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• Studying QFT’s in the strong coupling regime is an interesting prob-

lem

• Analysis simplifies if the theory shares the property of the so called

weak/strong coupling duality

• Among known examples: Coleman-Mandelstam duality, electric mag-

netic duality, various string dualities, AdS/CFT duality etc

• Today, we will study another example of this phenomenon. Pair of

dual theories is: the so called η-deformed symmetric space sigma

model and certain Toda theory.

• Both theories are two-dimensional integrable QFT’s.
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• We start with an example: O(3) sigma-model

S =
1

g2

∫ (

(∂µϕ1)
2 + (∂µϕ2)

2 + (∂µϕ3)
2
)

d2x,
3∑

k=1

ϕ2k = 1.

• This theory is conformal and integrable at the classical level (Pohlmeyer).

• As QFT it corresponds to an asymptotically free theory with a dy-

namically generated mass scale and is also intregrable (Polyakov).

• Its S−matrix is constraint by integrability (Zamolodchikov×2)

Sklij (θ) = δijδklS1(θ) + δikδjlS2(θ) + δilδjkS3(θ),

S1(θ) =
2iπθ

(θ+ iπ)(θ − 2iπ)
, S2(θ) =

θ(θ − iπ)

(θ+ iπ)(θ − 2iπ)
, S3(θ) = . . .

where θ = θ1 − θ2 is the rapidity difference of the incoming states.
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• This rational S−matrix corresponds to the Yangian Y (SO(3)). Yan-

gians always admit one-parametric deformation called the quantum

affine group.

• Corresponding S−matrix is a trigonometric one

S++
++(θ) =

sinhλ(θ − iπ)

sinhλ(θ+ iπ)
, S+0

+0 =
sinhλθ

sinhλ(θ − 2iπ)
S++
++(θ), . . .

where λ is the deformation parameter. At λ → 0 we are back to the

rational case.

• It is naturally to expect that there should exist an integrable de-

formation of the O(3) SM, which corresponds to this trigonometric

S−matrix.

• At least this deformed sigma-model should correspond to renormal-

izable QFT.
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• Analysis of general sigma-model

A =
1

4π

∫ (

Gµν(ϕ)∂ϕ
µ∂̄ϕν + . . .

)

d2x,

requires the target space metric Gµν to satisfy the Ricci flow equations

Rµν + · · · = −Ġµν, where · = d

dt
, t ∼ log

Λ∗

Λ

• There is remarkable solution in 2d (Fateev, Onofri, Zamolodchikov)

ds2 =
κ

ν

(

dζ2

(1− ζ2)(1− κ2ζ2)
+

(1− ζ2)dφ2

(1− κ2ζ2)

)

, κ = − tanh νt

• While embedded in 3d it looks like a “sausage” of length L = −√
νt:

infinitely long in the UV (t → −∞) and shrinking at the intermediate

scale (t ∼ 0). At ν → 0 we are back to the round sphere.

• It has been conjectured that the full theory promoted by the one-loop

action is integrable with the trigonometric S−matrix.
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• We note that

S++
++(θ) =

sinhλ(θ − iπ)

sinhλ(θ+ iπ)
, S+0

+0 =
sinhλθ

sinhλ(θ − 2iπ)
S++
++(θ), . . .

simplifies in the limit λ→ 1
2: S

++
++(θ) → −1 ...

• It looks like in the limit we have a theory of free boson and Dirac

fermion of the same mass.

• Away from λ = 1
2 one expects some local QFT. Remarkably, it has

been guessed by Alyosha Zamolodchikov

L =
1

8π

(

∂µΦ
)2

+ iψ̄γµ∂µψ+
πb2

2(1 + b2)

(

ψ̄γµψ
)2−

−mψ̄ψ cosh(bΦ)− m2

8πb2
sinh2(bΦ),

provided that λ = 1
2(1+b2)

.
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• As it becomes clear recently the sausage sigma-model belongs to the

more general class of the so called η−deformed sigma models.

