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• 6d model of a set of self-dual 2-form B-fields
interacting with a non-abelian vector A-field in 5d plane

•may be related to (non-local) interacting theory of B-fields

• compute divergent part of one-loop effective action:
(DF)2 + F3 structure

• discuss possible cancellation



Motivation:
• interacting theory of non-abelian B-fields:
6d CFT’s, theory of multiplet M5-branes
• single M5-brane: 11d sugra solution –
free 6d CFT – (2, 0) tensor multiplet as w-volume theory:
selfdual Hµνλ = ∂[µBνλ], 5 φr and 2 Weyl ψa

• analogy with multiple D-branes connected by open strings:
N3 (2,0) multiplets to match N3 scaling in 11d sugra
• N3 scaling of observables of multiple M5-branes
explained (?) in terms of M2-branes ending on 3 M5-branes:
triple M5-brane connections by ”pants-like” membrane surfaces
provide dominant contribution [Klebanov, AT 96]

suggests Bijk
µν of (2, 0) tensor multiplets

in 3-tensor rep of SU(N) or SO(N) [Bastianelli, Frolov, AT 99]



• interacting (2,0) tensor multiplets as low-energy limit
of tensionless 6d string – closed strings carrying 3-plet indices
from virtual membranes connecting 3 parallel M5-branes

[cf. Hijk
µνλ = dBijk

µν + ... and Fij
µν in open string (adjoint) case]

• earlier discussions:
”tensionless 6d strings” [Witten; Strominger 95]

in fact, strongly coupled (2, 0) or (1, 0) CFTs [Seiberg 96]

implicit constructions as decoupling limits of string theory
• non-Lagrangian? no perturbative description
of RG flow leading to 6d CFT?

related to interacting L = (Hijk
µνλ)

2 + ...

only at quantum level – interacting fixed point?



• A-gauge theory in 6d: conf inv requires φFµνFµν + (∂φ)2

or non-unitary Fµν∂2Fµν for renormalizability
• attempts to construct classical theories of 6d B-fields:
consider tensor hierarchy of 1-, 2-, 3-form fields
e.g. non-abelian (1,0) t.m. [Samtleben, Sezgin, Wimmer 11]

L = φ(Bµν + Fµν)2 + (Cλµν + ∂[λBµν])
2 + ∂φ∂φ + ...

•may be natural to start with coupled system
of gauge fields A and B
• self-duality of B: unusual properties –
lack of manifest Lorentz symmetry and/or locality?



• first step: study bosonic system of B in some rep of G
coupled “minimally” to gauge vector A
• particular model [Ho, Huang, Matsuo 11]

consider both non-chiral and chiral (=selfdual H) versions
• consistent gauge-invariant coupling is possible
provided one keeps only 5d part of 6d Lorentz symmetry
• action is quadratic in B and local in particular gauge
with A-field restricted to 5d subspace of 6d space
[alternative: A is expressed in terms of B
leading to a non-local interacting theory of B-fields only]
• aim to study this (B, A) model at the quantum level
in one-loop approximation where B is integrated out
and A is treated as a background
• (DF)2 + F3 logarithmic UV divergences in eff action Γ
breaking classical scale invariance



• similar divergent terms appear in Γ also for
free scalar, spinor or YM coupled to 6d vector:
attempt to cancel these divergences
adding other fields (e.g., imposing supersymmetry)?
not clear how to do this but may be need to relax unitarity
• self-dual B-field model: a priori expect also
anomalous (gauge-symmetry breaking) terms
in P-odd part of effective action
(cf. Weyl spinor or grav. anomaly for single self-dual B
[Alvarez-Gaume, Witten 83])
• does not happen in the present case: as A-field
is restricted to 5 dimensions Γ has no P-odd part
– no gauge anomaly as in 5d theory



Non-abelian B-field coupled to gauge vector
• tensor field gauge symmetry

δBµν = ∂µεν − ∂νεµ

residual δεµ = ∂µη important for degrees of freedom count
non-abelian generalization to admit analog of residual symm
• to construct such model relax condition
of 6d Lorentz covariance (and locality)
• fields: 2-form field Bµν in some rep (e.g. adjoint) of G
and gauge vector Aµ

notation: Dµ... = ∂µ...+ [Aµ, ...], Fµν = ∂µ Aν− ∂ν Aµ + [Aµ, Aν]

• define non-abelian gauge transformations [Ho, Huang, Matsuo 11]

