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Motivation

® Continuous spin fields are massless m = 0; the dimensionful parameter p (Bargmann, Wigner
1948); infinite number of PDoF.

® Continuous spin dynamics can be defined on the space of fields which is the sum of
Fronsdal-like rank-s fields with s = 0, ..., 0o, similar to the standard interacting HS theories
(Fradkin, Vasiliev 1986).

® Action functional on Minkowski space and AdS is the infinite sum of Fronsdal rank-s
actions with off-diagonal terms proportional to p (Schuster, Toro 2014, Metsaev 2016). The gauge
transformations are the standard Fronsdal transformations deformed by Stueckelberg-like
terms also proportional to .
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Group-theoretical description

Continuous spin particles correspond to infinite-dimensional massless UIRs of the Poincare algebra
iso(d —1,1), induced from infinite-dimensional UIRs of iso(d — 2) subalgebra. Bargmann, Wigner 1948.

Quantum numbers

® amass m=0

® a continuous spin parameter y # 0

® (half-)integer spin wights (s, ..., sp), where p = [%]
Casimir operators Generalized Pauli-Lubanski tensors

= Ak+1 \[3k+23k+3 ad—13d
Wml...mk = ﬁml...mkak+1...adp M ..M

The Pauli-Lubanski tensors covariantly transform under Lorentz subalgebra o(d — 1, 1) and satisfy
[Pa, Wm1»-~mk] = 0 so that the Casimir operators can be given as

— my...mp_1q
C2p = Wml.”mp_lW P

For arbitrary representations the Casimir operators can be rather complicated, but in the massless
case C = P2 = 0 they are drastically simplified. Denoting m, = M,,P? we find the general
expression

C2p ~ [ap’o + ap2 M? + ...+ ap2p-a M2P—4] mam?

E.g., the quartic Casimir operator is given by C4 ~ wa7?. Then,

® (, = 0 defines a masslessness

® (, yields a continuous spin value z? (Brink et al 2002)

® (g, Cg,... yield spin weights
In other words, a continuous spin representation is characterized by the parameter 1 and sy, ..., sp.
The short little algebra o(d — 3).



Generating function in auxiliary variables

Two types of indices A] running a=0,...,d —1and | =0,...,n— 1. We consider polynomials

m Cm,_
¢(A) = Z¢al e @mgi s P €L e Cmn,1A81 c Ag o ... Af,l_l o 'An—l !
Orthogonal algebra o(d — 1, 1):
17} 7]
Jb = a2 — AP
0Ap; 0Aay
rotations
Symplectic algebra sp(2n):
1
Tu=MAy, T =t Oy, =00
2 0A? 0A? DA,

trace creation Young symmetrizer trace annihilation



Howe duality

Finite-dimensional irrep of o(d — 1,1) algebra
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i
Howe duality

U
Highest weight conditions of sp(2n) algebra
T'o=s1¢

TH¢ =0, T7¢=0 1>J



Introducing Poincare algebra
Remarkably, the auxiliary variables allow us to realize the Poincare algebra as well. Manifest
sp(2n + 2) is broken to sp(2n)
Aj =x?, Al=al, i=1,..,n
The Poincare algebra iso(d — 1, 1) basis elements are realized as

p,— 9 Mp—x 2l e @, 9 2
a*axav ab — aaxb baXa alaalb b'@af'

Let us introduce notation

_ > DT — 2P 0 i o2
b [ b’ b
Oxboxy, Ix 0a;0xp
. 52 : 0 1o}
TV = —p, Tl.Tfa, ap; , N,J:af’fb ) Nizafjfb
Ba;baaj y Baj 0a;

The above operators form a subalgebra in sp(2n + 2) algebra dual to the Lorentz algebra
o(d — 1,1). The space of formal series in (x?, a?) is iso(d — 1,1) & sp(2n + 2) bimodule.



Equations of motion as constraints

Differential constraints

O¢p=0, Dip=0, i=1,..,n.
Algebraic constraints
(Ti+vi)p=0, vi=pstisY, veR  ij=1,...,n,
Nig=0 i<j, Nip = s;é , ihj=2,...,n

Gauge equivalence. The gauge transformations are given by

6¢:<D/T+/"’I)le Hi:/L(;l[, HER i=1,...,n

Comments:

® At pu,v = 0 we reproduce the helicity case system (Alkalaev, Grigoriev, Tipunin 2008)

® The constraints are not the highest weight conditions of sp(2n + 2) algebra: they are
typical for the theory of coherent states, where the states are defined as eigenstates of the
annihilation operator. State do not diagonalize the spin weight operator N; anymore!

