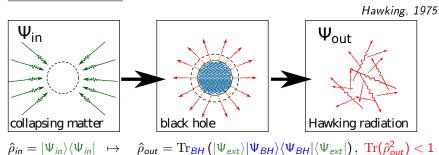
Failure of mean field approximation in weakly coupled dilaton gravity*

Fitkevich M. D.

Institute for Nuclear Research of RAS Moscow Institute of Physics and Technology


Higher Spin Theory and Holography-7

2018, June 5, Moscow

* - in collaboration with D.G. Levkov, S.M. Sibiryakov, and Y.A. Zenkevich

Motivation

• Information paradox: apparent loss of quantum coherence.

- ► Responses: AdS/CFT correspondence, "complementarity", etc.
- ► AMPS-firewall. Unitarity versus Equivalence principle.

Almheiri et al, 2012

We need useful solvable models!

- Toy models: 2D dilaton gravity. Period of activity: $t \in (1991, 1996)$. Problem: apparent non-unitarity persists.
- <u>Idea:</u> revive 2d gravity with new semi-classical methods!

Outline

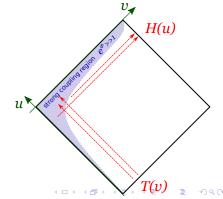
Weakly coupled dilaton gravity

2 Failure of mean field theory

Semiclassical S-matrix elements

Weakly coupled dilaton gravity

$$S = \int d^2x \sqrt{-g} \left[e^{-2\phi} \left(R + 4(\nabla\phi)^2 + 4\lambda^2 \right) - \frac{1}{2} (\nabla f)^2 \right]$$


ArXiv:9111056 [hep-th] C. Callan, S. Giddings, J. Harvey, A. Strominger, 1991

In the bulk:

$$ds^{2} = -e^{2\phi} dv du, \ f(v, u) = f_{out}(u) + f_{in}(v)$$

$$e^{-2\phi} = -\lambda^{2} v u - \mathcal{T}(v) - \mathcal{H}(u)$$

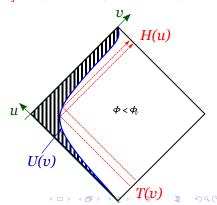
$$\partial_{v}^{2} \mathcal{T} = (\partial_{v} f_{in})^{2} / 2, \ \partial_{v}^{2} \mathcal{H} = (\partial_{u} f_{out})^{2} / 2$$

Weakly coupled dilaton gravity

$$S = \int d^2x \sqrt{-g} \left[e^{-2\phi} \left(R + 4(\nabla\phi)^2 + 4\lambda^2 \right) - \frac{1}{2} (\nabla f)^2 \right] + 2 \int_{\partial \mathcal{M}} d\tau \, e^{-2\phi} (K + 2\lambda)$$

ArXiv:9111056 [hep-th] C. Callan, S. Giddings, J. Harvey, A. Strominger, 1991

ArXiv:1702.02576 [hep-th] M.F., D. Levkov, Y. Zenkevich, 2017

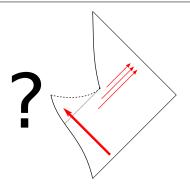

In the bulk:

$$ds^{2} = -e^{2\phi} dv du, \ f(v, u) = f_{out}(u) + f_{in}(v)$$

$$e^{-2\phi} = -\lambda^2 vu - \mathcal{T}(v) - \mathcal{H}(u)$$

$$\partial_{\nu}^{2} \mathcal{T} = (\partial_{\nu} f_{in})^{2}/2, \ \partial_{u}^{2} \mathcal{H} = (\partial_{u} f_{out})^{2}/2$$

- ullet Weak coupling: $g_{gr}=e^{\phi}\leq e^{\phi_0}\ll 1$
- Minimal black hole mass $M_{cr}=2\lambda e^{-2\phi_0}$
- Reflecting condition $f_{out}(U(v)) = f_{in}(v)$


One-loop effective action

Includes Hawking radiation and backreaction on metric.