δAµ = Dµλ

δBµν = Dµεν − Dνεµ − [Fµν, (nρ∂ρ)
−1(nσεσ)] + [Bµν, λ]



• λ: Aµ gauge transf., εµ: Bµν gauge transf.
both taking values in algebra of G
• nµ constant unit vector – breaking O(6) symmetry to O(5)
• if assume nµ Aµ = 0 – get non-abelian generalization
of residual gauge symmetry under which δBµν is invariant:

δεµ = Dµη , δλ = 0

• if further impose nµ∂µ Aν = 0, i.e. Aµ depends
only on 5 of the 6 coordinates then gauge algebra closes

[δ1, δ2] = δ3 , λ3 = [λ1, λ2] , εµ3 = [λ1, εµ2]− [λ2, εµ1]

• corresponding covariant field strength of Bµν

Hµνλ = DµBνλ + [Fµν, (nρ∂ρ)
−1(nσBλσ)] + cycle

δεHµνσ = 0 , δλHµνσ = [Hµνσ, λ]



• thus one can couple non-abelian antisymmetric tensor
to non-abelian vector restricted to a codimension-1 subspace;
effective “non-locality” along the “bulk” direction
is gauge artifact: action is local in a gauge
• choose nµ in the 6th direction: nµ = (0, 0, 0, 0, 0, 1)

Aµ = {Ai(xk, 0), A6 = 0} , D6 = ∂6

Fi6 = 0 , Fij = ∂i Aj − ∂j Ai + [Ai, Aj]

• (B, A) model as intermediate step towards model
(non-Lorentz-invariant, non-local) of self-interacting B-fields ?

• e.g. relate A to B by non-local condition:
Ai ≡

∫
dx6 Bi6 = 2πRBi6(xk, 0)

• or treat Ai as independent and then integrate it out→
effective non-local model of self-coupled B-fields

• Ai as background, quantum B with only SO(5) of SO(1, 5)





Classical action and gauge fixing
• 6d field Bµν(xµ) (e.g. adjoint) coupled to 5d gauge field Ai(xj)

S(B, A) = 1
6

∫
d6x Tr (HµνλHµνλ)

• renormalizable model: add S(A) =
∫

d6x [c1(DF)2 + c2F3]

• explicit form:

Hij6 = ∂6Bij +DiBj6−DjBi6 , Hijk = DiBjk +[Fij, ∂−1
6 Bk6]+ cycle

δBij = Diε̄j−Djε̄i +[Bij, λ] , δBi6 = −∂6ε̄i +[Bi6, λ] , δAi = Diλ

λ, ε̄i = εi − Di∂
−1
6 ε6 depend on xi

• fix ε̄i gauge freedom by “axial” gauge Bi6 = 0

Bi6 = 0 : Hijk = DiBjk + DjBki + DkBij , Hij6 = ∂6Bij



S = 1
2

∫
d6x Tr

[
(∂6Bij)

2 + 1
3 HijkHijk

]
= 1

2

∫
d6x Tr

(
Bij∆mn

ij Bmn
)

∆mn
ij = −δmn

ij (∂2
6 + D2) + 2δ

[m
[i Dn]Dj]

DiBjk ≡ ∂iBjk + [Ai, Bjk], D2 ≡ DiDi , δmn
ij = δm

[i δn
j]

• classically scale invariant: overall dimensionless constant
• aim: compute logarithmic div part of eff action in Γ[Ai]

Γ = 1
2 log det ∆mn

ij (A)

• residual 5d local gauge transformations ():

B′ij = UBijU−1 , A′i = UAiU−1 + U∂iU−1 , U(xi) ∈ G

Γ: gauge-invariant combinations of Fij and Di



Free-theory partition function

• L = H2: covariant Feynman-like gauge [Schwarz 79]

Z =
[ (det ∆1)

2

det ∆2 (det ∆0)3

]1/2

∆n = −∂2 on rank n antisymmetric tensors
• equivalent form in transv. (Landau-like) gauge

Z =
[ det ∆1⊥

det ∆2⊥ det ∆0

]1/2
,

∆n⊥ on transv: det ∆1 = ∆1⊥ det ∆0, det ∆2 = det ∆2⊥ det ∆1⊥
• d.o.f. of rank 2 tensor in d dim: Z=[det ∆0]

−ν/2

ν2(d) = C2
d−2 = 1

2(d− 2)(d− 3) , ν2(6) = 6



• equivalent result in “axial” gauge Bi6 = 0 (i = 1, ..., 5)
H6ij = ∂6Bij, Hijk = 3∂[iBjk], Bij = B⊥ij + ∂ibj − ∂jbi

• int. over bi: det cancels against the ghost and Jacobian factors

Z =
1(

det ∆⊥
)1/2

∆⊥ is 6d Laplacian on B⊥ij :

same ν2 = 1
2 × 4× 5− (5− 1) = 6 d.o.f.

