Spinning Mellin Bootstrap

Massimo Taronna

Princeton University

Mostly based on: 1702.08619, 1708.08404, 1804.09334 & to appear

w. Charlotte Sleight

Feynman diagrams quickly become unmanageable, however final result of the resummation of many complicated diagram is very often simple

Use symmetry & Quantum Mechanics to find the answer directly

Challenges in Analytic Bootstrap

The basic idea is to bypass Feynman diagram (bulk or boundary) computation and just impose:

Goals (if time permits):

- use Mellin space to uncover explicitly inversion formulas!
- Clarify the role of AdS/CFT at tree level (kinematic transform)
- Demystify "holographic reconstruction": equivalence between Noether procedure and bootstrap at tree-level
- Revisit the role of differential operators to generate spinning blocks in terms of higher-spin generators

• ...

Inversion formulas in S-matrix

Inversion formula are standard tools in S-matrix theory

$$\mathcal{M}(s,t(\theta)) = \sum_{J} a_{J}(s) C_{J}(\cos \theta)$$
Partial waves
(fixed by isometries – kinematics)
$$a_{J}(s) = \int_{-1}^{1} d(\cos \theta) (\sin \theta)^{d-4} C_{J}(\cos \theta) \mathcal{M}(s,t(\theta))$$
Obtain the spin J coefficient directly from S-matrix

Study the above problem as a function of spin: "continuous spin"

$$=\sum_{l} c_J(s) C_J(\cos \theta)$$

Inversion formulas & Bulk locality

What is the interpretation of analyticity in spin?

$$f(z) = \sum_{l} f_{l} z^{l} \qquad \qquad \lim_{z \to 0} \left| \frac{f(z)}{z} \right| = 0$$

Inversion = Cauchy
$$f_j = \oint \frac{dz}{z} z^{-l} f(z)$$

Coefficients form an infinite family and have to be varied analytically

Inversion formulas in CFT

Inversion formula are standard tools in Harmonic analysis: diagonalize Casimir in a way that preserves self-adjointness $C_2 = \frac{1}{2}L_{AB}L^{AB}$

$$\langle f|g \rangle \sim \int du \, dv \, \mu(u,v) \, f(u,v) \, g(u,v) \qquad \langle f|\mathcal{C}_2 \, g \rangle = \langle \mathcal{C}_2 f|g \rangle$$
$$u = \frac{y_{12}^2 y_{34}^2}{y_{13}^2 y_{24}^2} \qquad v = \frac{y_{14}^2 y_{23}^2}{y_{13}^2 y_{24}^2}$$

Self-adjointness requires that f and g are single valued functions (in Euclidean kinematics)

An orthogonal basis of eigenfunctions of the Casimir can be found in terms of conformal partial waves

$$F_{l',\Delta} = G_{J,\Delta}(u,v) - \# G_{J,d-\Delta}(u,v) \sim u^{\frac{\Delta-J}{2}} [g(v) + O(u)] - \# u^{\frac{d-\Delta-J}{2}} [\tilde{g}(v) + O(u)]$$
Conformal block Shadow
$$\langle \phi \phi \phi \phi \rangle = \# \int_{-i\infty}^{+i\infty} \frac{d\Delta}{2\pi i} \sum_{l} c_{l}(\Delta) F_{l,\Delta}(u,v) + \text{non-normalisable}$$

$$\Delta \leq \frac{d}{2}$$

Inversion formulas

Inversion formula are standard tools in Harmonic analysis: diagonalize Casimir in a way that preserves self-adjointness

$$c(l',\Delta) = \# \int du \, dv \, \mu(u,v) \, F_{l',\Delta}(u,v) \, \langle \phi \phi \phi \phi \rangle$$

Ortogonality & completeness requires that Delta is on the principal series: $\Delta = rac{d}{2} - i
u$

 $\sim e^{-i E x_0}$

The above Euclidean formula is the basis for recent developments of analytic bootstrap [Alday et al., Caron-Huot, ...]

$$x_4 = -x_3 = (\rho, \bar{\rho})$$
 $x_1 = -x_2 = (1, 1)$

Inversion formulas

Toy example of analytic continuation in S-matrix theory (d=2)

Similar steps in CFT allow to express the function c in terms of the doublediscontinuity of the correlator

$$c(l,\Delta) = \int_0^1 du dv \, G_{\Delta+1-d,l+d-1}(u,v) \, d\text{Disc}[\langle \phi \phi \phi \phi \rangle]$$

The CPW gets analytically continued into a conformal block with spin and dimension interchanged (analyticity in spin/continuous spin)

[Caron-Huot, 2017]

Inversion formulas & Bulk locality

Inversion formula tells us that the only free parameters are the first 2

All other terms have to resum to reproduce the discontinuity of the amplitude (EFT).