• It’s all started with the seminal Klimciks observation (Klimcik 2008).

First, one deforms the PCF model

S =
1

2

∫

Tr
(

g−1∂+gg−1∂−g
)

d2x.

This theory has a global GL ×GR symmetry which acts as

g → UgV, U, V ∈ G.

This theory is known to be classically/quantum integrable (Zakharov-

Mikhailov, Polyakov-Wiegmann).

• Now, let H be the Lie subgroup of G and h = Lie(H). We can obtain

the sigma-model on a quotient space G/H by gauging

∂± → D± = ∂± − A±, A± ∈ h.

The non-trivial fact is that it preserves integrability (classically!).
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• The deformation is given in terms of the linear operator R: g → g

〈a,Rb〉 = −〈Ra, b〉,

and satisfies

[Ra,Rb] +R([a,Rb] + [Ra, b])− [a, b] = 0,

called the modified Yang-Baxter equation.

• With the operator R at hand we define the deformed PCF action as

S =
1

2

∫

Tr

(

g−1∂+g
1

1− ηR g−1∂−g
)

d2x,

where η is the deformation parameter (η = iκ). It has been shown by

Klimcik that this particular type of deformations survives the integra-

bility.

• Note that the deformed theory is still left G invariant. So, one can

apply the coset construction.
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• The action of the η−deformed coset sigma model can be written in

the form (Delduc et all)

S =
1

2

∫

Tr

(
(

g∂+g−1
)(c) 1

1− ηRg ◦ Pc

(

g∂−g−1
)(c)

)

d2x,

where Rg = Ad g−1 ◦ R ◦ Ad g and Pc is the projection on the coset

space.

• It has been shown that this theory is integrable provided that G/H is

a symmetric space.

• For example G/H = SO(N)/SO(N − 1) provides an integrable defor-

mation of the O(N) sigma-model.

• As expected SO(3)/SO(2) case corresponds to the deformed O(3)

sigma-model and coincides with the sausage model for certain choice

of the operator R.
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• One way to explain the duality requires bosonization. Namely, we

rewrite

L =
1

8π

(

∂µΦ
)2

+ iψ̄γµ∂µψ+
πb2

2(1 + b2)

(

ψ̄γµψ
)2 −mψ̄ψ cosh(bΦ)+ . . .

in terms of two bosonic fields (here β =
√

1+ b2)

L =
1

8π

(

∂µϕ
)2

+
1

8π

(

∂µΦ
)2 −m cos(βφ) cosh(bΦ)+ . . . .

• This theory is integrable [I2k−1, I2l−1] = 0. Perturbatively

I2k−1 = Ifree2k−1 +O(m), with Ifree2k−1 =
1

2π

∫

C
W2k(∂ϕ, ∂Φ)dz,

• For example,

W2(∂ϕ, ∂Φ) = (∂ϕ)2 + (∂Φ)2.

• Higher-spin densities can be defined from the requirement that they

commute with the perturbation

[Ifree2k−1,
∫

e±iβϕ±bΦdz] = 0.
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• Motivated by the explicit form of the bosonic Lagrangian we will study

more general setting. Let ϕ = (ϕ1, . . . , ϕN−1) be the N−1 component

bosonic field and consider the theory

L =
1

8π

(

∂µϕ
)2

+Λ
N∑

r=1

e(αr,ϕ),

where (α1, . . . ,αN) is a given set of vectors, which is required to have

maximal rank.

• We are only interested in the quantum field theories of this form with

infinitely many integrals of motion. In the leading order in Λ this

constraints the integrals of motion Ifreek to obey

[Ifreek ,
∫

e(αr,ϕ)dz] = 0, for all r = 1, . . . , N.
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• Practically, we study the equations
∮

Cz
e(ar,ϕ(ξ))Wk−1(z)dξ = ∂(. . . ),

where Wk(z) is some preferred set of currents in W−algebra. This
implies that the charges

Ik−1 =
∫

Wk(z)dz,

commute with all exponentials.