• in self-dual case get “square root” of this Z
self-dual tensor in 6d: ν2,+ = 3



Self-dual B-field model
analog of S(B, A) action with self-dual H = dB + ...?
free-field case of single B:

Hµνλ = 1
6 εµνλσρδHσρδ

• way to find action: relax manifest Lorentz
start with phase-space path integral for H2

µνλ in gauge Bi0 = 0
trade momenta for another 2-form field, impose self-duality
end up with “EB − BB” type action [Henneaux, Teitelboim]

• Euclidean notation: x0 → ix6, gauge Bi6 = 0, i, j, ... = 1, ..., 5

S̃+ =
∫

d6x 1
2 i εijkpq∂kBpq

(
∂6Bij +

1
2 i εijrmn∂rBmn

)
• equation of motion

∂[kO+Bij] = 0 , (O±)ij,mn ≡ δij,mn∂6 ± 1
2 i εijrmn∂r



• solved by

O+Bij = ∂iqj(xi)− ∂jqi(xi) + fij(x6)

qi part→ redefinition of Bij; impose b.c.:

self-duality O+Bij = 0 is satisfied at |xi| = ∞
gives fij = 0 and thus O+Bij = 0 everywhere
• integrating over Bij in path integral get partition function

Z+ =
(

detO⊥+
)−1/2

O⊥+ acts on transverse B⊥ij
B⊥ij : 1

2 × 4× 5− (5− 1)=6
real but O+ is 1-st order – 3 d.o.f



• same results from alternative “EB − EE” action:

S+ =
∫

d6x ∂6Bij
(
∂6Bij +

1
2 i εijkmn∂kBmn

)
• eom ∂6(O+Bij) = 0 reduce to O+Bij = fij(xk);
if self-duality O+Bij = 0 at |x6| = ∞, then everywhere

• Bij path integral measure has extra (det ∂6)
1/2

ensures 6d Lorentz – get same Z+

• free non-chiral model = self-dual + anti self-dual:

(∂6Bij)
2 + 1

3 HijkHijk = O+BijO−Bij

corresponding partition function

Z = (det ∆⊥)−1/2 = Z+Z−



Non-abelian self-dual actions
• self-duality condition on non-abelian H in Bi6 = 0 gauge

Ô+Bij = 0 , (Ô±)ij,mn ≡ δij,mn∂6 ± 1
2 i εijkmnDk(A)

• expect to follow (under b.c.) from analogs of free actions

S+ =
∫

d6x Tr
[

∂6Bij
(
∂6Bij +

1
2 i εijkmnDkBmn

)]
S̃+ =

∫
d6x Tr

[
1
2 i εijrpqDrBpq

(
∂6Bij +

1
2 i εijkmnDkBmn

)]
• here will use the simplest action S+

as definition of non-abelian self-dual B-field model
• partition function: direct analog of free one O+ → Ô+(A)

Z+ =
(

det Ô+
)−1/2

∂6 factorizes, ignore constant factors (no restriction to B⊥)



• ∆(A) in non-chiral action factorizes

∆mn
ij (A) = −Ô mn

+ pq(A) Ô pq
− ij(A)

thus non-chiral B-model effective action is sum of chiral ones

Γ = Γ+ + Γ− , Γ± = 1
2 log det Ô±(A)

• Γ is P-even; Γ± a priori contain Im P-odd parts (anomaly)
but for 5d field Ai the eff actions Γ± are P-even and equal:
∂6 → −∂6, ε5 → −ε5 symmetry of classical and eff. action
P-odd part of Γ±: odd number of ε5 and p6 factors:

∫
dp6(...)=0

• no anom (5d gauge field background) part of Γ±
both Γ of non-chiral theory and Γ+ of self-dual theory
are invariant under residual gauge symmetry of A-field

Γ = 2Γ+ , Γ+ = Γ− = 1
2 log det Ô+(A)



Structure of divergent part of effective action
• div part of 1-loop 6d eff action for YM vectors, scalars, fermions
in background gauge field A:
B6 heat kernel coeff [Gilkey 75; Fradkin, AT 82]

