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Motivations

•  Presentend	a	wide	solu/on	space	that	can	be	thought	of	as	resul/ng	from		
a	resumma/on	of	a	perturba/ve	expansion	which	differs	in	various	respects	
from	the	usual	one.	
	

•  Understanding	the	connec/on	between	these	two	perturba/ve	approaches		
may	clarify	the	physical	interpreta/on	of	those	solu/ons	(as	well	as	related	
crucial	formal	issues,	such	as	determining	an	admissible	class	of	gauge	
func/ons,	etc.	...	).	
	

•  As	a	case	study,	we	shall	focus	on	massless	par/cle	solu/ons	of	the	linearized	
theory	and	use	them	to	understand	some	feature	of	the	alterna/ve	
perturba/on	scheme.	
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Kinematics

§  Commu/ng	oscillators																																																																												à		sp(4,R)	quartets	

§  Star-product:		

§  Inner	kleinian	operator	κ:	

§  Master-fields	living	on	correspondence	space,	locally X x Z x Y :

^ 

gauge	fields	of	all	spins	+	auxiliary	
Weyl	tensors	and	their	deriva/ves	à	local	dof	

Z-space	connec/on,	no	extra	local	dof	
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§  Full	equa/ons:	

	
§  	Z-oscillators	à	auxiliary,	non-commuta/ve	coordinates.	Equa/ons	fix	the	evolu/on		

along	Z	in	such	a	way	that	it	gives	rise	to	consistent	interac/ons	to	all	orders	among		
physical	fields,	contained	in	the	(Z-independent)	ini/al	condi/ons	
	
	

§  1st	order	eqs	impose	a	rela/on	between	space/me	and	twistor	space	behaviour	of	their	
solu/ons	à	the	physical	informa/on	can	be	encoded	to	a	great	extent	in	the	
twistor-space	dependence.	

4D bosonic Vasiliev equations

(Vasiliev, ‘92) 
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AdS vacuum solution

	
§  W	is	a	flat	connec/on,	can	be	represented	via	a	gauge	func/on	L(x|Y)	=	AdS4	coset	

	element	
	
	
	
	
In	Weyl	ordering:	

	

^ 



6 

§  At	first	order	
	
	

	
§  The	eqs.	with	at	least	one	component	on	Z	can	be	integrated	to	give	the	haXed	fields	in		

terms	of	non-linear	couplings	involving	the	original	dof	in	Φ:		
	
	
	
	
	
	

§  The	gauge	ambiguity	on	V	translates	into	a	gauge	ambiguity	on	the	gauge	field	genera/ng		
func/on		
	
which	can	be	fixed	by	requiring	ξ	=		ξ	(Y)	à		Vasiliev	gauge,		
	
	
	
	
	
	
	
	
	
	
	
	
	

Perturbative analysis
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§  Subs/tu/on	in	the	remaining	equa/ons	gives	Klein-Gordon,	Maxwell,	linearized	Einstein		
and	Fronsdal	eqs.	in	unfolded	form	à		Central	On-Mass-Shell	Theorem	(COMST)	:		

	

	

	
§  The	twisted	adjoint	equa/on	already	contains	the	informa/on	on	the	free	

propaga/on	of	all	spin-s	fields	via	the	Bargmann-Wigner	eqs.	on	the	curvatures.		
The	first	equa/on	is	a	gluing	of	the	Weyl	module	to	the	gauge-field	module	(via	the		
Chevalley-Eilenberg	cocycle).	
	

§  On	the	other	hand,	all	exact	solu/ons	of	the	theory	have	been	obtained	in	different		
gauges	than	the	Vasiliev	gauge,	and	following	the	opposite	route:	working	in	the	full		
(x,Y,Z)-space	in	order	to	take	advantage	of	the	simplicity	of	the	eqs.	and	of	the	huge		
gauge	freedom	of	the	theory.		
	

Perturbative analysis
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Exact solutions: gauge function method

§   Solve	locally	all	equa/ons	with	at	least	one	space/me	component	via	some		
gauge	func/on	g	=	g(x,Y,Z).		

