I The length-2 operators are not left-right symmetric. But there is still some

symmetry

Pa(n,u) = χacPc(−n,u) , Qi(n,u) = χijQj(−n,u) .

I The asymptotics are simplified to

Pa ' (A1u
−2,A2u

−1,A3,A4u)a ,

Qj ' (B1u
∆−n+1−w

2 ,B2u
∆+n−3+w

2 ,B3u
−∆+n+1−w

2 ,B4u
−∆−n−3+w

2 )j ,

where w = S+ 1.

I After some demanding calculations we get the result for the P-functions

P1 '
1

u2
+

2Λw

u4
, P2 '

1

u
+

2Λw

u3
, P3 'A(0)

3 +A
(1)
3 w ,

P4 'A(0)
4 u−

i((∆2 − 1)2 − 2(∆2 + 1)n2 +n4)

96u
+

+

(
A

(1)
4 u+

c
(2)
4,1

uΛ
−
i((∆2 − 1)2 − 2(∆2 + 1)n2 +n4)Λ

48u3

)
w .

where Λ = g2

w and

c
(2)
4,1 = −

iΛ

24
(∆2 +n2 + 2((∆−n)2 − 1)((∆+n)2 − 1)Λ− 1) .
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Weak coupling expansion. Factorization of the 4th order Baxter equation

I Thus, we get the equation for Q
(0)
1 and Q

(0)
3 in the LO

Q
(0)
j

(∆−n)2 − 1 − 8u2

4u2
+Q

(0)−−
j +Q

(0)++
j = 0 ,

and for Q(0)2 and Q(0)4 in the LO

Q(0)j (∆+n)2 − 1 − 8u2

4u2
+Q(0)j−− +Q(0)j++ = 0 .

Substituting Qj = u
2Qj and n = 0 we immediately see the Baxter equation

from (Faddeev, Korchemsky’94) and (Derkachov, Korchemsky, Kotanski,
Manashov’01-02).

I In the NLO the 4-th order Baxter equations also factorize and we obtain the
following 2nd order Baxter equation

Q(1)2,4++ +Q(1)2,4−− +

(
−2 +

(∆+n)2 − 1

4u2

)
Q(1)2,4 =

= −
i

2(u+ i)
Q(0)2,4+++

i

2(u− i)
Q(0)2,4−−+

u2 −Λ(∆+n)2 − 1)

2u4
Q(0)2,4 .
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Weak coupling expansion. Gluing conditions and LO BFKL eigenvalue

I Two gluing conditions in the LO in the scaling parameter w

Q̃(0)2 = M̄
(0)12
1 Q̄

(0)
1 ,

Q̃(0)4 = M̄
(0)34
1 Q̄

(0)
3 .

I To find M
(0)12
1 and M

(0)34
1 we can use the continuity on the cut Q̃2(0) = Q2(0)

and Q̃4(0) = Q4(0). The result is

M
(0)12
1 =M

(0)34
1 =

cos π(∆+n)
2

cos π(∆−n)
2

(∆−n)2 − 1

(∆+n)2 − 1
.

I After some calculations, we obtain

1

4Λ
=

1

2
(Ψ(∆+n) +Ψ(∆−n)) +O(g2) =

= −ψ

(
1 +n−∆

2

)
−ψ

(
1 +n+∆

2

)
+ 2ψ(1) +O(g2) .
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Weak coupling expansion. BFKL intercept j(n) for general conformal spin n
I Using the binomial harmonic sums

Si1,...,ik(M) = (−1)M
M∑
j=1

(−1)j
(
M
j

)(
M+ j
j

)
Si1,...,ik(j) .

The known intercept functions in the LO and NLO can be expressed in terms of
the binomial harmonic sums with the argument M = (n− 1)/2

jLO = 4S1 , jNLO = 2(S2,1 + S3) +
π2

3
S1 ,

and allows to formulate an ansatz for NNLO intercept.
I To calculate the intercept the modified iterative procedure from (Gromov,

Levkovich-Maslyuk, Sizov’15) was used. The NNLO intercept is

jNNLO = 32(S1,4 − S3,2 − S1,2,2 − S2,2,1 − 2S2,3) −
16π2

3
S3 −

32π4

45
S1 .

This result is in complete agreement with (Caron-Huot, Herranen’16). The
partial result at the NNNLO order

jnon-rat.NNNLO(4k+1) = −
32π2

3
(3S1,4 − 3S2,3 − S3,2 + S1,1,3 − 2S1,2,2 + S2,2,1 − S3,1,1)+

+
16π4

15
(4S3 − S2,1)+

56π6

135
S1+

32π2ζ3

3
S1,1+224ζ5S1,1−128ζ3 (S−3,1 + 2S−2,2−

−5S1,−3 − 15S1,3 − 4S2,−2 − 12S2,2 − 15S3,1 − 4S−2,1,1 + 2S1,−2,1 + 8S1,1,−2+

+12S1,1,2 + 12S1,2,1 + 12S2,1,1 + S−4 + 9S4) .
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Near-BPS all loop expansion. Slope-to-intercept and curvature functions
I Knowing that Pa and Pa are O(n− 1) (O(∆)) in the LO, we find that Q

