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Motivations

Conformal Higher Spin (CHS) theories generalize four
dimensional Maxwell and Weyl squared gravity

In the supersymmetric case, they are HS counterpart of
conformal supergravities

Remarkably, admit a consistent non-linear action around
flat space

Contrary to massless HS in AdS, conformal invariance
fixes the derivative structure of vertices — finite
derivatives for given spins and number of fields

Related to boundary values of massless HS in AdS via
AdS/CFT

Despite being non-unitary, there are hints for unitary
truncations at tree-level
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Free theory

e Consider four dimensional Maxwell + Weyl squared gravity
Sl4.91 = [ d'x/=g [F*F + 0" Cpund]

invariant under U(1), diffeos and Weyl local symmetries
e Linearize around flat spacetime —

SolA, H] = / dx [ALP,OA, + WP, o [12h, ]

where Py and P, are transverse-traceless projectors of
spin one and two

¢ Invariant under linearized gauge symmetry

0A, = 0ue,  Ohu = 06 + anu



Free theory

Natural generalization to spin s
Fradkin, Tseytlin (1989)

S[H) = / d4xz P T%h,

where Ps are spin-s transverse-traceless projectors
Invariant under maximal spin-s gauge symmetry
compatible with locality

Ohu(s)y = Ou€p(s—1) + Muutyu(s—2)

In higher even d, [0° — 0s+2* with conformal dimension
Ag=2-5

In general non-unitary for s > 2

Although there are conformal scalars with two or higher
derivatives, this hg is auxiliary in d = 4



Induced conformal gravity

e How do we construct the interacting theory? Noether
method? Maybe

e Suppose one doesn’t know Maxwell and Weyl squared
gravity, and take a scalar conformally coupled to the metric
+ U(1) coupling

SiviA gl = [ d*x/gle" D Dot {RES] . D, =0,-iA,
e Compute the scalar effective action

M[A, g = aA*V + ap log A / I X/G[F2, + C2p] + finite

and "discover" Maxwell+Weyl squared from the log
divergent piece
¢ Notice that around flat space

e TAN — <efJ“Au+Tc%;/fhw+O(Avh)2>
CFT



N =4 SYM, AdS/CFT and N = 4 C-sugra Liu, Tseytiin (1998)

e Similar construction starting from A" = 4 SYM: it can be
naturally coupled to N' = 4 conformal supergravity
Bergshoeff, de Roo, de Wit (1981); de Roo, Wagemans (1985)

e The SYM partition function in C-sugra background
oIl _ / DA e SswlAG]

yields the C-sugra action as log divergent part
F[g] = rﬁn[g] + 32|Og /\Scsg[g]
e Again, the part of Ssym[A; G] linear in CSG fluctuations
yields the Noether couplings to SYM operators, so that
e TIg] — < el O(A)aga+0(92)>
SYM

that corresponds, at large 't Hooft coupling, to on-shell
N = 8 gauged sugra in AdSs



Induced CHS action

Apply the same idea to the simplest CFT of free scalar field
inevend

Sols] = / d9x ™0,

It possesses infinitely many traceless conserved currents
Js = ¢*0°¢ + ... of conformal dimension A, =d -2+ s
Low spin are scalar operator Jy = ¢*¢, U(1) current
Jy= 00,0 — gb@uqb* and traceless stress energy tensor
J/w — Tconf M¢*8 ¢+

Couple to sources

Slgi hl = Sole] + X220 - [ d9x ) h, )

Sources hs have dimension Ay, = 2 — s and inherit
linearized invariance on the scalar mass-shell under

0hs = Oeg_1 + nag_o— identified as CHS



Induced CHS action

Consider the scalar path integral

/D¢*p¢ e Slohl . =TI — <ef s Js~hs>

free CFT
According to HS AdS/CFT sezgin, sundell; Kiebanov, Polyakov (2002)
conformal spin-s conserved currents are dual to AdS
massless spin-s gauge fields —

the above should correspond to the on-shell AdS action of
interacting MHS

From previous discussion, log divergent part of I'[h] defines
non-linear CHS action Tseytlin; Segal (2002); Bekaert, Joung, Mourad (2010)
F[h] = 3250, A2 T [h] + logA Scus[h] + Tn[h]



Currents, symmetries, effective action

In terms of the CHS generating function
h(x,u) =" éhﬂ(s) ut...u*s the scalar action can be
recast as (basically IBP derivatives on ¢*)

Soldl + [ dxJ(x.id)h(x. U)lumo = (6] P2+ FIK.P) o)
where X" = x* and P, = —id,
Invariant under the gauge symmetry
¢y = O |¢) (P?+ H)— O'(P? + H)O

