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Studying QFT's in the strong coupling regime is an interesting prob-
lem

Analysis simplifies if the theory shares the property of the so called
weak/strong coupling duality

Among known examples: Coleman-Mandelstam duality, electric mag-
netic duality, various string dualities, AdS/CFT duality etc

Today, we will study another example of this phenomenon. Pair of
dual theories is: the so called n-deformed symmetric space sigma
model and certain Toda theory.

Both theories are two-dimensional integrable QFT's.



We start with an example: O(3) sigma-model
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3
5= (Gue1) + Dup2)? + (Oup3)? ) d, > =1

This theory is conformal and integrable at the classical level (Pohlmeyer).

As QFT it corresponds to an asymptotically free theory with a dy-
namically generated mass scale and is also intregrable (Polyakov).

Its S—matrix is constraint by integrability (Zamolodchikovx?2)

SiH(0) = 6;765151(0) + 6;£67152(0) + 5;16,1.53(6),
im0 6(0 — i)
: —,  S2(0) = . —,
(0 4 im) (0 — 2im) (0 4 im) (0 — 2im)
where 8 = 01 — 0> is the rapidity difference of the incoming states.

S1(0) = S3(0) = ...




This rational S—matrix corresponds to the Yangian Y (SO(3)). Yan-
gians always admit one-parametric deformation called the quantum
affine group.

Corresponding S—matrix is a trigonometric one

sinh A(0 — i) 40 sinh \6 44
, N +0 — o . S_|__|_(9)a---
sinh A\(60 4 im) sinh A\(6 — 2im)

where )\ is the deformation parameter. At A — 0 we are back to the
rational case.

S{TO) =

It is naturally to expect that there should exist an integrable de-
formation of the O(3) SM, which corresponds to this trigonometric
S—matrix.

At least this deformed sigma-model should correspond to renormal-
izable QFT.



e Analysis of general sigma-model

A= %/ (Guy(go)agoﬂégo’/ -+ ) d°z,

requires the target space metric G, to satisfy the Ricci flow equations

*

. d
R oo =—Guy, Where -=— t~l0og—
,uz/"‘ J92% dt g/\

e There is remarkable solution in 2d (Fateev, Onofri, Zamolodchikov)

K ( d¢? (1 —¢*)dg?

ds? =

— : = —tanhvt

Na-oaa-—=a " (1—m2<2>> " g

e While embedded in 3d it looks like a “sausage” of length L = —\/vt:
infinitely long in the UV (¢ — —oo) and shrinking at the intermediate

scale (¢t ~0). At v — 0 we are back to the round sphere.

e It has been conjectured that the full theory promoted by the one-loop
action is integrable with the trigonometric S—matrix.



We note that

sinh A(0 — im) +0 _ sinh A6 Gt
sinh A(0 +ixr)” 79  sinh (6 — 2ixr) T

simplifies in the limit A — 1: s¥F(0) — -1 ..,

0),...

S{TO) =

It looks like in the limit we have a theory of free boson and Dirac
fermion of the same mass.

Away from A\ = % one expects some local QFT. Remarkably, it has

been guessed by Alyosha Zamolodchikov

£ = (8,®)% + iy s + mb? ()~
g\ 70201 4 b2)
2
. _ M Ginp2
maprp cosh(bd) o sinh“(bP),

: _ 1
provided that A\ = 5(1407)"



e As it becomes clear recently the sausage sigma-model belongs to the
more general class of the so called n—deformed sigma models.

e It's all started with the seminal Klimciks observation (Klimcik 2008).
First, one deforms the PCF model

1
S = —/Tr <g_18_|_gg_18_g) d2$.
2
This theory has a global G;, x G symmetry which acts as

g —UgV, UV ed.

This theory is known to be classically/quantum integrable (Zakharov-
Mikhailov, Polyakov-Wiegmann).

e Now, let H be the Lie subgroup of G and h = Lie(H). We can obtain
the sigma-model on a quotient space G/H by gauging

0or Dy =04+ — Ay, AxLe€nb.