Contact terms beyond the first few must resum to 1/Box (EFT)

[Sleight & M.T. 2017]

Mellin space

So far all integral formulas we wrote required careful analysis of the conformal integrals involved (gauge fixing etc...)

is there a way to make manifest these orthogonality properties?

$$F_{l=0,\Delta} = \# \int d^d y_0 \left\langle \left\langle \mathcal{O}_{\Delta_1}(y_1) \mathcal{O}_{\Delta_2}(y_2) \mathcal{O}_{\Delta,0}(y_0) \right\rangle \right\rangle \left\langle \left\langle \tilde{\mathcal{O}}_{\Delta,0}(y_0) \mathcal{O}_{\Delta_3}(y_3) \mathcal{O}_{\Delta_4}(y_4) \right\rangle \right\rangle$$

$$\sim \# \frac{1}{(y_{12}^2)^{\frac{\Delta_1 + \Delta_2 - \Delta}{2}}(y_{34}^2)^{\frac{\Delta_3 + \Delta_4 - (d - \Delta)}{2}}} \int d^d y_0 \frac{1}{(y_{01}^2)^{\frac{\Delta + \Delta_1 - \Delta_2}{2}}(y_{20}^2)^{\frac{\Delta_2 + \Delta - \Delta_1}{2}}(y_{03}^2)^{\frac{(d - \Delta) + \Delta_3 - \Delta_4}{2}}(y_{40}^2)^{\frac{\Delta_4 + (d - \Delta) - \Delta_3}{2}}} } \\ \sim \# F_{l,\Delta}(u, v)$$
 Standard 4pt conformal integral

Symanzik star formula allows to evaluate these integral in terms of a Mellin representation

Mellin space

Mack polynomials encode conformal partial waves in terms of degree / polynomials in analogues of Mandelstam variables

For each primary operator we have an infinite series of poles:

$$t = \tau + 2m$$

 $\begin{bmatrix} m = 0 & Physical pole \\ m > 0 & Descendants pole \end{bmatrix}$

Projecting out the shadow poles is straightforward: [Fitzpatrick & Kaplan 2011]

$$G_{l,\tau}(s,t) \sim \left(e^{i\pi(t+\tau+2l-d)} - 1\right) P_{l,\tau+l}(s,t)$$

Mellin space

Orthogonality of CPWs becomes manifest in Mellin space: [Costa et al.]

$$P_{l,\tau}(s,t) \sim \sum_{m} \frac{\mathcal{Q}_{l,m}(s)}{t-\tau-2m} \qquad \begin{cases} \rho(s,t) \to \Gamma\left(\frac{s+\tau}{2}\right)^2 \Gamma\left(-\frac{s}{2}\right)^2 \\ & \swarrow \\ \mathcal{Q}_{l,0} \sim \mathfrak{N}^{-1} Q_l^{(\tau,\tau,0,0)}(s) \end{cases}$$

The kinematic polynomials turn out to be Continuous Hahn polynomials (3F2)

$$\langle f(s)g(s)\rangle_{a,b,c,d} = \int_{-i\infty}^{i\infty} \frac{ds}{4\pi i} \, \Gamma(\frac{s+a}{2})\Gamma(\frac{s+b}{2})\Gamma(\frac{c-s}{2})\Gamma(\frac{d-s}{2}) \, f(s) \, g(s)$$

$$Q_l^{(a,b,c,d)}(s) = \frac{(-2)^l \left(\frac{a+c}{2}\right)_l \left(\frac{a+d}{2}\right)_l}{\left(\frac{a+b+c+d}{2}+l-1\right)_l} {}_3F_2\left(\begin{array}{c} -l, \frac{a+b+c+d}{2}+l-1, \frac{a+s}{2} \\ \frac{a+c}{2}, \frac{a+d}{2} \end{array}; 1 \right) \sim s^l + \dots$$

Position space orthogonality becomes manifest in Mellin space!

$$c(l,\Delta) \sim \int \frac{ds}{4\pi i} \,\rho(s,\tau) \,\mathcal{M}(s,\tau) Q_l^{(\tau,\tau,0,0)}(s)$$

What about spinning external legs?

