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Motivation

• Continuous spin fields are massless m = 0; the dimensionful parameter µ (Bargmann, Wigner

1948); infinite number of PDoF.

• Continuous spin dynamics can be defined on the space of fields which is the sum of
Fronsdal-like rank-s fields with s = 0, ...,∞, similar to the standard interacting HS theories
(Fradkin, Vasiliev 1986).

• Action functional on Minkowski space and AdS is the infinite sum of Fronsdal rank-s
actions with off-diagonal terms proportional to µ (Schuster, Toro 2014, Metsaev 2016). The gauge
transformations are the standard Fronsdal transformations deformed by Stueckelberg-like
terms also proportional to µ.
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Group-theoretical description
Continuous spin particles correspond to infinite-dimensional massless UIRs of the Poincare algebra
iso(d − 1, 1), induced from infinite-dimensional UIRs of iso(d − 2) subalgebra. Bargmann, Wigner 1948.

Quantum numbers
• a mass m = 0
• a continuous spin parameter µ 6= 0
• (half-)integer spin wights (s1, ..., sp), where p = [ d−3

2
].

Casimir operators Generalized Pauli-Lubanski tensors

Wm1...mk = εm1...mkak+1...adP
ak+1Mak+2ak+3 ...Mad−1ad

The Pauli-Lubanski tensors covariantly transform under Lorentz subalgebra o(d − 1, 1) and satisfy
[Pa,Wm1...mk ] = 0 so that the Casimir operators can be given as

C2p = Wm1...mp−1W
m1...mp−1

For arbitrary representations the Casimir operators can be rather complicated, but in the massless
case C2 ≡ P2 = 0 they are drastically simplified. Denoting πa = MabP

b we find the general
expression

C2p ≈
[
ap,0 + ap,2 M

2 + ...+ ap,2p−4 M
2p−4

]
πaπ

a

E.g., the quartic Casimir operator is given by C4 ∼ πaπa. Then,
• C2 = 0 defines a masslessness
• C4 yields a continuous spin value µ2 (Brink et al 2002)
• C6,C8, ... yield spin weights

In other words, a continuous spin representation is characterized by the parameter µ and s1, ..., sp .
The short little algebra o(d − 3).



Generating function in auxiliary variables

Two types of indices Aa
I running a = 0, ..., d − 1 and I = 0, ..., n − 1. We consider polynomials

φ(A) =
∑

φa1 ... am0
; ...... ; c1 ... cmn−1

Aa1
0 · · ·A

am0
0 · · · Ac1

n−1 · · ·A
cmn−1
n−1

Orthogonal algebra o(d − 1, 1):

Jab = Aa
I

∂

∂AbI
− Ab

I

∂

∂AaI

rotations

Symplectic algebra sp(2n):

TIJ = Aa
I AaJ , TI

J =
1

2
{Aa

I ,
∂

∂Aa
J

} , T IJ =
∂

∂Aa
I

∂

∂AaJ

trace creation Young symmetrizer trace annihilation



Howe duality

Finite-dimensional irrep of o(d − 1, 1) algebra

Imposing then the tracelessness and Young symmetry conditions

T IJφ = 0 , TI
Jφ = 0 I > J , (2.6)

one gets a finite-dimensional irreducible representation of the Lorentz algebra described
by Young tableau of the symmetry type (sn−1, sn−2, · · · , s0)

s0

s1

...
sn−2

sn−1

(2.7)

Let us now briefly recall the formal structure of the polynomials in aa
I as a module

over the Howe dual so(1, d − 1) and sp(2n) algebras. More detailed discussion can be
found in the Appendix A, where we also collect some useful statements needed in the
main text. Pd

n(a) considered as a so(1, d − 1) and sp(2n) bimodule can be lifted to the
respective complex module of the complexified algebras. The structure of the irreducible
components is unchanged under the complexification. This allows us to use the results
known in the literature. Since so(1, d − 1) and sp(2n) algebras obviously commute, the
space of polynomials Pd

n(a) is a so(d) – sp(2n) bimodule. For n ! [d
2
] bimodule Pd

n(a)

has the following structure [30]

Pd
n = ⊕

σ∈Λ
(Vσ ⊗ Uθ(σ)) , (2.8)

where Vσ and Uθ(σ) are respectively irreducible so(d) and sp(2n) modules with high-
est weights σ and θ(σ), where θ is some mapping (for more details see Appendix A).
While Vσ is finite-dimensional Uθ(σ) is the generalized Verma module induced from the
finite-dimensional irreducible sl(n) module (more precisely, from the module of the cor-
responding parabolic subalgebra in sp(2n)). In particular, this implies that Uθ(σ) is freely
generated by generators TIJ from the respective sl(n)-module 3.