® A functional class: we take formal series in af’ satisfying the additional admissibility
condition. A series f is admissible if its trace decomposition

f=h+ R TI+PTIT +...,  Tif-=o0,

is such that all coefficients are polynomials of finite order (i.e. for a given f there exists
such N € N that all f, are of order not exceeding N).



Quadratic and quartic Casimir operator

Our formulation involves parameters p, v and (n — 1) spin weights sy, ..., sp. In d dimensions that
allows describing all possible finite-dimensional modules of the short little algebra (Brink et al 2002)

o(d —3) Ciso(d —2) Ciso(d —1,1)

To characterize iso(d — 1,1) representations underlying our system we analyze the Casimir
operators of the Poincare algebra.

® The quadratic Casimir operator C; = P,P? = 0 vanishes on-shell because of (J = 0.

® The quartic Casimir operator C; = (M,,P?)? equals
Cad(x,a) = —D] D] TV ¢(x,a) = p?vo(x,a),
where we used the differential constraints, trace constrains along with the equivalence

relation ¢ ~ ¢ + (D1 + p1)x with the gauge parameter expressed in terms of the field ¢.

Thus, the model propagates continuous spin particles, in which case fixing v = 1 we identify u as
the continuous spin parameter. Such a split between deformation parameters p and v is artificial
and only their combination z?v has invariant meaning.



Triplet formulation
The triplet BRST operator is

0 a9 0

Q=0+ D + (D] G —
@O+ D"+ (D] +pi) 5 = iy 5

where p; = pudjp. It is defined on the subspace of W = W(x, a|c, b) singled out by the BRST
extended trace constraints

(T+v)W=0, TOW =0, Ty =0, a,8=2,...n
as well as the Young symmetry and the spin weight constraints
NoPU =0 a<B, NaW=sV.

The extended constraints read explicitly as

R . 9 2
TV =TV —+——, N =NP+b ,
t o a6 g ob; R TOR .
P P
Noaw = N+ bo o + Co B=2, .,
T g T8 P "

Note that the triplet BRST operator is nilpotent Q2 = 0 on the entire space of unconstrained
fields and not only on the subspace singled out by the algebraic constraints.



Representing the ghost number-zero field W(® as W(%) = & + ¢, C we introduce component fields
entering ® = ®(x, a|lb, c) and C = C(x, a|b, ¢) according to

_ ) b, ikl dk ikt k1
b = E Cjy--Ci, bj; ...b;, ® , C = g Ciy--Ci, bjy . Jk+1C .
k

These component fields can be identified as generalized triplet fields (Bengtsson 1986). The
corresponding gauge transformation reads

sw® = qu-1) |

where the ghost number —1 parameters W(=1) = A 4 ¢ are given by
A= chl Ciy by, - Jk+1/\il~~~ik|jl~~~jk+1 , T = ZCH Ci bjy ---bj, . 2'Y‘i1~~~fk\J'1~~J'k+2 )

The triplet equations of motion for continuous spin fields have the form

Qu® =g

Comments:

® The triplet BRST operator for the continuous spin system differs from the BRST operator
for the helicity spin system by adding the term proportional to u, i.e. Q — Q + H%-



Equivalent dynamical systems
Theory (H,Q):
® 7{ — representation space of Q, Q2 =0;
® Equations of motion Q¢ = 0, where ¢ € H.

Triplet H=EB F DG

® £ — dynamical fields
® F — auxiliary fields
® (G — Stueckelberg fields
Theory (&, Q):
® £ — representation space of ﬁ, 02 = 0;
® Equations of motion Q) = 0, where ¢ € £.
(#H, Q) equivalent (€,Q)

Additional grading

H=HoDHI1PH2P ... Q=Q _14+Q+Q+...
Definition:
EBG = KerQ_1, G=ImQ_1, €E= Kerf1,
ImQ_4
See also:

® General approach (Barnich, Grigoriev, Semikhatov, Tipunin'04)
® Light cone DoF, quartets in string theory (Kato, Ogawa's3)
® Unfolded HS formulation (Lopatin, Vasiliev 1988, Shaynkman, Vasiliev'00)



Two reductions of the triplet formulation

® Metric-like formulation (deformed Fronsdal and Labastida formulations)