Spinning Correlators

Spinning correlators require to introduce tensorial structures

$$\mathsf{Y}_{i,jk} = \frac{z_i \cdot y_{ij}}{y_{ij}^2} - \frac{z_i \cdot y_{ik}}{y_{ik}^2} \qquad \qquad \mathsf{H}_{ij} = \frac{1}{y_{ij}^2} \left(z_i \cdot z_j + \frac{2z_i \cdot y_{ij}z_j \cdot y_{ji}}{y_{ij}^2} \right)$$

 $z_i \cdot z_i = 0$

3pt functions can be decomposed in terms of monomials:

$$\langle \langle \mathcal{O}_{\Delta_1,J_1}(y_1)\mathcal{O}_{\Delta_2,J_2}(y_2)\mathcal{O}_{\Delta_3,J_3}(y_3) \rangle \rangle^{(\mathbf{n})} = \frac{\mathfrak{I}_{J_1,J_2,J_3}^{n_1,n_2,n_0}}{(y_{12}^2)^{\frac{\tau_1+\tau_2-\tau}{2}}(y_{23}^2)^{\frac{\tau_2+\tau-\tau_1}{2}}(y_{31}^2)^{\frac{\tau+\tau_1-\tau_2}{2}}} \\ \mathfrak{I}_{J_1,J_2,J_3}^{n_1,n_2,n_3} = \mathsf{Y}_{1,23}^{J_1-n_2-n_3}\mathsf{Y}_{2,31}^{J_2-n_3-n_1}\mathsf{Y}_{3,12}^{J_3-n_1-n_2}\mathsf{H}_{23}^{n_1}\mathsf{H}_{31}^{n_2}\mathsf{H}_{12}^{n_3}$$

Conformal symmetry allows to reconstruct the correlator from a subset of the structures

Spinning CPWs

The definition of CPWs given in the scalar case is very general

$$F_{\tau,l}^{\mathbf{n},\bar{\mathbf{n}}}(y_i) \sim \int d^d y_0 \left\langle \left\langle \mathcal{O}_{\Delta_1,J_1}(y_1) \mathcal{O}_{\Delta_2,J_2}(y_2) \mathcal{O}_{\Delta,l}(y_0) \right\rangle \right\rangle^{(\mathbf{n})} \left\langle \left\langle \tilde{\mathcal{O}}_{\Delta,l}(y_0) \mathcal{O}_{\Delta_3,J_3}(y_3) \mathcal{O}_{\Delta_4,J_4}(y_4) \right\rangle \right\rangle^{(\bar{\mathbf{n}})}$$

$$F_{\tau,l}^{\mathbf{n},\bar{\mathbf{n}}}(s,t|W_{ij})$$

The above integral can be explicitly performed in Mellin space but without a guiding principle its form does not show any structure

Orthogonality is not manifest because it involves a delicate interplay between different tensor structures...

We will argue that a key guiding principle lies in the bulk-to-boundary map: (AdS/CFT)

Tree level AdS/CFT ~ momentum space

What is the bulk dual (position space version) of a CPW?

[Ferrara, Grillo, Gatto, Todorov, Fronsdal...]

"Momentum space" for AdS

Expand in basis of bi-tensorial harmonic functions (analogue of plane waves):

 $\begin{bmatrix} \nabla^2 + \left(\frac{d}{2} + i\nu\right) \left(\frac{d}{2} - i\nu\right) + J \end{bmatrix} \Omega_{\nu,J} = 0, \qquad \nabla \cdot \Omega_{\nu,J} = 0, \qquad (g \cdot \Omega_{\nu,J}) = 0$ divergence-less trace-less

Bulk-to-bulk propagators:

 $m^2 R^2 = \Delta \left(\Delta - d \right) - s$

[Massive fields: Costa et al.`14, Massless: Bekaert et al. `14; Sleight, M.T. `17]