Γ∞ = −B6 log Λ , Λ→ ∞

B6 = − 1
180(4π)3

∫
d6x
[

3β2 tr(DmFmn DkFkn)− 2β3 tr(FmnFnkFkm)
]

• only two independent invariants:
tr(DmFkn DmFkn) = 2 tr(DmFmn DkFkn)− 4 tr(FmnFnkFkm) + div ,
tr(DmFkn DkFmn) =

1
2 tr(DmFkn DmFkn)

• in adj rep (in general, tr(tatb) = TRδab, C2 → TR)

tr(DmFmnDkFkn) = −C2DmFa
mnDkFa

kn , facd fbcd = C2δab

tr(FmnFnkFkm) = −1
2C2 f abcFa

mnFb
nkFc

km



• N1 YM vectors, N0 real scalars, N1
2

Weyl fermions

β2 = −36N1 + N0 + 16N1
2

, β3 = 4N1 + N0 − 4N1
2

• β2 = β3 = 0 for N1 = 1, N0 = 4, N1
2
= 2

i.e. in maximally (1,1) susy 6d SYM (reduction of 10d SYM)
or in (1,0) SYM coupled to one adjoint 6d hypermultiplet
• expression for β3 same as number of effective d.o.f.:
β3 = 0 also in (1,0) 6d SYM N1 = 1, N0 = 0, N1

2
= 1

consistent with F3 ruled out by (1,0) susy [Ivanov, Smilga, Zupnik 05]

• self-dual B: β2 = −27, β3 = −57; non-chiral B: twice
• NT self-dual tensors + vectors+scalars+fermions in adj rep

β2 = −27NT − 36N1 + N0 + 16N1
2

β3 = −57NT + 4N1 + N0 − 4N1
2



Calculation of one-loop divergences
• dimensional regularization: 6 = 1 + 5→ 1 + d, d = 5− 2ε

6-th direction treated separately in action and gauge Bi6 = 0:
mom algebra in 6d, scalar integrals in d dim: d.o.f. unchanged
• β2, β3 coefficients: from A2 and A3 terms in Γ∞

Self-dual B-field model

Γ+ = 1
2 log det ∆+ , ∆+Bij = −∂6Ô+Bij = −∂6(∂6Bij +

i
2 εijkmnDkBmn)

∆+ = ∆(0) + ∆(1) , [∆(0)]ab
ij,mn = −δab(δij,mn∂2

6 +
i
2 εijkmn∂6∂k

)
[∆(1)]ab

ij,mn = − i
2 f acbεijkmn Ac

k∂6

Γ+ = Γ2 + Γ3 + .... , Γ2 = −1
4 tr
[
(∆(0))−1∆(1)(∆(0))−1∆(1)]

Γ3 = 1
6 tr
[
(∆(0))−1∆(1)(∆(0))−1∆(1)(∆(0))−1∆(1)]



• Ai independent of x6: L6 =
∫

dx6 factorizes
terms with odd number of ∂6 vanish
and symmetry under ∂6 → −∂6, ε5 → −ε5: Γ+ is P-even

•momentum space Aa
i (xk) =

∫ d5s
(2π)5 Ãa

i (s)e
iskxk .

free B-field propagator 〈p|(∆(0))−1|p〉 → δab Pjk
mn(pi, p6)

Pjk
mn(pi, p6) ≡ 1

(p2
i +p2

6)

(
δ

jk
mn − i

2
ε

jk
mnq pq

p6
+ 2

p[j p[mδ
k]
n]

p2
6

)
interaction ABB vertex

〈p + s|∆(1)|p〉 → Vab mn
ij (si, p6) ≡ 1

2 f acbεij
kmn p6Ãc

k(si)



A2 term
Γ2 = L6

∫
d5s

(2π)5 G2(s)

G2 =
∫

dp6dd p
(2π)d+1 Vcd j1 j2

i1i2
(si, p6)Pk1k2

j1 j2
(pi, p6)V

dc l1l2
k1k2

(−si, p6)Pi1i2
l1l2

(pi + si, p6)

Γ2 = 1
4 C2 L6

∫ d5s
(2π)5 Ãa

i (s)
(
δijs2 − sisj

)
Π(s2) Ãa

j (−s)

Π(s2) =
∫ 1

0
dy
∫ dp6dd p

(2π)d+1

(1− y)[(1− 12y) p2
6 − 2y s2]