® |ight-cone reduction



Metric-like formulation
Let the additional grading be a homogeneity degree in cg. Then, the triplet BRST operator can
be decomposed as Q = Q_1 + Qp + Q1 with

0 0

; Is]
—Ci— —, Qo = I-DI DT i) = Q= O.
Cab,aco 0 = ¢ +( ,-Ht) 1=20

Q 1=
! ab;

The cohomology H(2_1) in ghost degree 0 and —1 can be explicitly described in terms of the
lowest expansion components in ghosts ¢; and b':
P=p+...
N = Xi +...
The lowest components ¢ and x' satisfy the modified trace conditions
TUTp =0, Tk =0,

where we introduced the notation T/ = TV 4 v §16/1. Young symmetry and spin weight
conditions take then the form

Naﬁap:O at a<p and Nop = sap,
and

@

No®x"+60x? =0 at a<B and  Nax=saX, NaXx®=(sa—1)x



Introducing operator Z via Q_1 = 7%2 the original triplet equations QW =0 can be cast

into the form
0 —QoC =0, Qod - ZC =0

It follows that C is an auxiliary field and, therefore, using the second equation it can be expressed
in terms of Qo®. In other words, C is given by derivatives of ®, while ® itself is reduced to the
lowest component ¢. We arrive at

Op — (D] +pi)C' =0,  D'o— (D +p)ol—c' =0,

where the component <b":|f can be expressed via ¢ by virtue of the deformed double trace
conditions as ¢/l = %T’Jap. Eliminating the auxiliary field C' we finally arrive at the reduced
equations of motion

1 N -
[0 O + )0+ 3(0] + (D] + )T + )] ¢ =0,
which are invariant with respect to the gauge transformations

3o = (D] + pu)x' .

Here, fields and gauge parameters are subject to the algebraic conditions. Note that setting
w,v = 0 we reproduce the Labastida formulation.



Scalar continuous spin case
Let us choose n = 1. In this case, all spin weights vanish s; =0, i = 2,... The reduced equations
of motion take the form (Bekaert, Mourad 2005)

1
Op — (DT + u)Dy + 5(DT + w2 (T+v)e=0, Sp=Dle+ pe
supplemented with the deformed trace conditions
(T—i—u)zap:O, (TH+v)e=0

® Note that there are no spin weight conditions in this case. However, the dynamics cannot
be restricted to the spin-s subspace since the deformed trace constraints are incompatible
with the spin-s weight condition N¢ = s¢.
® Sending both v and u to zero we reproduce a sum of the Fronsdal equations for all integer
spins.
The deformed trace conditions can be explicitly solved in terms of tensors subjected to the
standard trace conditions

oo oo
o= Bua(TH"0my s €= D Bmnrr(TH) e ,
n,m=0 n,m=0
where the rank-n tensors on the right-hand sides satisfy the Fronsdal conditions
20 =0, Tem =0,

Fronsdal basis. The original ¢ and ¢ are replaced now by infinite collections of Fronsdal (single
and double traceless) tensors of ranks running from zero to infinity.



Schuster-Toro representation

It can be explicitly shown that in the Fronsdal basis the metric-like equations take the
Schuster-Toro form (d = 4: Schuster, Toro 2014, Vd: Metsaev 2016)

7D90(n) + Dt G(,,,l) +n [G(n) + dn TTG(H72)1| =0, n=20,1,2,...,00

Here,
G(n) = Atn) + 1 €nB(n) »

with the derivative and algebraic terms combined into

1
Ay = De(nyr) — EDT Te(nt1) Biny = P(n) + 3n TITp(n) + bn To(nr2) »
where the coefficients are given by
1 d+2n-2
an = "5 A~ o bn =TT >
2d +2n—8 2v
1 v
Ch=——— h =

(d+2n—4)(d+2n—6) "

We note that A(,) and B, as well as G,) are traceless. These combinations of fields and their
derivatives are convenient to build the double-traceless operator G(y).
The gauge transformation reads

&p(n) = DTG(,,,l) +un [6(,,) + dn TJre(n,Z)] .

This is the Stueckelberg-like transformation law with three different rank traceless gauge
parameters, which is typical for massive higher spin theories (Zinoviev 2001).