2.2 Poincaré modules

Remarkably the set of oscillators (2.1) allows one to realize the Poincaré algebra as well.
To this end we relax some of the conditions (2.5) and (2.6) in order to describe some
infinite-dimensional (indecomposable) representations of the Poincaré algebra. First of

3That is besides the sp(2n) algebra relations there are no additional relations between elements of the
form TI1J1TI2J2 . . . TIkJk

φ with φ in sl(n)-module. For instance, as a linear space Uθ(σ) is isomorphic to
polynomials in TIJ with coefficients in the sl(n)-module.
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Finite-dimensional irrep of o(d ° 1,1) algebra

s0
s1

...
sn°2

sn°1

*
Howe duality

+

Highest weight conditions of sp(2n) algebra

TI
I¡ = (sI +

d

2
)¡ .

T IJ¡ = 0 , TI
J¡ = 0 I > J ,

Highest weight conditions of sp(2n) algebra

TI
Iφ = sI φ

T IJφ = 0 , TI
Jφ = 0 I > J



Introducing Poincare algebra

Remarkably, the auxiliary variables allow us to realize the Poincare algebra as well. Manifest
sp(2n + 2) is broken to sp(2n)

Aa
0 ≡ xa , Aa

I ≡ aai , i = 1, ..., n

The Poincare algebra iso(d − 1, 1) basis elements are realized as

Pa =
∂

∂xa
, Mab = xa

∂

∂xb
− xb

∂

∂xa
+ aai

∂

∂abi
− abi

∂

∂aai
.

Let us introduce notation

� =
∂2

∂xb∂xb
, D†i = abi

∂

∂xb
, D i =

∂2

∂abi ∂xb
,

T ij =
∂2

∂ai b∂a
b
j

, T †ij = abi abj , Ni
j = abi

∂

∂abj
, Ni = abi

∂

∂abi
.

The above operators form a subalgebra in sp(2n + 2) algebra dual to the Lorentz algebra
o(d − 1, 1). The space of formal series in (xb, abi ) is iso(d − 1, 1)⊕ sp(2n + 2) bimodule.



Equations of motion as constraints
Differential constraints

�φ = 0 , D iφ = 0 , i = 1, ..., n .

Algebraic constraints

(T ij + ν ij )φ = 0 , ν ij = ν δ1iδ1j , ν ∈ R i , j = 1, . . . , n ,

Ni
jφ = 0 i < j , Niφ = siφ , i , j = 2, . . . , n

Gauge equivalence. The gauge transformations are given by

δφ =
(
D†i + µi

)
χi , µi = µ δ1i , µ ∈ R i = 1, . . . , n

Comments:

• At µ, ν = 0 we reproduce the helicity case system (Alkalaev, Grigoriev, Tipunin 2008)

• The constraints are not the highest weight conditions of sp(2n + 2) algebra: they are
typical for the theory of coherent states, where the states are defined as eigenstates of the
annihilation operator. State do not diagonalize the spin weight operator N1 anymore!

• A functional class: we take formal series in abi satisfying the additional admissibility
condition. A series f is admissible if its trace decomposition

f = f0 + f ij1 T †ij + f ij,kl2 T †ij T
†
kl + . . . , T ij f ...p = 0 ,

is such that all coefficients are polynomials of finite order (i.e. for a given f there exists
such N ∈ N that all fr are of order not exceeding N).



Quadratic and quartic Casimir operator

Our formulation involves parameters µ, ν and (n − 1) spin weights s2, ..., sn. In d dimensions that
allows describing all possible finite-dimensional modules of the short little algebra (Brink et al 2002)

o(d − 3) ⊂ iso(d − 2) ⊂ iso(d − 1, 1)

To characterize iso(d − 1, 1) representations underlying our system we analyze the Casimir
operators of the Poincare algebra.

• The quadratic Casimir operator C2 = PaPa ≈ 0 vanishes on-shell because of � ≈ 0.

• The quartic Casimir operator C4 = (MabP
b)2 equals

C4 φ(x , a) = −D†i D
†
j T ij φ(x , a) ≈ µ2ν φ(x , a) ,

where we used the differential constraints, trace constrains along with the equivalence
relation φ ∼ φ+ (D† + µ)χ with the gauge parameter expressed in terms of the field φ.

Thus, the model propagates continuous spin particles, in which case fixing ν = 1 we identify µ as
the continuous spin parameter. Such a split between deformation parameters µ and ν is artificial
and only their combination µ2ν has invariant meaning.