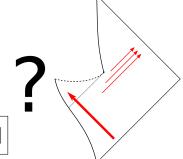
One loop from $N=24Q^2$ scalars $f_i \Rightarrow$ Liouville-Polyakov action $S_{PL}=-\frac{Q^2}{2}\int dx\sqrt{-g}\int dy\sqrt{-g}R\frac{1}{\Box}R$

$$\left| S_{PL} \underbrace{=}_{on-shell} \int d^2 x \sqrt{-g} \left[-\frac{1}{2} (\nabla \chi)^2 + Q \chi R \right] \right|$$

One-loop effective action

Includes Hawking radiation and backreaction on metric.

One loop from $N=24Q^2$ scalars $f_i \Rightarrow$ Liouville-Polyakov action $S_{PL}=-\frac{Q^2}{2}\int dx\sqrt{-g}\int dy\sqrt{-g}R\frac{1}{\Box}R$


$$S_{PL} = \int_{on-shell} \int d^2x \sqrt{-g} \left[-\frac{1}{2} (\nabla \chi)^2 + Q \chi R \right]$$

To restore solvability: ArXiv:9206070 [hep-th]
J. Russo, L. Susskind, L. Thorlacius, 1992

$$\Delta S_{RST} = -Q^2 \int d^2 x \sqrt{-g} \phi R$$

Boundary terms: fixed by Wess-Zumino

$$\Delta S_{boundary} = 2 \int d au \left[\left(-Q^2 \phi + Q \chi
ight) K + \lambda Q^2
ight]$$

M.F., D. Levkov, Y. Zenkevich, in preparation

Correspondence $QRST \simeq QJT$

<u>Conjecture:</u> correct quantization via Weyl rescaling: $g_{\mu\nu}=e^{2\phi}\hat{g}_{\mu\nu}$.

No contribution from ghosts.

A. Strominger, 1992

It yields $S[g_{\mu\nu},\phi,f_j]\mapsto \hat{S}[\hat{g}_{\mu\nu},\phi,f_j]+S_A$, S_A - quantum anomaly term:

$$\boxed{\int \left[\mathcal{D}f_j\right]_g \ e^{iS_f\left[f_j,g_{\mu\nu}\right]} = \int \left[\mathcal{D}f_j\right]_{\hat{g}} \ e^{iS_A+iS_f\left[f_j,\hat{g}_{\mu\nu}\right]} \ ,} \quad S_A = \int \ \hat{R}\Box^{-1}\hat{R} - \int \ R\Box^{-1}R \ .}$$

7 / 16

Correspondence $QRST \simeq QJT$

Conjecture: correct quantization via Weyl rescaling: $g_{\mu\nu}=e^{2\phi}\hat{g}_{\mu\nu}$.

No contribution from ghosts.

A. Strominger, 1992

It yields $S[g_{\mu\nu},\phi,f_j]\mapsto \hat{S}[\hat{g}_{\mu\nu},\phi,f_j]+S_A$, S_A - quantum anomaly term:

With field redefinition $\Omega=e^{-2\phi}+Q^2\phi$ we obtain Jackiw-Teitelboim gravity with boundary

$$\hat{S}[\hat{g}_{\mu\nu},\Omega,f_j] = \int d^2x \sqrt{-\hat{g}} \left[\Omega \hat{R} + 4\lambda^2 - \frac{1}{2} \sum_{j=1}^N \hat{g}^{\mu\nu} \partial_{\mu} f_j \partial_{\nu} f_j \right] + \text{boundary terms}.$$

Correspondence $QRST \simeq QJT$

Conjecture: correct quantization via Weyl rescaling: $g_{\mu\nu}={
m e}^{2\phi}\hat{g}_{\mu\nu}$

No contribution from ghosts.