§  Then	solve	the	Z-space	constraints	to	determine	the	space/me	constants	Φ’	=	Φ’	(Y,Z)	
and	S’α=	S’	α(Y,Z)	.	

§  Working	in	terms	of	primed	fields	à	W=0	gauge.		
Easier	to	build	solu/ons	in	W=0	gauge,	the	equa/ons	are	algebraic.	In	order	to	read		
any	space/me	feature	(correla/on	func/ons,	asympto/c	charges,…)		
change	gauge	and	reinstate	x-dep.	by	performing	the	star-products	with	g.		
	

§  X x Y x Z-space	
							eqns:  

§  Y x Z-space	
							eqns:  

(Vasiliev,   
Sezgin-Sundell, 
C.I.-Sundell, 
Giombi-Yin…) 

^ ^ 
^ ^ 

^ ^ 

^ 

§  Takes	maximum	advantage	from	the	fact	that	the	physics	is	to	a	large	extent	encoded	
in	twistor	space.	
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Exact solutions: gauge function method

§  The	behaviour	of	the	fields	in	(x,Y,Z)	depends	on	a	subtle	interplay	of	gauge	func/on	
and	primed	fields. 

	
§  At	fixed	gauge	func/on,	it	is	the	twistor-space	behaviour	of	the	ini/al	Φ’		and	S’α	

that	determines	the	space/me	behaviour	of	the	fields.		
Indeed,	certain	observables	(such	as	some	that	can	be	used	to	endow	the	space	of	
solu/ons	with	a	norm)	only	depend	on	primed	fields.	
	

§  Other	important	aspects	of	the	interpreta/on	however	crucially	depend	on	the		
choice	of	the	gauge	func/on.	Interpre/ng	the	theory	as	a	deformed	Fronsdal	
theory	seems	to	select	a	preferred	gauge	func/on	implemen/ng	the	
Vasiliev	gauge.		What	is	the	gauge	func/on	corresponding	to	such	choice?	
	
à Restric/ons	on	physically	admissible	solu/ons	as	well	as	determining	the		

superselec/on	sectors	of	the	theory	coincides	with	selec/ng		
classes	of	func/ons	in	twistor	space.	It	is	to	be	understood	which	are	
the	requirements	that	separate	admissible	vs.	inadmissible	gauge	transf.	
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§  A	large	solu/on	space	of	interes/ng	solu/ons	(including	HS	black	holes,	HSbh	+		
massless	scalar,	some	cosmology-like	solu/ons,…)	take	the	form	:			
	
	
	
	
	
	
	
	à	an	all-order	perturba/ve	expansion	in	star-powers	of	the	curvatures,	absorbing	
							all	the	Y-dependence,	with	separa/on	of	Y	and	Z	variables	and	V	holomorphic		
						in	z.		

§  Whereas	the	ordinary	perturba/ve	analysis	is	organized	in	powers	of	Φ★κ	and	normal		
order,	this	can	be	considered	an	expansion	in	Ψ	in		Weyl	order	(no	contrac/ons	
	between	Y	and	Z).	

§  The	different	solu/ons	are	singled	out	by	the	different	basis	func/ons	(or	distribu/ons)	
of	Y	variables	on	which	one	expands	Φ’	(i.e.,	Ψ)	.		

§  The	expansion	in		Ψ	enables	one	to	solve	for	the	Z	dependence	in	a	universal	way.	
							

Factorized expansion in holomorphic gauge
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§  This	is	because	Φ’=Φ’(Y)		à	the	Z-dependence	in	the	source		term	is	universal	and		
given	by	κz	:	
	
	
	
First	order	in	Ψ:		
	
solved	by	a	distribu/onal	z-space	element	

§  Higher	orders:			

with	basis	spinors	u±α		(u+α	u-α	=	1)	entering	as	a	realiza/on	of	a	delta	func/on	in	a		
Gaussian	basis		(one	could	have	equally	well	used	a	plane	wave	basis,	in	which	case	an	auxiliary	spinor,	the	
	momentum	associated	to	z,	would	have	played	that	role).	