• There many solutions. Important for us, correspond to fermionic

screenings: (α,α) = −1

For N = 2n+1

︸ ︷︷ ︸

2n− 3−b2

−b2

1+ 2b2
1+ b2 −b2 −b21+ b2

1 + b2

1 + b2

−1− 2b2

1

2

3 4 5

2n

2n+1
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This picture defines an integrable system [I2k−1, I2l−1] = 0 with

I2k−1 =

∫

W2k(x)dx.

Explicitly one has ϕ = (Φ1, . . . ,Φn, φ1, . . . , φn)

W2(x) = (∂Φ, ∂Φ)+ (∂φ, ∂φ),

and

W4(x) = ((∂Φ, ∂Φ)+ (∂φ, ∂φ))2 +
2n− 1

3

n∑

k=1

(
1

b2
(∂Φk)

4 +
1

a2
(∂φk)

4
)

+

+2(2n−1)
n∑

k=1

(

(∂Φk)
2+(∂φk)

2
)
(

1

a

∑

j>k

∂2Φj+
1

b

∑

j<k

∂2φj−
2

2n− 1

n∑

j=1

(j−1)

(
1

a
∂

+

(

4(n+1)

3
+

2n− 1

3

(
1

b2
+

2

a2

))

(∂2Φ, ∂2Φ)+

(

4(n+1)

3
+

2n− 1

3

(
2

b2
+

1

a2

))

(∂2

+2
∑

i≤j
(i−1)(2(j−n)−1)

(

2−δij
)( 1

a2
∂2Φi∂

2Φj+
1

b2
∂2φn−i+1∂

2φn−j+1

)

+

+
2

ab

(

4
∑

i,j

(i− 1)(n− j)∂2Φi∂
2φj − (2n− 1)

∑

i>j

(2(i− j)− 1)∂2Φi∂
2φj

)

.
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• Using boson-fermion correspondence we will arrive to the Lagrangian

which is supposed to describe the theory

L =
n∑

k=1

(

1

8π

(

∂µΦk

)2
+ iψ̄kγ

µ∂µψk +
πb2

2(1 + b2)

(

ψ̄kγ
µψk

)2
)

−

−m

(

ebΦ1ψ̄1ψ1 +
n−1∑

k=2

(

ebΦkψ̄k

(
1+ γ5

2

)

ψk+

+ e−bΦk−1ψ̄k

(
1− γ5

2

)

ψk

)

+ e−bΦn−1ψ̄n

(
1− γ5

2

)

ψn+

+ cosh bΦn ψ̄n

(
1 + γ5

2

)

ψn

)

−

− m2

8πb2



e2bΦ1 +2
n−1∑

k=2

eb(Φk−Φk−1) + eb(Φn−Φn−1) + e−b(Φn−1+Φn)



 .

• Last term corresponds to the counter term.
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One can show that in the theories with fermionic screenings there are

also screenings of sigma-model type. It means that for any two fermionic

screenings with exponents αi and αj such that (αi,αj) 6= 0 there is also

the field

Vi,j = (αi, ∂ϕ)e
(βij,ϕ), where βij =

2

(αi+ αj)
2
(αi+ αj),

such that
∮

Cz
W2k(z)Vi,j(w)dw = ∂zV(i,j)

k (z).

This fact suggests the idea to consider the theory

L =
1

8π

(

∂µϕ
)2

+ µ
∑

(i,j)∈I
(αi, ∂ϕ)(αi, ∂̄ϕ)e

(βij,ϕ) + . . . ,

which might be the dual sigma-model description of the original theory.