A. Strominger, 1992

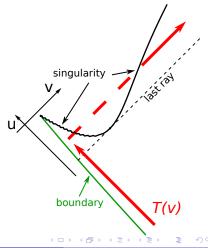
It yields $S[g_{\mu\nu},\phi,f_j]\mapsto \hat{S}[\hat{g}_{\mu\nu},\phi,f_j]+S_A$, S_A - quantum anomaly term:

$$\boxed{\int \left[\mathcal{D} f_j \right]_g \ e^{i S_f \left[f_j, g_{\mu\nu} \right]} = \int \left[\mathcal{D} f_j \right]_{\hat{g}} \ e^{i S_A + i S_f \left[f_j, \hat{g}_{\mu\nu} \right]} \ ,} \quad S_A = \int \ \hat{R} \Box^{-1} \hat{R} - \int \ R \Box^{-1} R \ .}$$

With field redefinition $\Omega=e^{-2\phi}+Q^2\phi$ we obtain Jackiw-Teitelboim gravity with boundary

$$\hat{S}[\hat{g}_{\mu\nu},\Omega,f_j] = \int d^2x \sqrt{-\hat{g}} \left[\Omega \hat{R} + 4\lambda^2 - \frac{1}{2} \sum_{j=1}^N \hat{g}^{\mu\nu} \partial_{\mu} f_j \partial_{\nu} f_j \right] + \text{boundary terms}.$$

<u>Statement:</u> JT model minimally coupled to arbitrary matter

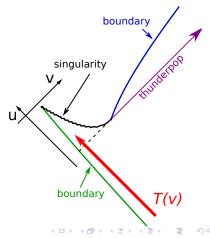

$$S_{JT} = \int d^2x \, \sqrt{-\hat{g}} \left(\hat{\phi} \hat{R} - \Lambda
ight) + S_{matter} [\hat{g}_{\mu
u}, \hat{f}]$$
 has unitary S-matrix.

ArXiv:1706.06604 [hep-th] S. Dubovsky, V. Gorbenko, M. Mirbabayi, 2018

Solution for black hole

U(v) - boundary in light-cone coordinates $u, v; \mathcal{T}(v)$ - incoming matter f_{in} . Boundary condition: $\partial_v U = \mathrm{const} \left(\partial_v \mathcal{T} + \lambda^2 U + \frac{Q^2 \partial_v^2 U}{2 \partial_v U} \right)^2$

 $E > E_{cr} \Rightarrow 2$ nd branch $\bar{U}(v) \neq U(v)$ of $\phi(v,u) = \phi_0$ is the singularity.



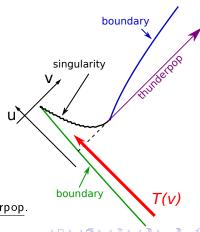
Solution for black hole

U(v) - boundary in light-cone coordinates $u, v; \mathcal{T}(v)$ - incoming matter f_{in} . Boundary condition: $\partial_v U = \mathrm{const} \left(\partial_v \mathcal{T} + \lambda^2 U + \frac{Q^2 \partial_v^2 U}{2 \partial_v U} \right)^2$

 $E > E_{cr} \Rightarrow 2$ nd branch $\bar{U}(v) \neq U(v)$ of $\phi(v,u) = \phi_0$ is the singularity.

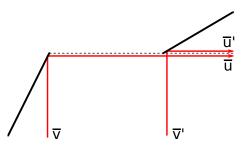
Impose new boundary condition \Rightarrow new boundary.

Solution for black hole


$$U(v)$$
 - boundary in light-cone coordinates $u, v; \mathcal{T}(v)$ - incoming matter f_{in} .
Boundary condition: $\partial_v U = \mathrm{const} \left(\partial_v \mathcal{T} + \lambda^2 U + \frac{Q^2 \partial_v^2 U}{2 \partial_v U} \right)^2$

$$E > E_{cr} \Rightarrow 2$$
nd branch $\bar{U}(v) \neq U(v)$ of $\phi(v,u) = \phi_0$ is the singularity.

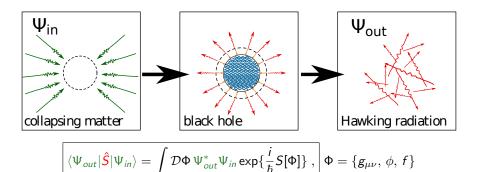
Impose new boundary condition \Rightarrow new boundary.


Problems:

- Non-analyticity.
- Ambiguity: $\partial_{\nu} U \Big|_{end\ point}$?
- Thunderpop: $E_{th} \sim -\lambda Q^2$.
- ⇒ has to introduce smearing around thunderpop.