Harmonic functions factorise into bulk-to-boundary propagators:

[Leonhardt, Manvelyan, Rühl `03; Costa et al. `14]

"Momentum space" for AdS

Expand in basis of bi-tensorial harmonic functions (analogue of plane waves):

 $\begin{bmatrix} \nabla^2 + \left(\frac{d}{2} + i\nu\right) \left(\frac{d}{2} - i\nu\right) + J \end{bmatrix} \Omega_{\nu,J} = 0, \qquad \begin{array}{c} \nabla \cdot \Omega_{\nu,J} = 0, \\ \text{divergence-less} & \text{trace-less} \end{array}$

Bulk-to-bulk propagators:

At **tree-level**, diagrams factorise into **lower-point trees**, which are connected via conformal integration over the boundary:

No AdS/CFT assumption but only kinematical rewriting!

"Fourier transforming" 3pt vertices

Standard Trick: Reduce integral over AdS to its scalar seed

[Mück et al.; Freedman et al. `98]

Spinning tree level 3pt diagrams

Result takes the form:

The above problem suggest a new basis for 3pt CFT structures:
$$\delta_{12} = \frac{1}{2}(\tau_1 + \tau_2 - \tau_3)$$
$$[[\mathcal{O}_{\Delta_1,s_1}(y_1)\mathcal{O}_{\Delta_2,s_2}(y_2)\mathcal{O}_{\Delta_3,s_3}(y_3)]]^{(\mathbf{n})} \sim \frac{\mathsf{H}_1^{n_1}\mathsf{H}_2^{n_2}\mathsf{H}_3^{n_3}}{(y_{12})^{\delta_{12}}(y_{23})^{\delta_{23}}(y_{31})^{\delta_{31}}}$$
$$\times \left[\prod_{i=1}^3 \#J_{\cdots}(\sqrt{q_i})\right] \mathsf{Y}_1^{s_1-n_2-n_3}\mathsf{Y}_2^{s_2-n_3-n_1}\mathsf{Y}_3^{s_3-n_1-n_2}$$
$$q_i = H_i\partial_{Y_{i-1}}\partial_{Y_{i+1}}$$

We can holographically reconstruct each basis element $[[\mathcal{O}_{\Delta_1,s_1}(x_1)\mathcal{O}_{\Delta_2,s_2}(x_2)\mathcal{O}_{\Delta_3,s_3}(x_3)]]^{(n)}$

$$\mathcal{I}_{s_{1},s_{2},s_{3}}^{n_{1},n_{2},n_{3}} = \sum_{m_{i}=0}^{n_{i}} C_{s_{1},s_{2},s_{3};m_{1},m_{2},m_{3}}^{n_{1},n_{2},n_{3}} I_{s_{1},s_{2},s_{3}}^{m_{1},m_{2},m_{3}} \begin{bmatrix} \delta_{12} = \frac{1}{2}(\tau_{1} + \tau_{2} - \tau_{3}) \\ \tau = \Delta - s \end{bmatrix}$$

$$C_{s_{1},s_{2},s_{3};m_{1},m_{2},m_{3}}^{n_{1},n_{2},n_{3}} = \left(\frac{d-2(s_{1}+s_{2}+s_{3}-1)-(\tau_{1}+\tau_{2}+\tau_{3})}{2}\right)_{m_{1}+m_{2}+m_{3}} \prod_{i=1}^{3} \left[2^{m_{i}} \binom{n_{i}}{m_{i}}(n_{i}+\delta_{(i+1)(i-1)}-1)_{m_{i}}\right]$$

$$I_{s_{1},s_{2},s_{3}}^{n_{1},n_{2},n_{3}}(\Phi_{i}) = \eta^{M_{1}(n_{3})M_{2}(n_{3})}\eta^{M_{2}(n_{1})M_{3}(n_{1})}\eta^{M_{3}(n_{2})M_{1}(n_{2})}(\partial^{N_{3}(k_{3})}\Phi_{M_{1}(n_{2}+n_{3})N_{1}(k_{1})}) \\ \times (\partial^{N_{1}(k_{1})}\Phi_{M_{2}(n_{3}+n_{1})N_{2}(k_{2})})(\partial^{N_{2}(k_{2})}\Phi_{M_{3}(n_{1}+n_{2})N_{3}(k_{3})})$$

