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MOTIVATIONS

Presentend a wide solution space that can be thought of as resulting from
a resummation of a perturbative expansion which differs in various respects

from the usual one.

Understanding the connection between these two perturbative approaches
may clarify the physical interpretation of those solutions (as well as related

crucial formal issues, such as determining an admissible class of gauge
functions, etc. ... ).

As a case study, we shall focus on massless particle solutions of the linearized
theory and use them to understand some feature of the alternative
perturbation scheme.



KINEMATICS

=  Master-fields living on correspondence space, locally Xx Zx ).

W = da'W,(Y, Z|z) gauge fields of all spins + auxiliary
© = O(Y,Z|z) Weyl tensors and their derivatives = local dof
S = dz*S,(Y, Z|z) + dzo":%(Y, Z|x) Z-space connection, no extra local dof

= Commutingoscillators Y, = (Yo,%a), Za = (2as—2a) 2 SP(4,R) quartets

o 0 .
[Yga Yﬁ]* = 2i0a5 =2 ( 805 ) ’ [ng Zﬁ]* — _220%’ [ng Zﬁ]* =0

= Star-product:

F(Y,Z) « G(Y,Z) = 2n)i eV e Y +U,Z4+U)GY +V,Z-V)
R

VAN
= Inner kleinian operator x:

Ro= eV Rxfzy) = fl-z,-y) xR,

= Kyxhy, Ky*xf(2,y) = f(2,—y)*xKy, Kyxky, = 1,

=)



4D BOSONIC VASILIEV EQUATIONS

= Full equations:

(Vasiliev, ‘92)

S, = 24 — 22"7&

o FZY)) = oo o = =2 T

= Z-oscillators = auxiliary, non-commutative coordinates. Equations fix the evolution
along Z in such a way that it gives rise to consistent interactions to all orders among
physical fields, contained in the (Z-independent) initial conditions

W = Wy, &= dpp.

= 1st order eqs impose a relation between spacetime and twistor space behaviour of their
solutions = the physical information can be encoded to a great extent in the
twistor-space dependence.



ADS VACUUM SOLUTION

¢ =00 =0,
Sy = 50 =z, Sf =80 =z,
Wu — Q&O) — % <w£ )aﬁyayﬂ +w( )< Byayﬁ + 26( e ﬁyayﬁ)
b _ dz®(0,)*P b Uzt (o qp) P
(0) 1—a2 7 (0) 1 — 22
4dx?

AN
= W is a flat connection, can be represented via a gauge function L(x|Y) = AdS, coset

element /Wu _ QLO) _ 71 *auLI

SO(3,2)
SO(3,1)

Tz 5 P,
L(xiy,9) = ex . R —

. 2h ap
In Weyl ordering:  L(x;y,9) = T, &P <1x+hyay5> , h:=+1-— a2



PERTURBATIVE ANALYSIS

017 (1) _
= Atfirst order D! )MZ( b =0
DWW — o
d,wh = _pOyM)
dz®M = 0
P bsw, 7 7 i
dzV = _Zq) *J J = —Zdz Kk — h.c.

= The eqgs. with at least one component on Z can be integrated to give the hatted fields in
terms of non-linear couplings involving the original dof in ©:

o) = &(z,Y),
1
_ - - 1
v = dZ§+dzaza/ dtt®(—tz,y)e™ * +he. =: dz&+p(®xJ), p:= Z'Zﬁ—
0 Z
W = oY) = pDOVD = oY)+ DO¢ — pDO p(® % J) ,

~”

— 0

Z—0

= The gauge ambiguity on V translates into a gauge ambiguity on the gauge field generating
function _
W = w(Y)+ D¢
Z=0 Z=0

which can be fixed by requiring § = § (Y) > Vasiliev gauge, |i,v() = zay() = g




PERTURBATIVE ANALYSIS

= Substitution in the remaining equations gives Klein-Gordon, Maxwell, linearized Einstein
and Fronsdal egs. in unfolded form = Central On-Mass-Shell Theorem (COMST) :

2 ; . 2
0 ®|j—0 — 1 gas _‘? —

d + {27, whe = _% e Oy dyP

®ly=0

dd + Q0 % — 3+ 71(Q0) = 0

o = 00,08,

= The twisted adjoint equation already contains the information on the free
propagation of all spin-s fields via the Bargmann-Wigner egs. on the curvatures.
The first equation is a gluing of the Weyl module to the gauge-field module (via the
Chevalley-Eilenberg cocycle).