2p2
6[p

2
i + p2

6 + y(1− y) s2]2

standard integrals give log divergent part as

Γ2 ∞ =
1

d− 5
9 C2

5× 28π3 L6

∫ d5s
(2π)5 Ãa

i (s) s2(sisj − δijs2)Ãa
j (−s)



compare to Γ∞ = −B6 log Λ, 1
d−5 = − log Λ

B6 = 1
(4π)3

∫
d6x
[
− 1

60 β2 tr(DmFmn DkFkn) +
1

90 β3 tr(FmnFnkFkm)
]

β2 = −27

A3 term

Γ3 = L6

∫
d5s1
(2π)5

d5s2
(2π)5

d5s3
(2π)5 G3(s1, s2, s3) δ(5)(s1 + s2 + s3)

G3 = 1
6

∫
dp6dd p
(2π)d+1 tr

[
Vi1i2

j5 j6
(s1i, p6) Pj1 j2

i1i2
(pi, p6)Vi3i4

j1 j2
(s2i, p6)

× Pj3 j4
i3i4

(pi + s2i, p6)V
i5i6
j3 j4

(s3i, p6) Pj5 j6
i5i6

(pi + s2i + s3i, p6)
]

tr(ta tb tc) = 1
2 TR f abc + 1

2 AR dabc , Tadj = C2, Aadj = 0

• P-odd part ∼ ε5 dabc vanished identically



• Feynman parametrization and momentum integration:

G3 ∞ =
1

d− 5
i

15× 28π3 C2 f a1a2a3 Ka1a2a3(s1, s2, s3)

in transverse background gauge si Ãa
i (s) = 0:

Ka1a2a3 = −19 s3 · Ãa1(s1) s1 · Ãa3(s3) (s1 − s3) · Ãa2(s2)

+
[
18(s2

1 + s2
2)− s2

3
]

Ãa1(s1) · Ãa2(s2) s1 · Ãa3(s3)

+
[
18(s2

2 + s2
3)− s2

1
]

Ãa2(s2) · Ãa3(s3) s2 · Ãa1(s3)

+
[
18(s2

3 + s2
1)− s2

2
]

Ãa3(s3) · Ãa1(s1) s3 · Ãa2(s2) .
• comparing to DFDF + FFF terms in Γ∞ and using β2

β3 = −57

• same found taking A =const and computing tr([A, A])3 in Γ



Non-chiral B-field model

Γ = 1
2 ln det ∆ , ∆Bij = −(∂2

6 + D2)Bij + 2δ
[m
[i Dn]Dj]Bmn

∆ = ∆(0) + ∆(1) + ∆(2)

[∆(0)] = δac[− δij,mn(∂
2
i + ∂2

6) + 2δ[m[i∂j]∂n]
]

[∆(1)] = f abc[− δij,mn(∂k Ab
k + 2Ab

k∂k)+ 2δ[i[m(Ab
n]∂j]+ ∂n]A

b
j]+ Ab

j]∂n])
]

[∆(2)] = f ade f ebc[− δij,mn Ad
k Ab

k + 2δ[i[m Ad
n]A

b
j]
]

Γ2 = 1
2 tr
[
(∆(0))−1∆(2)]− 1

4 tr
[
(∆(0))−1∆(1)(∆(0))−1∆(1)],

Γ3 = tr
[
− 1

2(∆
(0))−1∆(2)(∆(0))−1∆(1)+ 1

6(∆
(0))−1∆(1)(∆(0))−1∆(1)(∆(0))−1∆(1)]

Pij
mn(pk, p6) =

1
(p2

i +p2
6)

(
δ

ij
mn + 2

p[i p[mδ
j]
n]

p2
6

)



V(1)ab mn
ij (pk, sk) = −i f acb[δmn

ij Ãc
k
(
sk + 2pk

)
+ 2δ

[m
[j

(
Ãc

i]s
n]+ Ãn]c pi]+ Ãc

i]p
n])]

V(2)ab mn
ij (pk, s1k, s2k) = f ade f bce

(
δmn

ij Ãd
k Ãc

k + 2δ
[m
[j Ãn]d Ãc

i]

)
.