à  

Factorized Ansatz in holomorphic gauge

à  
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Comments and observations

§  The	factorized	expansion	encodes	a	(formal)	solu/on	space	in	which	Φ’	is	first-order		
exact,	and	the	Z-dependence	is	solved	in	a	universal	way		
à gives	a	systema/c	procedure	to	non-linearly	deform	solu/ons	of	the	KG	and		

Bargmann-Wigner	eqs.	into	solu/ons	of	the	full	Vasiliev	eqs.		
	
This	also	facilitates	their	physical	interpreta/on	as	well	as	the	superposing	of		
linearized	twisted-adjoint	sectors,	e.g.,	Ψ	=	Ψbh	+	Ψpart	.			

§  Actual	solu/ons	must	sa/sfy:		
1.  The	star-products	(F’)*k	must	be	finite	à	condi/ons	on	the	fiber	algebra	A(Y)	
2.  The	zero-form	charges	should	be	finite	(well-defined	inner	product)	
3.  Vα	should	be	at	least	real-analy/c	in	Z.		
	
In	the	case	that	all	Ψ*k		can	be	expanded	over	a	common	basis	of	func/ons,		
	one	can	actually	write	down	the	full	solu/on	in	closed	form	immediately.	
	

§  Further	constraints	placed	by	requiring	the	solu/on	to	correspond	to	an	asympto/c	
configura/on	of	Fronsdal	fields	(over	AdS)	à	anali/city	in	Y	and	Z	in	Vasiliev	gauge		
and	finiteness	of	asympto/c	charges.	
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§  Factorized	expansion	already	used	to	nonlinearly	deform	massless	scalar	modes		
+	spherically	symmetric	HS	black	holes.			
	

§  Massless	par/cle	modes	build	up	unitary	so(3,2)	LW	modules.		
Unfolded	Weyl	0-form	equa/ons,	i.e.,	reformula/on	of	the	Bargmann-Wigner	eqs.	via	
a	covariant	constancy	condi/on		on	the	twisted	adjoint	module,		
	
	
show	that	par/cle	modes	can	be	encoded	into	specific	algebraic	elements:		
operators	on	singleton	Fock	space,		non-polynomial	func/ons	of	Y	with	definite		
eigenvalues	under	the	Cartan	subalgebra	(E,J)	of	so(3,2),	
	
	
	

	
	
§  Modules	built	by	solving	LW	condi/ons	[L--r,Pn|m]π	=	0	and	then	ac/ng	with	L+r.	
§  This	offers	a	simple	way	of	solving	for	all	the	AdS-massless	par/cle	modes.	

Massless particle modes
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§  	For	example,	the	rota/onally-invariant	scalar	field	modes	are	encoded	by	projectors		
|n>	<n|	
	
	
	

§  Indeed,	using	the	simple	AdS	gauge	func/on	L	(L-gauge)	we	reconstruct	exactly	the		
Breitenlohner-Freedman	scalar	modes,	
	
	
	
	

§  For	instance,	the	LW	element	n=1	(Φ’	=	4e-4E)		gives	rise	to	the	ground	state	of	the		
D(1,0)	scalar,	as	expected:	
	

Massless scalar particle modes

(C.I., P. Sundell) 
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§  The	electric	field	strength	components	of	the	spin-1	massless	field	follow	from	the		
energy-2,	spin-1	element		

and,	more	generally,	the	genera/ng	func/on	of	arbitrary	spin-s	massless	par/cle		
modes	admits	a	contour	integral	presenta/on	with	integrand	given	by	
	
	
(different	spin-s	modes	singled	out	by	specific	projec/ons	of	an	even	number	≥	2s	of	χ	and	χ		
deriva/ves	and	an	appropriate	contour	integra/on	Os	on	η).	
	

§  One	can	check	that,	in	L-gauge,	the	resul/ng		genera/ng	func/on		

gives	rise	to	the	correct	expression	for	the	various	modes	(M,	P	and	A	à	x-	and	
η-dependent	matrices).	
	

§  What	about	the	gauge	fields?	More	precisely,	where	does	the	COMST	sit	in	the		
gauge	func/on	method?	