Light-cone formulation
The quartet grading is defined by (a = 4+, m)

degal.i:i2, degai” =0, degcg =0, degci=1, degb"zflA
The triplet BRST operator decomposes as Q = Q_1 + Qo + Q1 + Q2 + Q3, where
0 o
Qi=p" [c— = R Qo =c(2p"p~ ™,
1=p (c,aai++a, 6b,-) 0o=co(2p"p” + Pmp™)
0 0 0 o 0 1o}
Q =cp™"— Tar — —, W=—c——, B=p (¢ + af )
L= G TP g e T b o TP g T gy

We find H(Q_1) = {¢(x|a™)}, i.e. these are o(d — 2) tensors. The reduced BRST charge reads
= co(2pTp— + P"Pm) = D

The light-cone off-shell constraints are given by

(T+v)p=0, Top=0, T*p=0,
NoPp=0 a<p, No¢d = sad , a,B=2,...,n,
where )
o O -~ o o 0
B _ —
ij Ng _agw, N —ag’aag

=,
0aldajm



Light-cone symmetry
Poincare algebra. The Poincare generators in the light-cone basis split into two groups:
kinematical Gyjy = (P*, P™, M*™ M+~ M™) and dynamical Ggy, = (P, M~K). After quartet
reduction both types of generators act in the subspace, Gyin and @dy,,. We find out that the
reduced kinematical generators C:'k,-,, take the standard form, while the reduced dynamical
generators Gy, are given by

K
5 P" Pk ~ 9 9 pp 1 K
P~ =— , M—m = _ m sm H™ ,
2pt 8p+p 8p 2pt +p+( Pic+ )

where S™ and H™ read

1o} 0
sm = — < n), H, = .
“oag T Bay ) " oan
The elements S¥' and H" satisfy the iso(d — 2) commutation relations
[S¥,5P] = 6*S" + 3 terms,  [S¥,H" =4*"H' —s"H*,  [HX H]=0.

Casimir operators. We immediately see that the iso(d — 2) Casimir operators are given by

= H? =~ u2v

cs = H?S? —2(HS)? ~ uqua(sa+d—2oc—3),

a=2

where H> = H™Hp,, S? = S, S™, (HS)™ = H,S™™.



Continuous spin-s case

Let us analyze the continuous spin representation labeled by (s,0, ...,0) in more detail. In this
case there are two oscillators (a, a") and the trace constraints read

(T+v)p=0, Tl¢=0, TH¢=0,

where

oo
_ my m, n n.
¢ = § ¢m1AAAmp|n1“.n5 at---afa; "'als s
p=0

and the spin weight condition Kll(j) = s¢ has been taken into account.
Let Y(k,/) denote a traceless o(d — 2) tensor associated to the Young diagram with k indices in
the first row and / indices in the second row. Then, the solution is given by

é : Y(k, 1)

1=0 k=s

® When s = 0 the above space is an infinite chain of totally symmetric o(d — 2) traceless
tensors (Schuster, Toro 2014, Metsaev 2016, 2017).

® For s # 0 the space is a light-cone version of the covariant formulation discussed in (Zinoviev
2017).

® Let d =5: using the the Hodge duality Y (k,1) ~ Y(k,0) and Y(k,m)=0at m > 1 we
find out the representation space described in (Brink et al 2002, Metsaev 2017), i.e. two infinite
chains of traceless o(3) tensors Y(k,0) with k =s,s +1,..., co.



Final comments
Conclusions

® |mplementing differential constraints via the BRST operator and imposing algebraic
constraints directly we arrive at the triplet formulation for continuous spin. The resulting
equations of motion have a simple form even in the general mixed-symmetry case.

® Using the homological reductions of the triplet BRST operator we found the metric-like
formulation that generalizes the Schuster-Toro description of the scalar continuous spin
fields. On the other hand, the resulting metric-like formulation is the u-deformation of the
Labastida equations.

® Applying the so-called quartet mechanism we can get rid of the unphysical components of
the oscillators to obtain the light-cone form of the continuous spin dynamics. In particular,
we explicitly built the iso(d — 2) Wigner little algebra and computed its second and fourth
Casimir operators.

® There is a functional class so that the gauge symmetry does not kill all PDoF. We
demonstrate by performing the light-cone analysis that the system indeed propagates
correct degrees of freedom.

Outlooks

[ ] Fermions, SUSY (forthcoming paper with M. Grigoriev and A. Chekmenev)

® Understand group-theoretical meaning of continuous spin fields in AdS

)
*)

® AdS/CFT correspondence for continuous spin fields...