For O(X, P) = e*iE at lowest order £ generates the ¢
differential symmetries, and A the HS Weyl symmetries «

The effective action is thus given by the functional
determinant ['[h] = Trlog(P? + H)

Next step: worldline representation of I'[h]



Worldline formalism

e The WL formalism is quite effective for such one-loop
effective actions. E.G. scalar particle in gravitational and
e.m. background

1
Spalx.p.el = [ dr{p.x'=5[0" (p~A)(P.~A)+¢ Alg)]
or

1
Sg.alx. €] = / dr [%egwk“x” + AN+ EER
0

» ¢(7) is the einbein, gauges relativistic hamiltonian and
ensures 7-rep invariance

e Path integral on the circle produces the QFT one-loop
photon-graviton EA

. DxDe — Sy alx,€]
A9l _/31 VolG ©



Worldline formalism

e The WL formalism is quite effective for such one-loop
effective actions. E.G. scalar particle in gravitational and
e.m. background

1
Sg.alx. €] = /0 dr| e Gu XK + AuX + €5

e Path integral on the circle produces the QFT one-loop
photon-graviton EA

. DxDe — Sy alx,€]
A9l _/31 VolG ©

e ¢(7) has a zero mode on S' — gauge fixing e(7) = T
leaves a modular integration. FP action is locally trivial, but
yields T~ factor on S topology



Worldline formalism

e The WL formalism is quite effective for such one-loop
effective actions. E.G. scalar particle in gravitational and
e.m. background

1
Sg.alx. €] = / o7 | dsGu XX + A" + E4R|
0

e Gauge fixed path integral yields heat kernel expansion

rlh] = /oodT Dx e~ Sa.AX:T] — /OOdTK[T;Q Al
o T Js o T ’

where [T] = M~2 is the proper time and T — 0 is UV
region of the QFT (1d version of torus modular parameter
|7| in String Theory)



Scalar particle in CHS background

e Generalize the hamiltonian action de wit, Freedman (1980); Segal (2002)

1
Shlx. p, €] = /0 o7 [pic* — e G(x.p)]
G(x, p) = p* + H(X,p)

e The CHS basis is h(x, p) with

oo [5/2]

H(x,p) = Pah(x.p) = >_ Y ca(s.d) [8*2 Trm] hs(x, P)
s=0 n=0



Scalar particle in CHS background

e Generalize the hamiltonian action de wit, Freedman (1980); Segal (2002)

Shlx, p, €] = /01 dr [p“)'(“ _ eG(x,p)}

G(x, p) = p* + H(x,p)

¢ Relativistic invariance under 7-rep with transformations

oxt = f{X“, G}P.B. ) (5p,u = 5{,0“, G}P.B. s oe = §



Scalar particle in CHS background

e Generalize the hamiltonian action de wit, Freedman (1980); Segal (2002)

Shlx, p, €] = /01 dar [p“)'(“ _ eG(x,p)}

G(x, p) = p* + H(x, p)

e CHS background gauge symmetry under
SH (X, p) = {e(x, p), P*+H(x, p)}p. +(x, p) (PP +H(x, p))
with WL variables transforming as
ox* = {x" e(x,p)tep., 0Py ={Pu.e(x.P)}pp., d€=—a(x,p)e

¢ Notice that the a-symmetry is broken by gauge fixing
e(r)=T



Caveat: covariant vs Noether coupling
As in the field theoretic description, the low spin fields do not
coincide with the covariant ones (besides the map H = P4 h)

e Take the covariant hamiltonian
Gcov(xno) = guy(p,u_Au)(pl/_Au)“‘g H(Q) 5 g/w - 7]/11/‘|‘hxy

e Compare with low spin branch of H
Giocther(X, P) = p? + hg — 2 W p, — W™ pup,

e One has the relation
hu = hij +rw(he) (" =" =R —r'(hy))
h,=A, - hijA” — ruw(hy)A”

ho = R(n + hy) + A2 — ALA(h + r(hy,))

e Compositeness of hy can be deduced, for instance, by its
U(1) transformation d1yho = 29" A,,0,¢



CHS action from WL path integral

o CHS effective action from WL path integral on the circle

B DxDpDe __ s, i« p.e]
r[h]—/1 YolG

e Gauge fixed path integral e(7) = T — Schwinger proper
time expansion

Falh] = /100 d—;- KIT; h

o Log divergent piece is the O(T?) part of K[T; A]