Fronsdal field modes

- 
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§  To	answer,	it	is	instruc/ve	to	examine	the	Z-space	connec/on	at	first	order:	

	
à pole	at	a	plane	y	=	0!	Needs	to	be	understood.	

§  Such	singular	behaviour	goes	hand	in	hand	with	the	peculiar	feature	of	V	in	L-
gauge,	that	solves	the	deformed	oscillator	problem	

and	is	at	the	same	/me	covariantly	constant	wrt	the	AdS	covariant	deriva/ve,	
	
	

§  The	laXer	feature	implies		

and	indeed	remains		W=	W(0)=L-1	★	dL	to	all	orders,	in	L-gauge.		COMST??		

Z-space connection for particle modes

~ 
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§  Clearly,	in	order	to	compare	with	standard	perturba/on	theory	and	read	off	
Fronsdal	fields	explicitly	in	W	we	have	to	modify	the	gauge	func/on	in	such	a	way	
that	the	local	dof	in	Φ(1)		stay	untouched	but	V(1)		is	brought	to	the	Vasiliev	gauge,		

§  This	can	be	achieved,	within	the	gauge	func/on	method,	by	choosing	a	more	
complicated,	field-dependent	gauge	func/on	G	=	L	★ H,	H=H(x,Y,Z),		

	

§  Integra/ng		this	eq.	(using	Vasiliev	gauge	condi/on	and	the	regularity	in	z	of	V(L))	à	

à well-behaved	at	the	space/me	boundary	and	in	Z,	but	inherits	the	pole	in	Y.			
(However,	its	contribu/on	to	W,	D(0)H(1),	in	Z=0	is	regular!)	

	

	
§  Interes/ng	to	check	what	it	gives	at	the	linear	order	(up	to	a	Y-dependent	term):	

à  indeed	solves	the	equa/ons	but	contains	a	pole	in	Y-space.				
Effects	on	observables	involving	the	Z-space	connec/on	or	W	should	be	

examined.	

	
	

	
	
	

	
	
	

Vasiliev gauge
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§  Let’s	take	a	look	at	the	transformed	master	fields.		
§  The	transformed	Z-space	connec/on	is	regular	everywhere,	and	coincides	with	the	

form	coming	from	the	usual	perturba/on	theory,	

§  This	means	that	the	usual	genera/ng	func/on	of	gauge	fields	will	also	be	regular	
and	give	rise	to	the	usual	COMST,	since		

à  the	Z-dependent	part	of	W	is	real-analy/c	in	all	variables	and	coincides		
with	the	usual	solu/on	ρ	D(0)	ρ	(Φ★J).		

	
§  It	is	interes/ng	to	understand	precisely	how	this	happens	from	a	singular	gauge	

func/on:		

Vasiliev gauge
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§  But	ω	irreg	has	no	impact	on	the	gauge	field	equa/ons.		
§  Indeed,	ac/ng	with	D(0)	on	W|Z=0		selects	the	usual	r.h.s.	of	the	COMST:		

	

§  Any	irregular	term	in	Y	inside	P	:=	(D(0)Hp
(1))Z=0	is	(locally)	exact,	since	

§  But		D(0)P	is	real-analy/c		à		
	

à	can	fix		

Vasiliev gauge
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§  What	is	the	actual	meaning	of	those	singulari/es	of	the	gauge	func/on?	
	

§  It	is	not	an	accident	of	having	started	from	a	weird	gauge.	In	fact,	in	any	solu/on		

that	gives	rise	to	the	COMST		
	
the	gauge	func/on	ξ	can	only	differ	from	the	above-found	singular	solu/on		
H(1)	=	Hp

(1)	–	Q		by	a	quan/ty	∆H(1)		such	that				
1)  D(0)∆H(1)	=	0		(not	to	change	the	gauge	fields),		and		
2)  EZ	∆H(1)	=	0	(not	to	alter	the	Vasiliev	gauge	condi/on)		

	
							à		∆H(1)	cannot	eat	up	the	singulari/es	of	neither	Hp

(1)	nor		Q	,		
ξ		is	as	singular	as	H(1).	

Singular gauge functions and L-gauge