By . . . we denoted possible counterterms. In order to take them into

account we will use RG approach.
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• Within this approach we have to study the one-loop evolution equa-

tion

Rµν +2∇µ∇νΨ = −Ġµν,

Namely, we are looking for the solution to this equation with the UV

asymptotic prescribed by the bare Lagrangian

L =
1

8π

(

∂µϕ
)2

+ µ
∑

(i,j)∈I
(αi, ∂ϕ)(αi, ∂̄ϕ)e

(βij,ϕ) + . . . ,

• Here Ψ describes the effect of t-dependent diffeomorphisms (not all).
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Consider the simplest case: N = 5. Let, (x1, x2, x3, x4) be the local

coordinates in R
4. We expect that the solution should behave in UV

t→ −∞ as

Gµν = δµν + eαt
(

Aµνe
x1 +Bµνe

−x1−x2 + Cµνe
−x1+x2

)

+ . . . ,

Ψ = (ρ, x) + . . . ,

where

Aµν =








1 0 i 0
0 0 0 0
i 0 −1 0
0 0 0 0







, Bµν =








0 0 0 0
0 1 0 i
0 0 0 0
0 i 0 −1







, Cµν =








0 0 0 0
0 1 0 −i
0 0 0 0
0 −i 0 −1







,

and ρ, some unknown constant vector.

At leading order we have

α =
3

4
, ρ =

(

−1

4
,0,−3i

4
,
i

2

)

.

Solving the asymptotic problem one can see that

Gµν =








F1 0 iF5 0
0 F2 − cosh(x2)F6 0 −i sinh(x2)F6
iF5 0 F3 0
0 −i sinh(x2)F6 0 F4 + cosh(x2)F6







, Ψ = (ρ, x)+F7.

16



These equations are compatible provided that

F2 = F4, F2
2 = 1+ F2

6 .

The function F7 is arbitrary. We can choose it such that the following

relations holds

detG = F1F3 + F2
5 = 1.

With this choice the problem has the unique solution

F3 =
(1− U)(1− UV )

1− U2V
, F5 =

U(1− V )

1− U2V
+

2

3

UV (1− U)

1− U2V
,

F6 = V
1
2

(

(1 + V )

(1− V )2
1+ U2V

1− U2V
−
(

1

2
+

4V

(1− V )2

)

U

1− U2V

)

,

F7 = log

(

(1− UV )2

1− V

)

where

U = e
3t
4 ex1, V =

1

4
e
3t
2 e−2x1.
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It is convenient to introduce new coordinates ζ, θ, φ1 and φ2 by the

following equations

F3 =
κ(1− ζ2)

(1− κ2ζ2)
, tanh

(
x2
2

)

= sin θ,

κ =
2− e

3t
2

2+ e
3t
2

, φ1 =
x3
2
, φ2 =

x4
2

− i

2
log cos θ.

In these coordinates the metric has the form (after rescaling ds2 → 4νds2,

t→ 4νt+ log2)

ds2 =
κ

ν

(

dζ2

(1− ζ2)(1− κ2ζ2)
+

(1− ζ2)dφ21
(1− κ2ζ2)

+ ζ2dθ2 +2iζ2 tan θdθdφ2+

+
(1− κ2ζ4 sin2 θ)dφ22

κ2ζ2 cos2 θ

)

.
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We can also perform the T-duality in the φ2 isometry making the metric

diagonal

ds̃2 =
κ

ν




dζ2

(1− ζ2)(1− κ2ζ2)
+

(1− ζ2)dφ21
(1− κ2ζ2)

+
ζ2

1− κ2ζ4 sin2 θ

(

dθ2 + cos2 θ dφ22

)





and generating the non-zero pure imaginary B−field

B =
iκ2 sin θ cos θζ4

ν(1− κ2ζ4 sin2 θ)
dθ ∧ dφ2.

It can be checked that this metric and B−field coincide with the ones

obtained from the η = iκ-deformed O(5) sigma-model action mentioned

in the introduction.
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Conclusions

• Presumably, the duality should happen for all η−deformed SSSM. It

is not known how to arrive to the system of screening fields starting

from the deformed sigma-model action.

• At the moment it is unclear how to consider supergroup valued sigma-

models in this context (important for AdS/CFT sigma-models).

• Once the dual theory is constructed. One has a system of local IM’s.

It is interesting to consider spectral problem for this system.

• .....
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