= On the other hand, all exact solutions of the theory have been obtained in different
gauges than the Vasiliev gauge, and following the opposite route: working in the full
(x,Y,Z)-space in order to take advantage of the simplicity of the eqgs. and of the huge

gauge freedom of the theory. ;



EXACT SOLUTIONS: GAUGE FUNCTION METHOD

Takes maximum advantage from the fact that the physics is to a large extent encoded
in twistor space.

X x Y x Z-space W = g 1xdg
e @ = G x ¥ x7(g) 4%’ =0
Sa = G *5,%3, A5k = 0 G e
S %d + & xm(S) = 0 g.g.-sgﬁigzz,)
Y x Z-space S a1 _ TP iombi-Yin...
egns: [SOUSB]* — 2Z€aﬁ(1 bd */ﬁl)
~ !
(St Splx = 0

Solve locally all (/a\qu:;\\tions with at least one spacetime component via some
gauge function g = g(x,Y,2). A A
Then splve the Z-space constraints to determine the spacetime constants @’ = @’ (Y,Z2)
and S’ =5 ,(Y,2).
Working in terms of primed fields 2> W=0 gauge.
Easier to build solutions in W=0 gauge, the equations are algebraic. In order to read
any spacetime feature (correlation functions, asymptotic charges,...)
change gauge and reinstate x-dep. by performing the star-products with §



EXACT SOLUTIONS: GAUGE FUNCTION METHOD

= The behaviour of the fields in (x,Y,Z) depends on a subtle interplay of gauge function
and primed fields.

= At fixed gauge function, it is the twistor-space behaviour of the initial @’ and S’
that determines the spacetime behaviour of the fields.
Indeed, certain observables (such as some that can be used to endow the space of
solutions with a norm) only depend on primed fields.

= QOther important aspects of the interpretation however crucially depend on the
choice of the gauge function. Interpreting the theory as a deformed Fronsdal
theory seems to select a preferred gauge function implementing the
Vasiliev gauge. What is the gauge function corresponding to such choice?

—> Restrictions on physically admissible solutions as well as determining the
superselection sectors of the theory coincides with selecting
classes of functions in twistor space. It is to be understood which are
the requirements that separate admissible vs. inadmissible gauge transf.



FACTORIZED EXPANSION IN HOLOMORPHIC GAUGE

= Alarge solution space of interesting solutions (including HS black holes, HSbh +
massless scalar, some cosmology-like solutions,...) take the form :

~

(Y, Z) = (),
VIY,Z) = Vi(Y.z) = VI(T(Y),2) = i(qf(y»*’“*vé’wz),
k=1
Ta(V.2) = Ta(vi3) = Via(B(Y),2) = S @)™ 70 (2)
k=1
U= & xr,, ¥ :i= & «xky, (U, ¥], = 0

- an all-order perturbative expansion in star-powers of the curvatures, absorbing
all the Y-dependence, with separation of Y and Z variables and V holomorphic
in z.
=  Whereas the ordinary perturbative analysis is organized in powers of ®x £ and normal
order, this can be considered an expansion in W in Weyl order (no contractions
between Y and 2).
= The different solutions are singled out by the different basis functions (or distributions)
of Y variables on which one expands @’ (i.e., W) .

= The expansion in W enables one to solve for the Z dependence in a universal way.
10



FACTORIZED ANSATZ IN HOLOMORPHIC GAUGE

= This is because @’=Q’(Y) = the Z-dependence in the source term is universal and

given by K, : _
(9[a175’] + ‘A/[:X*‘A/é] = —%ea[g bU *
' in W: om _ !
First order in W VY = 7 €as br.

solved by a distributional z-space element

1
~ dt T 1 i -
(1):|: ~ + L ~ — i — e 7 ~ + +
1% z /_1 i1 1) et = 21_{1(1)(1 e ) 0(z=)o(zT)

. N S PR
2T i=ut, w,i=z2z, 27,27 > ;l_rf(l) P 'EF = K,

with basis spinors u*, (u**u-, = 1) entering as a realization of a delta function in a
Gaussian basis (one could have equally well used a plane wave basis, in which case an auxiliary spinor, the

momentum associated to z, would have played that role).

= Higher orders: 8[QV5<]"’>+% > [Voﬂp),vﬁ(‘”} =0, k>2
p+q=k -

1
dt .
> D) VPxw :/ 1 F1(1/2; 2, blog 12 0) & 2 € FFT Y
= 1 (t+1) 11



COMMENTS AND OBSERVATIONS

= The factorized expansion encodes a (formal) solution space in which @’ is first-order
exact, and the Z-dependence is solved in a universal way
—> gives a systematic procedure to non-linearly deform solutions of the KG and
Bargmann-Wigner egs. into solutions of the full Vasiliev egs.