Weight Shifting Operators

Cubic couplings induce deformations of gauge transformations and gauge symmetries

$$\int \left[(\delta^{(1)} \Phi) \Box \Phi + \delta^{(0)} \mathcal{V} \right] = 0$$

The commutator of two gauge transformations closes to the lowest order automatically: extract gauge bracket (field independent)

$$\delta_{[\epsilon_1}^{(0)}\delta_{\epsilon_2]}^{(1)} \approx \delta_{\llbracket \epsilon_1, \epsilon_2 \rrbracket^{(0)}}^{(0)}$$

The deformation of gauge transformations are the most general conformal differential operators that can be written down!

Weight Shifting Operators

Closure, Jacobi, covariance of cubic couplings can be explicitly written down in terms of 6j symbols of the conformal group:

Weight Shifting Operators

Closure, Jacobi, covariance of cubic couplings can be explicitly written down in terms of 6j symbols of the conformal group:

Noether procedure for cubic vertices at quartic order:

$$\delta_{W} \qquad \overbrace{a}^{\mathcal{O}_{2}} \qquad \overbrace{\mathcal{O}_{3}}^{\mathcal{O}_{1}} = \sum g_{\mathbf{n}}g_{\mathbf{\bar{n}}} \left\{ \begin{array}{cc} \mathcal{O}' & \mathcal{O}_{2} & \mathcal{O}_{1} \\ \mathcal{O} & W & \mathcal{O}_{3} \end{array} \right\}_{\mathbf{m},\mathbf{\bar{m}}}^{\mathbf{n},\mathbf{\bar{n}}} = 0 \qquad \begin{array}{c} \text{Many solutions are} \\ \text{known: type } \mathbf{A}_{\mathbf{n}}, \mathbf{B}_{\mathbf{n}}, \dots \end{array}$$

Going to Mellin Space

$$F_{\Delta,l}^{\mathbf{n},\bar{\mathbf{n}}}(y_i) \sim \int d^d y_0 \left[\left[\mathcal{O}_{\Delta_1,J_1}(y_1) \mathcal{O}_{\Delta_2,J_2}(y_2) \mathcal{O}_{\Delta,l}(y_0) \right] \right]^{(\mathbf{n})} \left[\left[\tilde{\mathcal{O}}_{\Delta,l}(y_0) \mathcal{O}_{\Delta_3,J_3}(y_3) \mathcal{O}_{\Delta_4,J_4}(y_4) \right] \right]^{(\bar{\mathbf{n}})}$$

 $\xrightarrow{\sum_{r_i} (z_1 \cdot \partial_{y_1})^{r_1} (z_2 \cdot \partial_{y_2})^{r_2} (z_3 \cdot \partial_{y_3})^{r_3} (z_4 \cdot \partial_{y_4})^{r_4} \int d^d y_0 \frac{1}{(y_{01}^2)^{\alpha_1} (y_{02}^2)^{\alpha_2} (y_{03}^2)^{\alpha_3} (y_{04}^2)^{\alpha_4}}$ The coupling itself knows everything of the differential operator y_0

Everything is reduced to a single scalar integral!

$$\sim \sum_{m} \frac{\mathcal{Q}_{l,m}^{\mathbf{n},\bar{\mathbf{n}}}(s|W_{ij})}{t-\tau-2m} + \text{shadow}$$

Orthogonality of conformal blocks can be read off from the leading pole, e.g.: $O(n_1, n_2, n_3; 0) (-1, 1, 1) O(\tau + 2n_1, \tau + 2n_2, 2n_1, 2n_2) (-1)$

$$\mathcal{Q}_{l,0}^{\mathbf{n},\mathbf{0}}(s|W_{ij}) \sim \Upsilon_{\mathbf{J}}^{(\mathbf{n_1},\mathbf{n_2},\mathbf{n_3};\mathbf{0})}(s|W_{ij}) Q_{l-n_1-n_2}^{(\tau+2n_1,\tau+2n_2,2n_1,2n_2)}(s)$$

Remarkable Fact: factorization of I dependence from external spin dependence!!