Triplet formulation
The triplet BRST operator is

Ω = c0� + ciD
i +
(
D†i + µi

) ∂
∂bi
− ci

∂

∂bi

∂

∂c0
,

where µi = µδi1. It is defined on the subspace of Ψ = Ψ(x , a|c, b) singled out by the BRST
extended trace constraints

(T + ν)Ψ = 0 , T αΨ = 0 , T αβΨ = 0 , α, β = 2, ..., n

as well as the Young symmetry and the spin weight constraints

NαβΨ = 0 α < β , NαΨ = sαΨ .

The extended constraints read explicitly as

T ij = T ij +
∂

∂ci

∂

∂bj
+

∂

∂cj

∂

∂bi
, Nαβ = Nα

β + bα
∂

∂bβ
+ cα

∂

∂cβ
,

Nα = Nα + bα
∂

∂bα
+ cα

∂

∂cα
, α, β = 2, ..., n

Note that the triplet BRST operator is nilpotent Ω2 = 0 on the entire space of unconstrained
fields and not only on the subspace singled out by the algebraic constraints.



Representing the ghost number-zero field Ψ(0) as Ψ(0) = Φ + c0C we introduce component fields
entering Φ = Φ(x , a|b, c) and C = C(x , a|b, c) according to

Φ =
∑
k

ci1 ...cik bj1 ...bjk Φi1...ik |j1...jk , C =
∑
k

ci1 ...cik bj1 ...bjk+1
C i1...ik |j1...jk+1 .

These component fields can be identified as generalized triplet fields (Bengtsson 1986). The
corresponding gauge transformation reads

δΨ(0) = ΩΨ(−1) ,

where the ghost number −1 parameters Ψ(−1) = Λ + c0Υ are given by

Λ =
∑
k

ci1 ...cik bj1 ...bjk+1
Λi1...ik |j1...jk+1 , Υ =

∑
k

ci1 ...cik bj1 ...bjk+2
Υi1...ik |j1...jk+2 .

The triplet equations of motion for continuous spin fields have the form

ΩΨ(0) = 0

Comments:

• The triplet BRST operator for the continuous spin system differs from the BRST operator
for the helicity spin system by adding the term proportional to µ, i.e. Ω→ Ω + µ ∂

∂b
.



Equivalent dynamical systems
Theory (H,Ω):

• H – representation space of Ω, Ω2 = 0;
• Equations of motion Ωφ = 0, where φ ∈ H.

Triplet H = E ⊕ F ⊕ G

• E – dynamical fields
• F – auxiliary fields
• G – Stueckelberg fields

Theory (E, Ω̂):

• E – representation space of Ω̂, Ω̂2 = 0;
• Equations of motion Ω̂ψ = 0, where ψ ∈ E.

(H,Ω) equivalent (E, Ω̂)

Additional grading

H = H0 ⊕H1 ⊕H2 ⊕ . . . Ω = Ω−1 + Ω0 + Ω1 + . . .

Definition:

E ⊕ G = KerΩ−1 , G = ImΩ−1 , E =
KerΩ−1

ImΩ−1

See also:
• General approach (Barnich, Grigoriev, Semikhatov, Tipunin’04)
• Light cone DoF, quartets in string theory (Kato, Ogawa’83)
• Unfolded HS formulation (Lopatin, Vasiliev 1988, Shaynkman, Vasiliev’00)



Two reductions of the triplet formulation

• Metric-like formulation (deformed Fronsdal and Labastida formulations)

• Light-cone reduction



Metric-like formulation
Let the additional grading be a homogeneity degree in c0. Then, the triplet BRST operator can
be decomposed as Ω = Ω−1 + Ω0 + Ω1 with

Ω−1 = −ci
∂

∂bi

∂

∂c0
, Ω0 = ciD

i +
(
D†i + µi

) ∂
∂bi

, Ω1 = c0� .

The cohomology H(Ω−1) in ghost degree 0 and −1 can be explicitly described in terms of the
lowest expansion components in ghosts ci and bi :

Φ = ϕ+ . . .

Λi = χi + . . .

