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Motivations

• Conformal Higher Spin (CHS) theories generalize four
dimensional Maxwell and Weyl squared gravity

• In the supersymmetric case, they are HS counterpart of
conformal supergravities

• Remarkably, admit a consistent non-linear action around
flat space

• Contrary to massless HS in AdS, conformal invariance
fixes the derivative structure of vertices −→ finite
derivatives for given spins and number of fields

• Related to boundary values of massless HS in AdS via
AdS/CFT

• Despite being non-unitary, there are hints for unitary
truncations at tree-level
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Free theory

• Consider four dimensional Maxwell + Weyl squared gravity

S[A,g] =

∫
d4x
√
−g
[
FµνFµν + CµνλσCµνλσ

]
invariant under U(1), diffeos and Weyl local symmetries

• Linearize around flat spacetime −→

S2[A,h] =

∫
d4x

[
AµPµν�Aν + hµνPµνλσ�2hλσ

]
where P1 and P2 are transverse-traceless projectors of
spin one and two

• Invariant under linearized gauge symmetry

δAµ = ∂µε , δhµν = ∂(µεν) + αηµν



Free theory
• Natural generalization to spin s

Fradkin, Tseytlin (1989)

S[h] =

∫
d4x

∞∑
s=0

hµ(s)Pµ(s)
ν(s)�shν(s)

where Ps are spin-s transverse-traceless projectors
• Invariant under maximal spin-s gauge symmetry

compatible with locality

δhµ(s) = ∂µεµ(s−1) + ηµµαµ(s−2)

• In higher even d , �s → �s+ d−4
2 with conformal dimension

∆s = 2− s
• In general non-unitary for s ≥ 2
• Although there are conformal scalars with two or higher

derivatives, this h0 is auxiliary in d = 4



Induced conformal gravity
• How do we construct the interacting theory? Noether

method? Maybe
• Suppose one doesn’t know Maxwell and Weyl squared

gravity, and take a scalar conformally coupled to the metric
+ U(1) coupling

S[φ; A,g] =

∫
d4x
√

g
[
gµνDµφ

∗Dνφ+1
6 Rφ∗φ

]
, Dµ = ∂µ−iAµ

• Compute the scalar effective action

Γ[A,g] = a0 Λ4V + a2 log Λ

∫
d4x
√

g
[
F 2
µν + C2

µνλσ

]
+ finite

and "discover" Maxwell+Weyl squared from the log
divergent piece

• Notice that around flat space
e−Γ[A,h] =

〈
e
∫

JµAµ+Tµνconfhµν+O(A,h)2
〉

CFT



N = 4 SYM, AdS/CFT and N = 4 C-sugra Liu, Tseytlin (1998)

• Similar construction starting from N = 4 SYM: it can be
naturally coupled to N = 4 conformal supergravity
Bergshoeff, de Roo, de Wit (1981); de Roo, Wagemans (1985)

• The SYM partition function in C-sugra background

e−Γ[G] =

∫
DAe−SSYM[A;G]

yields the C-sugra action as log divergent part
Γ[G] = Γfin[G] + a2log ΛSCSG[G]

• Again, the part of SSYM[A;G] linear in CSG fluctuations
yields the Noether couplings to SYM operators, so that

e−Γ[G] =
〈

e
∫

O(A)aGa+O(G2)
〉

SYM

that corresponds, at large ’t Hooft coupling, to on-shell
N = 8 gauged sugra in AdS5



Induced CHS action

• Apply the same idea to the simplest CFT of free scalar field
in even d

S0[φ] =

∫
ddx ∂µφ∗∂µφ

• It possesses infinitely many traceless conserved currents
Js = φ∗∂sφ+ ... of conformal dimension ∆Js = d − 2 + s

• Low spin are scalar operator J0 = φ∗φ, U(1) current
Jµ = φ∗∂µφ− φ∂µφ∗ and traceless stress energy tensor
Jµν = T conf

µν = ∂(µφ
∗∂ν)φ+ ...

• Couple to sources
S[φ; h] = S0[φ] +

∑∞
s=0

(i)s

s!