This also facilitates their physical interpretation as well as the superposing of
linearized twisted-adjoint sectors, e.g., W =W, +W ..

= Actual solutions must satisfy:
1. The star-products (F’)**must be finite = conditions on the fiber algebra A(Y)
2. Thezero-form charges should be finite (well-defined inner product)

3. V,should be at least real-analytic in Z.

In the case that all W*k can be expanded over a common basis of functions,
one can actually write down the full solution in closed form immediately.

= Further constraints placed by requiring the solution to correspond to an asymptotic
configuration of Fronsdal fields (over AdS) = analiticity in Y and Z in Vasiliev gauge

and finiteness of asymptotic charges.
12



MASSLESS PARTICLE MODES

= Factorized expansion already used to nonlinearly deform massless scalar modes
+ spherically symmetric HS black holes.

= Massless particle modes build up unitary $0(3,2) LW modules.
Unfolded Weyl O-form equations, i.e., reformulation of the Bargmann-Wigner egs. via
a covariant constancy condition on the twisted adjoint module,

®(2]Y) = L' (z) » & % n(L)(x)
show that particle modes can be encoded into specific algebraic elements:

operators on singleton Fock space, non-polynomial functions of Y with definite
eigenvalues under the Cartan subalgebra (E,J) of $0(3,2),

'(Y) € M = HC® Poym

Pn|n’*Pm|m’ - 5n’,mPn|m’ ) Pn|m’ ~ ln >< ml ) n, m= (n17n2)7 (m17m2)

n1 + N9 ng — Ny
2 Pn]m; J*Pn\m — 9

" Modules built by solving LW conditions [L7,P, ], = 0 and then acting with L* .
= This offers a simple way of solving for all the AdS-massless particle modes.

E*Pn]m = Pn\m



MASSLESS SCALAR PARTICLE MODES

= For example, the rotationally-invariant scalar field modes are encoded by projectors
|n><n]|

n—lte _ 1) n— 1te d'l? n—+1 " —4nE
(E) = 4(=)" 5 e4ELW (8E) = 9(— }1{ nE

* |ndeed, using the simple AdS gauge function L (L-gauge) we reconstruct exactly the
Breitenlohner-Freedman scalar modes,

(I),(Y) = q’é:o(Y) — Z ;n’Pn(E)a (ﬁn)* = V_yqy

Bo(alY) = L7 ) @grn(D)(e) = (1) SNt § 5 (1]

() 2T 1 — 2inxg + n2a?

* Forinstance, the LW element n=1 (®’ = 4e ) gives rise to the ground state of the
D(1,0) scalar, as expected:

1 — 332 —1t

1 ~ T
T 2img+22 P (A1)

(C.1., P. Sundell)
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FRONSDAL FIELD MODES

= The electric field strength components of the spin-1 massless field follow from the
energy-2, spin-1 element

0? o
—4F —4FE
(I)/ = (I)IZ;(l)OT X More X (Uor)aﬂwe TXYTXY ) +hC

and, more generally, the generating function of arbitrary spin-s massless particle
modes admits a contour integral presentation with integrand given by

' (Y,n) = @L(Y,n) = e Mty

(different spin-s modes singled out by specific projections of an even number > 2s of x and x
derivatives and an appropriate contour integration O, on n).

= One can check that, in L-gauge, the resulting generating function
2
(L) _ l—x Iy S Y L |
o5 (2,Y) = O T T—— exp [zyMy + x(Py —izA™ " x) — xA y}

gives rise to the correct expression for the various modes (M, P and A 2 x- and
n-dependent matrices).

= What about the gauge fields? More precisely, where does the COMST sit in the
gauge function method? 15



Z-SPACE CONNECTION FOR PARTICLE MODES

= To answer, it is instructive to examine the Z-space connection at first order:
VW@, Y,2) = OL VY, 2)« L = B4« VD(z)

pt o pt o
2 ~ ~
_ -z (Dy)a 6iyz-|—)2(15§—i:EA_lx)
1 — 2inzo + n?x? yDy
. 1 1 dt i t+1 ~ 1y~
To = Yot Mo (n,2)y,+iAT P _ / _4£5Dp
y y + (qu)yﬁ‘m « (nvx)X57 QZng . (t - 1)2 €

- pole at a plane y = 0! Needs to be understood.