The lowest components ϕ and χi satisfy the modified trace conditions

T(ijTkl)ϕ = 0 , T(ijχk) = 0 ,

where we introduced the notation Tij ≡ T ij + ν δi1δj1. Young symmetry and spin weight
conditions take then the form

Nα
βϕ = 0 at α < β and Nαϕ = sαϕ ,

and

Nα
βχγ + δγαχ

β = 0 at α < β and Nαχ = sαχ , Nαχ
α = (sα − 1)χα



Introducing operator Z via Ω−1 ≡ − ∂
∂c0

Z the original triplet equations ΩΨ(0) = 0 can be cast

into the form
�Φ− Ω0C = 0 , Ω0Φ− ZC = 0

It follows that C is an auxiliary field and, therefore, using the second equation it can be expressed
in terms of Ω0Φ. In other words, C is given by derivatives of Φ, while Φ itself is reduced to the
lowest component ϕ. We arrive at

�ϕ− (D†i + µi )C
i = 0 , D iϕ− (D†j + µj )Φi|j − C i = 0 ,

where the component Φi|j can be expressed via ϕ by virtue of the deformed double trace
conditions as Φi|j = 1

2
Tijϕ. Eliminating the auxiliary field C i we finally arrive at the reduced

equations of motion[
�− (D†i + µi )D

i +
1

2
(D†i + µi )(D†j + µj )(T ij + ν ij )

]
ϕ = 0 ,

which are invariant with respect to the gauge transformations

δϕ = (D†i + µi )χ
i .

Here, fields and gauge parameters are subject to the algebraic conditions. Note that setting
µ, ν = 0 we reproduce the Labastida formulation.



Scalar continuous spin case
Let us choose n = 1. In this case, all spin weights vanish si = 0, i = 2, ... The reduced equations
of motion take the form (Bekaert, Mourad 2005)

�ϕ− (D† + µ)Dϕ+
1

2
(D† + µ)2(T + ν)ϕ = 0 , δϕ = D†ε+ µε

supplemented with the deformed trace conditions

(T + ν)2ϕ = 0 , (T + ν)ε = 0

• Note that there are no spin weight conditions in this case. However, the dynamics cannot
be restricted to the spin-s subspace since the deformed trace constraints are incompatible
with the spin-s weight condition Nφ = sφ.

• Sending both ν and µ to zero we reproduce a sum of the Fronsdal equations for all integer
spins.

The deformed trace conditions can be explicitly solved in terms of tensors subjected to the
standard trace conditions

ϕ =
∞∑

n,m=0

βm,n(T †)mϕ(n) , ε =
∞∑

n,m=0

βm,n+1(T †)mε(n) ,

where the rank-n tensors on the right-hand sides satisfy the Fronsdal conditions

T 2ϕ(n) = 0 , T ε(n) = 0 ,

Fronsdal basis. The original ϕ and ε are replaced now by infinite collections of Fronsdal (single
and double traceless) tensors of ranks running from zero to infinity.



Schuster-Toro representation
It can be explicitly shown that in the Fronsdal basis the metric-like equations take the
Schuster-Toro form (d = 4: Schuster, Toro 2014, ∀d : Metsaev 2016)

−�ϕ(n) + D†G(n−1) + µ
[
G(n) + dn T

†G(n−2)

]
= 0 , n = 0, 1, 2, ...,∞

Here,
G(n) = A(n) + µ cnB(n) ,

with the derivative and algebraic terms combined into

A(n) = Dϕ(n+1) −
1

2
D† Tϕ(n+1) , B(n) = ϕ(n) + an T

†Tϕ(n) + bn Tϕ(n+2) ,

where the coefficients are given by

an = − 1

2d + 2n − 8
, bn =

d + 2n − 2

2ν
,

cn = − 1

2bn
, dn = − ν

(d + 2n − 4)(d + 2n − 6)
.

We note that A(n) and B(n) as well as G(n) are traceless. These combinations of fields and their
derivatives are convenient to build the double-traceless operator G(n).
The gauge transformation reads

δϕ(n) = D†ε(n−1) + µ
[
ε(n) + dn T

†ε(n−2)

]
.

This is the Stueckelberg-like transformation law with three different rank traceless gauge
parameters, which is typical for massive higher spin theories (Zinoviev 2001).



Light-cone formulation
The quartet grading is defined by (a = ±,m)

deg a±i = ±2 , deg ami = 0 , deg c0 = 0 , deg ci = 1 , deg bi = −1 .

The triplet BRST operator decomposes as Ω = Ω−1 + Ω0 + Ω1 + Ω2 + Ω3, where

Ω−1 = p+

(
ci

∂

∂a+
i

+ a−i
∂

∂bi

)
, Ω0 = c0(2p+p− + pmp

m) ,

Ω1 = cip
m ∂

∂ami
+ p+a−i

∂

∂bi
+ µ

∂

∂b
, Ω2 = −ci

∂

∂bi

∂

∂c0
, Ω3 = p−(ci

∂

∂a−i
+ a+

i

∂

∂bi
) .