A2 term
Γ2 = L6

∫ d5s
(2π)5 G2(s)

G2 = − 1
4

∫ dp6dd p
(2π)d+1 V(1)cd j1 j2

i1i2
(si, p6) Pk1k2

j1 j2
(pi, p6)

×V(1)dc l1l2
k1k2

(pi + si,−si) Pi1i2
l1l2

(pi + si, p6)

G2 = − 3
2 C2

∫ 1
0 dy

∫ dp6dd p
(2π)d+1 Q(si, pk, p6, y)

Q =
([

1
2 − y(1− y)

]
s2 + y2(1− y)2 s4

p2
6
+ 8

5 p2

+
[
5− 26y(1− y)

] s2 p2

10p2
6
+ 12p4

5p2
6

)
Ãa(s) · Ãa(−s)

−
[

1
2 − y2(1− y)2 s2

p2
6
−
[
1− 18y(1− y)

] p2

10p2
6

]
s · Ãa(s) s · Ãa(−s)



Γ2 ∞ =
1

d− 5
9 C2

5× 28π3 L6

∫
d5s

(2π)5 Ãa
i (s) s2(sisj − δijs2)Ãa

j (−s)

β2 = −54 = 2βself-dual
2

A3 term
Γ3 = L6

∫ d5s1
(2π)5

d5s2
(2π)5

d5s3
(2π)5 G3(s1, s2, s3) δ(5)(s1 + s2 + s3)

G3 =
∫

dp6dd p
(2π)d+1

[
− 1

2 V(2)cd j1 j2
i1i2

(pi, s1i, s2i) Pk1k2
j1 j2

(pi, p6)

×V(1)dc l1l2
k1k2

(qi, s3i) Pi1i2
l1l2

(qi, p6)
∣∣
q=p−s3

+ 1
6 V(1)de i1i2

j5 j6
(pi, s2,i) Pj1 j2

i1i2
(pi, p6)V(1)e f i3i4

j1 j2
(qi, s1i)

× Pj3 j4
i3i4

(qi, p6)V(1) f d i5i6
j3 j4

(ri, s3i) Pj5 j6
i5i6

(ri, p6)
∣∣
q=p−s1, r=p−s1−s3

]
comparison of 1

d−5 part to (DF)2 + FFF gives

β3 = −114 = 2βself-dual
3



Concluding remarks
• studied model of 6d 2-form B in some rep of G
coupled consistently to gauge field A in 5d subspace
• 1-loop log div integrating out B-field with A as background
• Γ∞ ∼ log Λ

∫
tr[3β2(DmFmn)2 − 2β3FmnFnkFkm]

β2 = −27, β3 = −57 in self-dual model and twice in non-chiral
• implies c1(DF)2 + c2F3 should be added to bare 6d action
classical 6d scale inv, but broken at loop level unless div cancel
• cancel adding other fields – imposing supersymmetry?
• for NT self-dual tensors, N1 YM vectors, N0 real scalars
and N1

2
Weyl fermions in 6d coupled to gauge field A

β2 = −27NT− 36N1 + N0 + 16N1
2
, β3 = −57NT + 4N1 + N0− 4N1

2

• unexpected feature: minimally coupled B-field contributes to
β3 with opposite in sign to standard 2-derivative bosonic fields



• naive expectation could be that β3 ∼ ν= no. of d.o.f.

ν = 3NT + 4N1 + N0 − 4N1
2

simplest 6d supermultiplet containing self-dual B:
(1,0) tensor multiplet: NT = 1, N1 = 0, N0 = 1, N1

2
= 1

natural coupling to (1,0) SYM (N1 = 1, N0 = 0, N1
2
= 1)

β3 = 0 would be consistent with F3 not having susy extension
[cf. (1,0) classically conformal (non-unitary) gauge theory:∫

d6x tr
[
(DF)2 + ψD3ψ + φD2φ + ...

]
[Ivanov, Smilga, Zupnik 06]

has β2 6= 0 (non-conf) and also gauge anomaly]
• (1,0) tensor multiplet: actually get

β3 = 2β2 = −60
• (2,0) tensor multiplet: NT = 1, N1 = 0, N0 = 5, N1

2
= 2:

β2 = −1
6 β3 = 10.



• β3 6= 0: non-abelian (B, A) model has no (1,0) susy version;
may be not surprising due to lack of 6d Lorentz

• applications/extensions of this non-abelian (B, A) model?
•may be related to some intersecting brane configuration

with 5d gauge field living on a 5d brane “defect”
• 5d A-field may play an auxiliary role:

eliminating it get effective interacting theory of B-fields
• generalization with 6d A-field and 6d Lorentz inv

but non-local classical action?