Failure of mean field theory

Vacuum correlation function $G_{vac}(\bar{v}, \bar{v}') \equiv \langle f(\bar{v}) f(\bar{v}') \rangle \propto \ln |\bar{v} - \bar{v}'|$



Near the thunderpop
$$\bar{u}, \bar{u}' \simeq \bar{u}_{end}$$
, $G(\bar{u}, \bar{u}') = \langle f_{out}(\bar{u}) f_{in}(\bar{u}') \rangle = \langle f_{in}(\bar{v}(\bar{u})) f_{in}(\bar{v}(\bar{u}')) \rangle \neq G_{vac}(\bar{u}, \bar{u}')$ $\Rightarrow \underline{\text{thunderbolt:}}$ particles with arbitrary large momenta $k \sim \Delta \bar{u}^{-1}$.

Strominger, 1994

Energy conservation $\Rightarrow \Delta \bar{u} \simeq Q/M_{cr}$ - characteristic size of quantum area where semiclassics always fails.

Failure of mean field theory

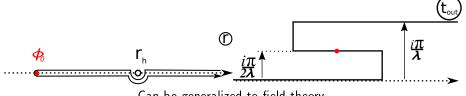
Semiclassics $\Rightarrow \frac{\delta}{\delta \Phi} S = 0 \Rightarrow$ saddle point Φ_s - can not be singular.

- MFA fails at 0th order: glued solutions are incorrect saddle points!
- Another possible answer: stiff boundary condition is inconsistent.
 - ► Analogy: Klein paradox in QM. Second quantization of the boundary?

Semiclassical S-matrix elements

- But we want to consider the <u>whole</u> solution Φ_s corresponding to $\Psi_{in} \mapsto \Psi_{out}$ (asymptotically flat to asymptotically flat).
 - ▶ At $E < Ecr \Rightarrow$ semiclassical S-matrix exists: $\langle \Psi_{out} | \hat{\mathbf{S}} | \Psi_{in} \rangle \approx \exp\{\frac{i}{\hbar} S[\Phi_c]\}$
 - At $E > E_{cr} \Rightarrow$ no flat asymptotics of classical solutions at $t \to +\infty \Rightarrow$ ill-defined S-matrix.
- <u>Idea:</u> obtain physical solutions at $E > E_{cr}$ via analytic continuation.
 - <u>Problem:</u> many possibilities for deformation: suppressed, unphysical solutions.
 We need leading contribution!

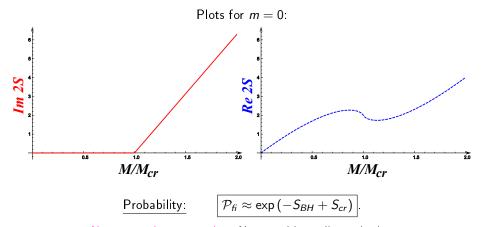
We need a criterion to chose physical branch at $E > E_{cr}$, $\Im m E \rightarrow 0$.


Criterion: start from the "shell" model

$$S = -m \int d au \, \sqrt{-g_{\mu
u} rac{dy^{\mu}}{d au} rac{dy^{\mu}}{d au}} + S_{gravity}$$

Junction condition on shell: $\left(\frac{dr}{d\tau}\right)^2 - \left(\frac{M}{m} + \frac{m}{8\lambda}e^{-2\lambda r}\right)^2 + 1 = 0$

ArXiv:9907001 [hep-th] M. Parikh, F. Wilczek, 2000


ArXiv:1503.07181 [hep-th] F. Bezrukov, D. Levkov, S. Sibiriakov, 2015

Can be generalized to field theory.

"Shell" model: result

$$2\Im m S_{\text{tot}} = S_{BH} - S_{cr} , \qquad S = \frac{M}{T_H} = \frac{2\pi}{\lambda} M$$

Non-entropic suppression: Nature abhors discontinuity.

Conclusions

- Mean field theory:
 - ► Either not a good approximation...
 - ...or models with stiff boundaries are not self-consistent.
- Complex semiclassical method:
 - Reliable analytic continuation for shells.
 - Relevant solutions for fields.
 - Non-entropic suppression.

Thank you for attention!