= Such singular behaviour goes hand in hand with the peculiar feature of Vin L-
gauge, that solves the deformed oscillator problem

(L ot (L)
a[avpt /3] — _Z €a5 b\:[!pt * Kz

and is at the same time covariantly constant wrt the AdS covariant derivative,
pO LA

pt o

=0

= The latter feature implies d, w0 — g
b

and indeed remains W= WO=["1x dL to all orders, in L-gauge. COMST?? 16



VASILIEV GAUGE

= (Clearly, in order to compare with standard perturbation theory and read off
Fronsdal fields explicitly in W we have to modify the gauge function in such a way
that the local dof in @) stay untouched but VI!) is brought to the Vasiliev gauge,

‘705L>(1)_”705G)(1) such that zO‘XA/OSG)(l) — 0

= This can be achieved, within the gauge function method, by choosing a more
complicated, field-dependent gauge function G = L % H, H=H(x,Y,Z2),

@ = G % x7(G) = oD +hot.,
§((XG) = G '« :S’\('l *xG = 2o+ VOgL)(l) + 0, HY +hot. ,
W& G '4dG = L™ '%dL+ DPHY 4 ho.t.

POO _pmm — g Fo
" |ntegrating this eq. (using Vasiliev gauge condition and the regularity in z of VIl)) >

~

2Dy e —1
1 — 2inxg + n%x2 yDy  iyz

1 — 2

7Y = o exp [X(Py — izt A~ )]+ HSV (V) +h.c.

- well-behaved at the spacetime boundary and in Z, but inherits the pole in Y.
(However, its contribution to W, DI9H1), in Z=0 is regular!) 17



VASILIEV GAUGE

= Let’s take a look at the transformed master fields.
* The transformed Z-space connection is regular everywhere, and coincides with the

form coming from the usual perturbation theory,

POW — 4 0 1 — a2 eV (1 —igz) — 1

1
)Z(ng—i:?:A_lx) — dtt P(—tz. 7 ity®z
Y 1= 2inzo + 122> G522 ° Z/o =tz 9)e

= This means that the usual generating function of gauge fields will also be regular
and give rise to the usual COMST, since

0, = o (DO FDY = DO (9, HD) = pO (TGN _FE1) = pOFEG

- the Z-dependent part of W is real-analytic in all variables and coincides
with the usual solution p D© p (D).

= |tisinteresting to understand precisely how this happens from a singular gauge
function: e R R R
wGn — p) ) _ D(O)Hél) 4+ D(O)H]gl)

= DOFWM 4 <D<o>ﬁ][g1>> +DOHM — <D<o>f1]g1>>

\

wreg(Y)‘l'wirreg(Y) :—pD(O)p((b*J) 18

Z=0 Z=0

7




VASILIEV GAUGE

" Butw ., has noimpact on the gauge field equations.
» Indeed, acting with D® on W|,_, selects the usual r.h.s. of the COMST:

/W(G,l)‘zzo _ D(O)H((]l) ny Q%@&Y)"}ﬁ(bl)lz
a °p —0

DOIFED|,_0) = iD© (g%aéwvﬂ@w‘z_o) = —22p022 oY) p¥) (a[(QZWB(]L’”)‘Z_O

\ J
|

x €,3P(0,7) + c.c.
= Anyirregular term in Yinside P := (DOH 1)), is (locally) exact, since

PY) = ZP”’ (Ey —n)P, = 0, Ey:= Ygagf)
nez

(EyD® — DOE)f(z,dz,Y)=0 = (Ey—-n)DYP, =0

= But DOPisreal-analytic > pOp, — 0 n<0 = P,g = DYQ,

>canfix HY= - > Qn = WO = Wy (V) = pDO p(@ % J)
n<0

19



SINGULAR GAUGE FUNCTIONS AND L-GAUGE

What is the actual meaning of those singularities of the gauge function?

It is not an accident of having started from a weird gauge. In fact, in any solution
pOWEH — g e = pOaw
that gives rise to the COMST WED = pOFY) W(Y) = pDOPGD)
the gauge function € can only differ from the above-found singular solution
HY = H W —Q by a quantity AH!!) such that

1) DOAHM) =0 (not to change the gauge fields), and
2) E,AHW =0 (not to alter the Vasiliev gauge condition)

- AHW cannot eat up the singularities of neither H Y nor Q,
€ is as singular as H),

20