(0)
a|i

to

be a constant matrix.
I This allows us to rewrite the equations P̃a = Q+

a|i
MijQ̄−

b|j
P̄b in the form

P̃
(0)
a = Q

(0)+
a|i

M(0)ijQ̄
(0)−
b|j

P̄(0)b , P̃
(1)
a = Q

(0)+
a|i

M(0)ijQ̄
(0)−
b|j

P̄(1)b+

+
(
Q

(1)+
a|i

M(0)ijQ̄
(0)−
b|j

+Q
(0)+
a|i

M(0)ijQ̄
(1)−
b|j

+Q
(0)+
a|i

M(1)ijQ̄
(0)−
b|j

)
P̄(0)b .

I Solving this system, we obtain the slope-to-intercept function

θ(g) = 1 +
I1(4πg)I2(4πg)

+∞∑
k=1

(−1)kIk(4πg)Ik+1(4πg)

.

I Similar calculations give the curvature function

γ(g) =
1

4πg4I2
2

2g∮
−2g

dv(coshv− vΓ [coshu−u](v) − coshv− v
2Γ [coshu−](v))+

+
1

16πg5I2

2g∮
−2g

dv

(
v3Γ [coshu−](v) − 2v2Γ [coshu−u](v) + vΓ [coshu−u

2]

xv −
1
xv

)
,

where

Γ [h(v)](u) =

2g∮
−2g

dv

2πi
∂u log

Γ [i(u− v) + 1]

Γ [−i(u− v) + 1]
h(v) .
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Weak and strong coupling expansion of the non-perturbative quantities
I Weak coupling expansion of the slope-to-intercept and curvature functions

θ(g) = −
2π2

3
g2 +

4π4

9
g4 −

28π6

135
g6 +

8π8

405
g8 +O

(
g10
)

,

γ(g) = 2ζ3g
2 +

(
−

2π2

3
ζ3 − 35ζ5

)
g4 +

(
16π4

45
ζ3 +

22π2

3
ζ5 + 504ζ7

)
g6+

+

(
−

28π6

135
ζ3 −

8π4

3
ζ5 − 56π2ζ7 − 6930ζ9

)
g8 +O

(
g10
)

.

I The strong coupling expansion of the nonperturbative quantities in λ = (4πg)2

is given by

θ = −1 +
3

λ1/2
−

3

2λ
−

9

8λ3/2
−

9

4λ2
−

711

128λ5/2
+O

(
1

λ3

)
,

γ =
1

2λ1/2
−

1

4λ
−

33

16λ3/2
−

81

16λ2
−

2265

256λ5/2
+

+
1440ζ5 − 765

64λ3
+

207360ζ5 − 22545

2048λ7/2
+O

(
1

λ4

)
.

I It is in complete agreement with the corresponding expansion of the intercept
found from the numerics

S(0,n) = −n+
(n− 1)(n+ 2)

λ1/2
−

−
(n− 1)(n+ 2)(2n− 1)

2λ
+

(n− 1)(n+ 2)(7n2 − 9n− 1)

8λ3/2
+O

(
1

λ2

)
.
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Conclusions and outlook

I We developed a framework for the QSC for both integer and non-integer spins
S1 = S and S2 = n.

I QSC numerical algorithm allowed to calculate S for different values of ∆, n and
coupling g.

I We reproduced the dimension of length-2 operator with non-zero conformal spin
in the LO of the BFKL regime directly from the QSC.

I Using the iterative procedure, there was obtained the BFKL intercept for arbitrary
conformal spin up to NNLO order and partially at NNNLO order.

I We found two new non-perturbative quantities: slope-to-intercept and curvature
functions and calculated their weak and strong coupling expansions.

I Find an algorithmic way of generation of any BFKL Pomeron eigenvalue with
non-zero conformal spin (NNLO, NNNLO, etc.) on Mathematica program.

I Consider the states with the bigger number of reggeized gluons (Odderon etc.)
which means J1 > 3.

I Incorporate the triple Pomeron vertex into the QSC framework.
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Thanks for your attention!
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