The non-trivial fact is that it preserves integrability (classically!).



e [ he deformation is given in terms of the linear operator R: g — g
(a, Rb) = —(Ra,b),
and satisfies
[Ra, Rb] + R([a, Rb] + [Ra,b]) — [a,b] = 0O,

called the modified Yang-Baxter equation.

e With the operator R at hand we define the deformed PCF action as

1 1
S = —/Tr -1y “15_g | a2,
> (g +8 1- 1R g g) X
where n is the deformation parameter (n = ik). It has been shown by

Klimcik that this particular type of deformations survives the integra-
bility.

e Note that the deformed theory is still left G invariant. So, one can
apply the coset construction.



e [ he action of the n—deformed coset sigma model can be written in
the form (Delduc et all)

S = %/Tr <<g8+g_1)(c) T 77729 P (gﬁ_g_l)(c)> d?z,

where Rg = Ad g_l oRoAdg and Pc is the projection on the coset
space.

e It has been shown that this theory is integrable provided that G/H is
a symmetric space.

e For example G/H = SO(N)/SO(N — 1) provides an integrable defor-
mation of the O(NN) sigma-model.

e As expected SO(3)/SO(2) case corresponds to the deformed O(3)
sigma-model and coincides with the sausage model for certain choice
of the operator R.



e One way to explain the duality requires bosonization. Namely, we
rewrite

1 2 _ b2 _ 2 _
_ Tl A
L= g (0u®)” + i7" O + 5y (9970)” — miucosh(b0) + ...
in terms of two bosonic fields (here 8 = /1 4 b2)
1 2 1 2
L= 8—7T<8Mgp) -+ 8—7r(8“¢) — mcos(B¢) cosh(bd) + .. ..

e This theory is integrable [I5,._1,15;_1] = 0. Perturbatively

: 1
k-1 =158 +O0(m), with 158, = %/CWQk(a% OP)dz,

e For example,
Wo (0, 0P) = (0) + (9)2.

e Higher-spin densities can be defined from the requirement that they
commute with the perturbation

ngee,, [ iei®az) = o,



e Motivated by the explicit form of the bosonic Lagrangian we will study
more general setting. Let ¢ = (¢1,...,pony_1) be the N—1 component
bosonic field and consider the theory

L_i(@ )2_|_/\§: (ar,p)
- 87 He c ’

r=1
where (a1,...,ap) is a given set of vectors, which is required to have
maximal rank.

e \We are only interested in the quantum field theories of this form with
infinitely many integrals of motion. In the leading order in A this
constraints the integrals of motion Igee to obey

[Igee,/e(a“gp)dz] =0, forall r=1,...,N.
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e Practically, we study the equations
j{ e(ar,sO(S))Wk_l(z)dg =0(...),

z

where Wi (z) is some preferred set of currents in W—algebra. This
implies that the charges

Ip_1 = /Wk(Z)dz,

commute with all exponentials.

e [ here many solutions. Important for us, correspond to fermionic
screenings: (o, o) = —1

For N =2n-+1

2n + 1
1 + b2
p2 O 1402 12 |
@ ...... O + @ 1 —-2b
2n — 3 1+b

1 2n
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This picture defines an integrable system [I>._1,15;_1] = 0 with

Iy 1 = /Wzk(l‘)dfb‘-

Explicitly one has ¢ = (®1,...,Ppn, d1,...,bn)

Wo(x) = (0P, 0P) + (99, 0¢),
and

on—1 2 1 1
LSS (0Pt —Q(aqsk)“) +
3 k= 1

+2<2n—1)i((acbk)%(amﬂ)( > %04 Za%] 2n 1. Z(a e

k=1 >k

4(n+1) 2n—1,/1 2 > > 4(n—|—1) 2n — 1 2 1 -
+< 3 + 3 (b2 ))(8@8@)4—( 3 * 3 (b2 ))(8

$2 3 G- D)3 - )~ 1)(2-8) (50°0:070; + 5026, i 110%6, 1)+

1<J

+ 2 (4306 D - NP0, — (20— 1) (26 - ) - P00, ).

i,] i>]

Wa(z) = (0P, 0P) + (8¢, 0¢))% +
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e Using boson-fermion correspondence we will arrive to the Lagrangian
which is supposed to describe the theory

n 1 5 o b2 - 2
L = kgl (8—71' <6M<Dk) + Z¢k7M8M¢k + 2(1 + b2) <¢k7’u¢k) > B

— m(ebq}l%% + :2::: (ebq}k@k(l _;75)%4-

+ fbcbk‘%k(l _275>¢k> + fbcb”‘@n(l _275)?%4—

+ cosh bd,, Y, <1 —;75)1%) —

2 n—1
_ m_2 (625491 +2% el (Pr=Pr_1) | H(Pn—Pp1) | eb(cbnl"'(bn)) .
3mb
k=2

e Last term corresponds to the counter term.
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One can show that in the theories with fermionic screenings there are
also screenings of sigma-model type. It means that for any two fermionic
screenings with exponents «a; and «; such that («;, a;) # 0 there is also
the field

2

(o + ;)2

Vij = (o, 09)ePi®) | where B, = (i + ),

such that
Wo(2)Vij(w)dw = 8.V (2).