Inversion formulas manifest in terms of the Continuous Hahn polynomial

Applications

- Crossing Kernels
- Large N fixed points
- Wilson-Fisher

Crossing Kernels

Arbitrary exchanged spin (single structure): $W_{12}^{J_1}W_{21}^{J_2}W_{34}^{J_3}W_{43}^{J_4}$

1'

-

[C. Sleight & M.T.]

Mean Field Theory

The first step is to extract the leading order OPE

$$\mathcal{A}_{0000}^{(0)} = \left[1 + u^{\Delta} + \left(\frac{u}{v}\right)^{\Delta}\right] = 1 + \sum_{l,q=0}^{\infty} {}^{(0)}a_{q,l}^{[\Phi\Phi]}u^{\Delta+q}g_{2\Delta+2q,l}\left(u,v\right)$$

A simple test for inversion formula but we need to go to Mellin space...

Mean Field Theory

The first step is to extract the leading order OPE

$$\mathcal{A}_{0000}^{(0)} = \left[1 + u^{\Delta} + \left(\frac{u}{v}\right)^{\Delta}\right] = 1 + \sum_{l,q=0}^{\infty} {}^{(0)}a_{q,l}^{[\Phi\Phi]}u^{\Delta+q}g_{2\Delta+2q,l}\left(u,v\right)$$

A simple test for inversion formula but we need to go to Mellin space...

$$\left(\int e^{ipx_1} e^{ipx_2} \sim \delta(x_1 + x_2) \right) \qquad \int_0^\infty dx \, x^{s-1} \, x^\Delta \sim \langle s + \Delta \rangle$$

$$\begin{array}{c} \text{M.T. 2016; Bekaert et al. 2016]} \\ \text{M.T. 2016; Bekaert et al. 2016]} \\ \text{This integral is divergent... (as for HS theory in flat space)} \\ \int_{-i\infty}^{+i\infty} \frac{ds}{4\pi i} x^{-s} f(s) \, \langle s + \Delta \rangle = x^\Delta f(-\Delta) \end{array}$$

f/s lat of a second to feature at the second second

The Mellin transform of Wick-contractions is a delta-function distribution

O(N) model

The O(N) model is not much different than MFT

$$u^{\Delta/2} + \left(\frac{u}{v}\right)^{\Delta/2} + u^{\Delta/2} \left(\frac{u}{v}\right)^{\Delta/2}$$

$$\sum_{l}^{\infty} {}^{(0)}a_{l}^{[\mathcal{J}]}u^{(d-2)/2}g_{d-2/2,l}(u,v) \qquad \sum_{q}^{\infty} \sum_{l}^{\infty} {}^{(0)}a_{l,q}^{[OO]}u^{(d-2+2q)/2}g_{(d-2+2q)/2,l}(u,v)$$

The above conformal block expansion can be arranged in twist block expansions

N.B. The above sum are not uniformly convergent:

$$\sum_{l=0}^{\infty} {}^{(0)}a_{l}^{[\mathcal{J}]}u^{(d-2)/2}g_{d-2/2,l}(u,v) = u^{(d-2)/2}\left(1 + v^{-(d-2)/2}\right) + \underbrace{\left(\sum_{l=0}^{l}g_{l}a_{l}^{[\mathcal{J}]}\right)}_{=0}u^{(d-2)/2+1} + \dots$$

Sum over spin must reproduce singularities in the crossed channels...

Anomalous Dimensions

The simplest external scalar case:

Anomalous Dimensions

The simplest external scalar case:

 $[\mathcal{OO}]_{l,n} \qquad \left[\begin{array}{c} n=0 & \mbox{Leading twist operators} \\ n>0 & \mbox{Subleading twist operators} \end{array} \right]$