∫
ddx Jµ(s)hµ(s)

• Sources hs have dimension ∆hs = 2− s and inherit
linearized invariance on the scalar mass-shell under
δhs = ∂εs−1 + η αs−2−→ identified as CHS



Induced CHS action

• Consider the scalar path integral∫
Dφ∗Dφe−S[φ;h] := e−Γ[h] =

〈
e
∫ ∑

s Js·hs
〉

free CFT

• According to HS AdS/CFT Sezgin, Sundell; Klebanov, Polyakov (2002)

conformal spin-s conserved currents are dual to AdS
massless spin-s gauge fields −→

• the above should correspond to the on-shell AdS action of
interacting MHS

• From previous discussion, log divergent part of Γ[h] defines
non-linear CHS action Tseytlin; Segal (2002); Bekaert, Joung, Mourad (2010)

Γ[h] =
∑∞

n=1 Λ2n Γn[h] + logΛ SCHS[h] + Γfin[h]



Currents, symmetries, effective action

• In terms of the CHS generating function
h(x ,u) :=

∑∞
s=0

1
s!hµ(s)uµ1 ...uµs the scalar action can be

recast as (basically IBP derivatives on φ∗)

S0[φ] +

∫
ddx J(x , i∂u)h(x ,u)|u=0 = 〈φ| P̂2+ Ĥ(X̂ , P̂) |φ〉

where X̂µ ≡ xµ and P̂µ ≡ −i∂µ
• Invariant under the gauge symmetry

|φ〉 → Ô−1 |φ〉 (P̂2 + Ĥ)→ Ô†(P̂2 + Ĥ)Ô

• For Ô(X̂ , P̂) = eÂ+i Ê at lowest order Ê generates the ε
differential symmetries, and Â the HS Weyl symmetries α

• The effective action is thus given by the functional
determinant Γ[h] = Tr log

(
P̂2 + Ĥ

)
• Next step: worldline representation of Γ[h]



Worldline formalism
• The WL formalism is quite effective for such one-loop

effective actions. E.G. scalar particle in gravitational and
e.m. background

Sg,A[x ,p,e] =

∫ 1

0
dτ
{

pµẋµ−e
2

[
gµν(pµ−Aµ)(pν−Aν)+ξR(g)

]}
or

Sg,A[x ,e] =

∫ 1

0
dτ
[

1
2e gµν ẋµẋν + Aµẋµ + ξ e

2R
]

• e(τ) is the einbein, gauges relativistic hamiltonian and
ensures τ -rep invariance

• Path integral on the circle produces the QFT one-loop
photon-graviton EA

Γ[A,g] =

∫
S1

DxDe
VolG

e−Sg,A[x ,e]



Worldline formalism

• The WL formalism is quite effective for such one-loop
effective actions. E.G. scalar particle in gravitational and
e.m. background

Sg,A[x ,e] =

∫ 1

0
dτ
[

1
2e gµν ẋµẋν + Aµẋµ + ξ e

2R
]

• Path integral on the circle produces the QFT one-loop
photon-graviton EA

Γ[A,g] =

∫
S1

DxDe
VolG

e−Sg,A[x ,e]

• e(τ) has a zero mode on S1 → gauge fixing e(τ) = T
leaves a modular integration. FP action is locally trivial, but
yields T−1 factor on S1 topology



Worldline formalism

• The WL formalism is quite effective for such one-loop
effective actions. E.G. scalar particle in gravitational and
e.m. background

Sg,A[x ,e] =

∫ 1

0
dτ
[

1
2e gµν ẋµẋν + Aµẋµ + ξ e

2R
]

• Gauge fixed path integral yields heat kernel expansion

Γ[h] =

∫ ∞
0

dT
T

∫
S1

Dx e−Sg,A[x ,T ] =

∫ ∞
0

dT
T

K [T ; g,A]

where [T ] = M−2 is the proper time and T → 0 is UV
region of the QFT (1d version of torus modular parameter
|τ | in String Theory)



Scalar particle in CHS background

• Generalize the hamiltonian action de Wit, Freedman (1980); Segal (2002)

Sh[x ,p,e] =

∫ 1

0
dτ
[
pµẋµ − e G(x ,p)

]
G(x ,p) = p2 +H(x ,p)