CHS action from WL path integral

 Gauge fixed path integral ['\[h] = fo" aL K[T; h]

e Trace of heat kernel K[T; h| = fs1 DxDp e Shlx:piT]

o Extract x zero mode: x(7) = x + g(7) and average w.r.t.

free action
A — dx ~T [} drH(x+ap)\ _ ddX n

o (47T)~9/2 s the free Pl on the circle; V[ T; h] yields the
n-point effective vertex. V, is analytic in T for s < 2, but
not for HS



CHS action from WL path integral

o Gauge fixed path integral ['\[h] = foo 9L K[T; h|

d
K[T;h]:/ 4dTXd/ZZT”Vn[T p

o Effective vertex is given by a differential operator acting on
a string of H's

ValT; bl = Vo(T; 0y, 0u,) Hixq, Ug) - - - H(Xn, Un)|x,-:)6
uji=

(expand H(x + q;, p;) around (x, 0) and compute exact PI)
o Freedom in IBP expressed as Y./ ; dx, ~ 0



CHS action from WL path integral
 Gauge fixed path integral ['\[h] = f°° aL K[T; h]

d
KIT: h] :/ 4ded/2 Z TVl T H

o VnlT; hl = Vi(T; 8y, 9u) Hixy, Ug) - - - H(Xn, Un) | xi=x

u;=0
e WL path integral yields the result in terms of parametric
proper time integrals

Vn(T: 0, 0) = & )e4T /dﬁ/ drp-- / A7t

(Tn=0)
x exp Y {—i(rj— $)(Ox - O — Ox - D) + Tr(mj — 1)0x, - O}

i<j




CHS action from WL path integral

o VnlT; hl = Vi(T; 8y, 9u,) Hixy, Ug) - - - H(Xn, Un) | xi=x

ui=0
Vo(T; ax,,au,.)z( )" g / dT1/ drp - - / d7n_1
Tn 0)
X exp Z {—I Tjj — 5)(Ox; - Ou; — ()/.'0u,.)+ T 7ji(m5 — 1)0X,~(')Xj}
i<j

e When acting on a definite spin basis {s;} of h(x;, u;) there
are at most s = Y1 S; u-derivatives — only polynomials
from the inverse T and T-independent exp



CHS action from WL path integral

o Vol T; hl = Vio(T; 0y, 0u,) Hixq, Ug) - - - H(Xn, Un)|xi=x

ui=0
N _1 n i 1 T Tn—2
Vn(7-v Oxl,aul):( ) 9417()5/ dT‘]/ d7_2/ d7_n_1
0 0 0
(mh=0)
x exp Y {—i(rj— $)(Ox - O — Ox - Oy) + Trj(mj — 1)0x, - O}
i<j

« For every s, V, has a well defined Laurent expansion in T

V[T h] = i TV h)

k=—00

and the component giving rise to the logis k = $ — n



CHS action from WL path integral

Finally, the classical CHS action is given by

SCHS[h] _/ddXZV,gdm_n)[h]
n=2

o For a given set of spins {s;} with 37, s; = s locality is
manifest at all orders n. In fact, the number of derivatives p
is fixed to

p=d+ So —2n

e E.g. the diagonal quadratic parthas p=d — 4 + 2s

e Only spin one in 4d: p = 4 — n accounts for YM cubic and
quartic vertices

e Only spintwoin4d: p=4



CHS action from WL path integral
Finally, the classical CHS action is given by

SCHS[h] _ /ddXZV,gd/zn)[h]
n=2

e The quadratic part has been rederived and indeed
reproduces Fradkin-Tseytlin

Solh = cs / d%x [hs PsS* 2" ]
s=0

49/2=" has to undo the

¢ Mind that the differential operator
map H =Py h
e The constants cs are irrelevant at the free level, but they

set the relative normalization of all couplings



Conclusions and outlook

o WL representation of CHS vertices, similar to string 1st
quantized approach

e Technically annoying fact: the map H =Pgh — InTT
gauge reduces to identity and, in 4d, one could use spinors
basis to simplify

e Zero total dof, anomaly cancellations and hints for S-matrix
tr|V|aI|ty Beccaria, Bekaert, Joung, Mourad, Tseytlin; McLoughlin, Hahnel (2013—> now)
rely on regulated spin sums — develop a 1st quantized WL
or worldsheet model for CHS, would help understanding

o WL approach can simplify manifest covariant coupling to
spin 2 Beccaria, Grigoriev, Tseytlin (2016-2017)

e Possible unitary truncations of amplitudes?
McLoughlin, H&hnel (2016-2017)



THANKS FOR YOU ATTENTION!