We obtain explicit expressions for all subleading twist double trace operators

$$\left(\gamma_{n,l} \sim \sum_{j=0}^{n} D_j T_{n-j,j}^n\right)$$

$$\begin{split} T_{ij}^{n} &= \int_{-i\infty}^{i\infty} \frac{ds}{4\pi i} \, \Gamma(-\frac{s}{2})^{2} \Gamma(\frac{d+s-\tau}{2}+i) \Gamma(\frac{s+\tau}{2}+j) \, Q_{l}^{2\Delta+2n,2\Delta+2n,0,0}(s) \\ &= \frac{2^{l} \Gamma\left(\frac{2j+\tau}{2}\right)^{2} \Gamma\left(\frac{d+2i-\tau}{2}\right)^{2} \left(\frac{2\Delta+2n}{2}\right)_{l}^{2}}{(l+2\Delta+2n-1)_{l} \Gamma\left(\frac{d+2i+2j}{2}\right)} \, _{4}F_{3}\left(\begin{matrix} -l,2\Delta+2n+l+1,\frac{d}{2}+i-\frac{\tau}{2},j+\frac{\tau}{2},j$$

[OO]_{1,0}

On the real axis the dimension of the CPW in t, u channel. The bar is the dimension of the external legs

[OO]_{2,0}

On the real axis the dimension of the CPW in t, u channel. The bar is the dimension of the external legs

Wilson-Fisher

The simplest external scalar case:

 $[\mathcal{OO}]_{l,n} \qquad \left[\begin{array}{c} n=0 & \text{Leading twist operators} \\ \\ n>0 & \text{Subleading twist operators} \end{array} \right]$

We obtain a closed formula for arbitrary I and n: $d = 4 - \epsilon$ $\tau = 2 - \epsilon$

$$\delta\gamma_{n,l} = \epsilon \, c_{\Phi\Phi\mathcal{O}} \, (-1)^l \, \frac{(\Delta-1)^2}{(\Delta+n-1)^2} \, {}_4F_3 \begin{pmatrix} 1, 1, -l, l+2\Delta+2n-1\\ 2, \Delta+n, \Delta+n \end{pmatrix}$$

The above result applies to the WF-fixed point with: $\lambda \int {\cal O}^2 \left\langle \Phi \bar{\Phi} \Phi \bar{\Phi} \bar{\Phi} \right\rangle$

$$\Phi = \phi \phi \qquad \bar{\Phi} = \bar{\phi} \bar{\phi} \qquad \mathcal{O} = \phi \bar{\phi} \qquad c_{\Phi \bar{\Phi} \mathcal{O}} = \frac{4}{N}$$

Large spin behavior same independently on n:

$$\gamma_{n,l\to\infty}^{[\Phi\Phi]} \sim \frac{8}{N} \, \frac{\log l}{l^2} \, \epsilon$$

JOJO

 $[\mathcal{O}_J\Phi]_{(l-J,J)}$

First the OPE:

$$a_{(l,0)}^{[\mathcal{O}_J\Phi]} = \frac{2^{l-J}(2J+\tau_1)_{l-J}(\tau_2)_{l-J}}{(l-J)!(l+J+\tau_1+\tau_2-1)_{l-J}}$$

JOJO

And then anomalous dimensions:

$$\delta\gamma_{(J,0)}^{[\mathcal{O}_{J}\Phi]} = \frac{J!}{(-2)^{J}} \frac{\left(\frac{d-\tau+\tau_{1}+\tau_{2}}{2}+J-1\right)_{J}}{\left(\frac{\tau_{1}+\tau_{2}-\tau}{2}\right)_{J}} \\ \times \frac{2\Gamma(\tau)\Gamma\left(\frac{d-\tau+\tau_{1}-\tau_{2}}{2}\right)\Gamma\left(\frac{d-\tau-\tau_{1}+\tau_{2}}{2}\right)}{\Gamma\left(\frac{d}{2}+1\right)\Gamma\left(\frac{d}{2}-\tau\right)\Gamma\left(\frac{\tau+\tau_{1}-\tau_{2}}{2}\right)\Gamma\left(\frac{\tau-\tau_{1}+\tau_{2}}{2}\right)} c_{\mathcal{O}_{J}} c_{\mathcal{O}_{\Phi}\Phi}$$

Outlook

• We barely scratched the surface of a remarkable hidden structure behind CFT conformal blocks with spinning external and internal legs!

- Mellin space makes manifest inversion formulas and reduces them to finite dimensional linear algebra
- Lesson: The bulk to boundary explicit map of arXiv:1702.08619 can teach us a lot about the spinning bootstrap and it is the analogues of momentum space for flat space HS correlators
- Analyticity in spin sets the convergence rate of quartic interactions (EFT & 1/Box)