• The CHS basis is h(x ,p) with

H(x ,p) = Pd h(x ,p) =
∞∑

s=0

[s/2]∑
n=0

cn(s,d)
[
∂∗2 − Tr�

]n
hs(x ,p)



Scalar particle in CHS background

• Generalize the hamiltonian action de Wit, Freedman (1980); Segal (2002)

Sh[x ,p,e] =

∫ 1

0
dτ
[
pµẋµ − e G(x ,p)

]
G(x ,p) = p2 +H(x ,p)

• Relativistic invariance under τ -rep with transformations

δxµ = ξ{xµ,G}P.B. , δpµ = ξ{pµ,G}P.B. , δe = ξ̇



Scalar particle in CHS background

• Generalize the hamiltonian action de Wit, Freedman (1980); Segal (2002)

Sh[x ,p,e] =

∫ 1

0
dτ
[
pµẋµ − e G(x ,p)

]
G(x ,p) = p2 +H(x ,p)

• CHS background gauge symmetry under

δH(x ,p) = {ε(x ,p),p2+H(x ,p)}P.B.+α(x ,p)
(
p2+H(x ,p)

)
with WL variables transforming as

δxµ = {xµ, ε(x ,p)}P.B. , δpµ = {pµ, ε(x ,p)}P.B. , δe = −α(x ,p) e

• Notice that the α-symmetry is broken by gauge fixing
e(τ) = T



Caveat: covariant vs Noether coupling
As in the field theoretic description, the low spin fields do not
coincide with the covariant ones (besides the map H = Pd h)
• Take the covariant hamiltonian

Gcov(x ,p) = gµν(pµ−Aµ)(pν−Aν)+ξR(g) , gµν = ηµν+hw
µν

• Compare with low spin branch of H

GNoether(x ,p) = p2 + h0 − 2 hµ pµ − hµνpµpν

• One has the relation

hµν = hw
µν + rµν(hw) (gµν = ηµν − hµνw − rµν(hw))

hµ = Aµ − hw
µνAν − rµν(hw)Aν

h0 = R(η + hw) + A2 − AµAν(hµνw + rµν(hw))

• Compositeness of h0 can be deduced, for instance, by its
U(1) transformation δU(1)h0 = 2gµνAµ∂νε



CHS action from WL path integral

• CHS effective action from WL path integral on the circle

Γ[h] =

∫
S1

DxDpDe
Vol G

e−Sh[x ,p,e]

• Gauge fixed path integral e(τ) = T → Schwinger proper
time expansion

ΓΛ[h] =

∫ ∞
1

Λ2

dT
T

K [T ; h]

• Log divergent piece is the O(T 0) part of K [T ; h]



CHS action from WL path integral

• Gauge fixed path integral ΓΛ[h] =
∫∞

1
Λ2

dT
T K [T ; h]

• Trace of heat kernel K [T ; h] =
∫

S1 DxDp e−Sh[x ,p;T ]

• Extract x zero mode: x(τ) = x + q(τ) and average w.r.t.
free action

K [T ; h] =

∫
ddx

(4πT )d/2

〈
e−T

∫ 1
0 dτ H(x+q,p)

〉
=

∫
ddx

(4πT )d/2

∞∑
n=0

T n Vn[T ; h]

• (4πT )−d/2 is the free PI on the circle; Vn[T ; h] yields the
n-point effective vertex. Vn is analytic in T for s ≤ 2, but
not for HS



CHS action from WL path integral

• Gauge fixed path integral ΓΛ[h] =
∫∞

1
Λ2

dT
T K [T ; h]

K [T ; h] =

∫
ddx

(4πT )d/2

∞∑
n=0

T n Vn[T ; h]

• Effective vertex is given by a differential operator acting on
a string of H’s

Vn[T ; h] = V̂n(T ; ∂xi , ∂ui )H(x1,u1) · · ·H(xn,un)|xi =x
ui =0

(expand H(x + qi ,pi) around (x ,0) and compute exact PI)

• Freedom in IBP expressed as
∑n

i=1 ∂xi ∼ 0



CHS action from WL path integral

• Gauge fixed path integral ΓΛ[h] =
∫∞

1
Λ2

dT
T K [T ; h]

K [T ; h] =

∫
ddx

(4πT )d/2

∞∑
n=0

T n Vn[T ; h]