C:
This fact suggests the idea to consider the theory

1 2 _ 5
£=8—7T(8u90) +u Y (e d0) (e, dp)elPi?)
(1,5)€el

which might be the dual sigma-model description of the original theory.

By ... we denoted possible counterterms. In order to take them into
account we will use RG approach.
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Within this approach we have to study the one-loop evolution equa-
tion

Rlu]/ _I_ QVILLVI/\U — _G.'u,]/,

Namely, we are looking for the solution to this equation with the UV
asymptotic prescribed by the bare Lagrangian

1 2 = y
L=—(0ue) +u X (@09)(ay, Jp)ePi®) 4.,
(4,5)€l

Here W describes the effect of t-dependent diffeomorphisms (not all).
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Consider the simplest case: N = 5. Let, (x1,22,23,24) be the local
coordinates in R%. We expect that the solution should behave in UV
t — —o0o as

GMI/ — 5/,“/ _I_ eat (A'uyexl _I_ Bluye_xl_xQ _I_ Cﬂye_x1+x2) _I_ vy

V= (,z)+...,
where
1 0O 2 O O OO0 O O 0O O O
10 0 0 O 10 1 0 = 10 1 0 —
A“”_iO—lO’B“”_OOOO’CW—OOOO’
O 0O O O O « 0 —1 O — 0 -1
and p, some unknown constant vector.
At leading order we have
3 1 37 1
o — —, P — (__7 O) R _) .
4 4 4 2
Solving the asymptotic problem one can see that
Fq 0 1F5 0
| 0O Fy—cosh(xp)Fg O —isinh(xo) Fg .

0 —iSiﬂh(wQ)F6 O Fyu—+ COSh(xQ)F6
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T hese equations are compatible provided that
Fy = Fy, F2 =1+ F2.
The function F7 is arbitrary. We can choose it such that the following
relations holds
detG = Fy1F3+ F2 = 1.
With this choice the problem has the unique solution
:(1—U)(1—UV) P _uv@1-v) 20V(1-U)

F — <
3 1-y2y °T 1_p2y "3 1-p2v
1 ((14V) 14+ U2V 1 4V U
}%:VT(-+) - (L |
(1-V)21-U2V 2 (1-V)2]1-U2v
(1-UV)?
F7 =10
! g( 1-V
where
U= e%exl, V = le3§t6_25€1
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It is convenient to introduce new coordinates (, 6, ¢1 and ¢, by the
following equations

S E, ¢2_x—4—ilogcose
>t o2 2 2 2
In these coordinates the metric has the form (after rescaling ds? — 4vds?,

t — 4vt + log 2)

> K d¢? (1-¢2)do3 . 5.0  ~..o
ds? =2 ((1 Y1 = 20D + (1= ) + ¢4dh“ 4+ 2i¢< tan 0dOddo+
(1 — x2¢%*sin? 9)dq§2>

k2(2 cos2 6

_I_
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We can also perform the T-duality in the ¢o isometry making the metric
diagonal

K d¢? L (1 =¢det ¢?
v (1 =) (1 —k2¢2) (1 —k2¢2)  1—k2¢4sin?0

and generating the non-zero pure imaginary B—field

d5? =

(d6® 4 cos? 0 d¢3)

e 4
1< Sin 6 cos ¢

B = df N doo.
v(1 — k2¢%4sin26) ?2

It can be checked that this metric and B-—field coincide with the ones
obtained from the n = ik-deformed O(5) sigma-model action mentioned
in the introduction.
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Conclusions

e Presumably, the duality should happen for all n—deformed SSSM. It
is not known how to arrive to the system of screening fields starting
from the deformed sigma-model action.

e At the moment it is unclear how to consider supergroup valued sigma-
models in this context (important for AdS/CFT sigma-models).

e Once the dual theory is constructed. One has a system of local IM’s.
It is interesting to consider spectral problem for this system.
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