We find H0(Ω−1) = {φ(x |ami )}, i.e. these are o(d − 2) tensors. The reduced BRST charge reads

Ω̃ = c0(2p+p− + pmpm) ≡ c0�

The light-cone off-shell constraints are given by

(T̃ + ν)φ = 0 , T̃αφ = 0 , T̃αβφ = 0 ,

Ñα
βφ = 0 α < β , Ñαφ = sαφ , α, β = 2, . . . , n ,

where

T̃ ij =
∂2

∂ami ∂aj m
, Ñα

β = amα
∂

∂aβm
, Ñα = amα

∂

∂amα



Light-cone symmetry
Poincare algebra. The Poincare generators in the light-cone basis split into two groups:
kinematical Gkin = (P+,Pm,M+m,M+−,Mmk ) and dynamical Gdyn = (P−,M−k ). After quartet

reduction both types of generators act in the subspace, G̃kin and G̃dyn. We find out that the

reduced kinematical generators G̃kin take the standard form, while the reduced dynamical
generators G̃dyn are given by

P̃− = −pkpk

2p+
, M̃−m = − ∂

∂p+
pm − ∂

∂pm

pkpk

2p+
+

1

p+
(Smkpk + Hm) ,

where Smn and Hm read

Smn = amα
∂

∂aαn
+ am

∂

∂an
− (m↔ n) , Hn = µ

∂

∂an
.

The elements Skl and Hn satisfy the iso(d − 2) commutation relations

[Skl , Sps ] = δkpS ls + 3 terms , [Skl ,Hn] = δknH l − δlnHk , [Hk ,H l ] = 0 .

Casimir operators. We immediately see that the iso(d − 2) Casimir operators are given by

c2 ≡ H2 ≈ µ2ν ,

c4 ≡ H2S2 − 2(HS)2 ≈ µ2ν
n∑
α=2

sα(sα + d − 2α− 3) ,

where H2 = HmHm, S2 = SmnSmn, (HS)m = HnSnm.



Continuous spin-s case
Let us analyze the continuous spin representation labeled by (s, 0, ..., 0) in more detail. In this
case there are two oscillators (a, am1 ) and the trace constraints read

(T̃ + ν)φ = 0 , T̃ 1φ = 0 , T̃ 11φ = 0 ,

where

φ =
∞∑
p=0

φm1...mp |n1...ns am1 · · · ampan1
1 · · · a

ns
1 ,

and the spin weight condition Ñ1φ = sφ has been taken into account.
Let Y (k, l) denote a traceless o(d − 2) tensor associated to the Young diagram with k indices in
the first row and l indices in the second row. Then, the solution is given by

φ :
s⊕

l=0

∞⊕
k=s

Y (k, l)

• When s = 0 the above space is an infinite chain of totally symmetric o(d − 2) traceless
tensors (Schuster, Toro 2014, Metsaev 2016, 2017).

• For s 6= 0 the space is a light-cone version of the covariant formulation discussed in (Zinoviev

2017).

• Let d = 5: using the the Hodge duality Y (k, 1) ∼ Y (k, 0) and Y (k,m) = 0 at m > 1 we
find out the representation space described in (Brink et al 2002, Metsaev 2017), i.e. two infinite
chains of traceless o(3) tensors Y (k, 0) with k = s, s + 1, ...,∞.



Final comments
Conclusions

• Implementing differential constraints via the BRST operator and imposing algebraic
constraints directly we arrive at the triplet formulation for continuous spin. The resulting
equations of motion have a simple form even in the general mixed-symmetry case.

• Using the homological reductions of the triplet BRST operator we found the metric-like
formulation that generalizes the Schuster-Toro description of the scalar continuous spin
fields. On the other hand, the resulting metric-like formulation is the µ-deformation of the
Labastida equations.

• Applying the so-called quartet mechanism we can get rid of the unphysical components of
the oscillators to obtain the light-cone form of the continuous spin dynamics. In particular,
we explicitly built the iso(d − 2) Wigner little algebra and computed its second and fourth
Casimir operators.

• There is a functional class so that the gauge symmetry does not kill all PDoF. We
demonstrate by performing the light-cone analysis that the system indeed propagates
correct degrees of freedom.

Outlooks
• Fermions, SUSY (forthcoming paper with M. Grigoriev and A. Chekmenev)

• Understand group-theoretical meaning of continuous spin fields in AdS

• AdS/CFT correspondence for continuous spin fields...