• Vn[T ; h] = V̂n(T ; ∂xi , ∂ui )H(x1,u1) · · ·H(xn,un)|xi =x
ui =0

• WL path integral yields the result in terms of parametric
proper time integrals

V̂n(T ; ∂xi , ∂ui ) =
(−1)n

n
e

1
4T ∂

2
U

∫ 1

0
dτ1

∫ τ1

0
dτ2 · · ·

∫ τn−2

0
dτn−1

× exp
(τn=0)∑

i<j

{
−i(τij − 1

2)(∂xi · ∂uj − ∂xj · ∂ui ) + T τij(τij − 1)∂xi · ∂xj

}



CHS action from WL path integral

• Vn[T ; h] = V̂n(T ; ∂xi , ∂ui )H(x1,u1) · · ·H(xn,un)|xi =x
ui =0

V̂n(T ; ∂xi , ∂ui ) =
(−1)n

n
e

1
4T ∂

2
U

∫ 1

0
dτ1

∫ τ1

0
dτ2 · · ·

∫ τn−2

0
dτn−1

× exp
(τn=0)∑

i<j

{
−i(τij − 1

2)(∂xi · ∂uj − ∂xj · ∂ui ) + T τij(τij − 1)∂xi · ∂xj

}

• When acting on a definite spin basis {si} of h(xi ,ui) there
are at most stot =

∑n
i=1 si u-derivatives→ only polynomials

from the inverse T and T -independent exp



CHS action from WL path integral

• Vn[T ; h] = V̂n(T ; ∂xi , ∂ui )H(x1,u1) · · ·H(xn,un)|xi =x
ui =0

V̂n(T ; ∂xi , ∂ui ) =
(−1)n

n
e

1
4T ∂

2
U

∫ 1

0
dτ1

∫ τ1

0
dτ2 · · ·

∫ τn−2

0
dτn−1

× exp
(τn=0)∑

i<j

{
−i(τij − 1

2)(∂xi · ∂uj − ∂xj · ∂ui ) + T τij(τij − 1)∂xi · ∂xj

}

• For every stot, V̂n has a well defined Laurent expansion in T

Vn[T ; h] =
∞∑

k=−∞
T k V(k)

n [h]

and the component giving rise to the log is k = d
2 − n



CHS action from WL path integral

Finally, the classical CHS action is given by

SCHS[h] =

∫
ddx

∞∑
n=2

V(d/2−n)
n [h]

• For a given set of spins {si} with
∑n

i=1 si = stot locality is
manifest at all orders n. In fact, the number of derivatives p
is fixed to

p = d + stot − 2n

• E.g. the diagonal quadratic part has p = d − 4 + 2s
• Only spin one in 4d: p = 4− n accounts for YM cubic and

quartic vertices
• Only spin two in 4d: p = 4



CHS action from WL path integral
Finally, the classical CHS action is given by

SCHS[h] =

∫
ddx

∞∑
n=2

V(d/2−n)
n [h]

• The quadratic part has been rederived and indeed
reproduces Fradkin-Tseytlin

S2[h] =
∞∑

s=0

cs

∫
ddx

[
hs Ps�

s+ d−4
2 hs

]

• Mind that the differential operator V̂ (d/2−n)
n has to undo the

map H = Pd h
• The constants cs are irrelevant at the free level, but they

set the relative normalization of all couplings



Conclusions and outlook

• WL representation of CHS vertices, similar to string 1st
quantized approach

• Technically annoying fact: the map H = Pd h→ In TT
gauge reduces to identity and, in 4d, one could use spinors
basis to simplify

• Zero total dof, anomaly cancellations and hints for S-matrix
triviality Beccaria, Bekaert, Joung, Mourad, Tseytlin; McLoughlin, Hähnel (2013–> now)

rely on regulated spin sums→ develop a 1st quantized WL
or worldsheet model for CHS, would help understanding

• WL approach can simplify manifest covariant coupling to
spin 2 Beccaria, Grigoriev, Tseytlin (2016-2017)

• Possible unitary truncations of amplitudes?
McLoughlin, Hähnel (2016-2017)



THANKS FOR YOU ATTENTION!


