From Coxeter Higher-Spin Theories to Strings and Tensor Models

M.A.Vasiliev

Lebedev Institute, Moscow

MV 1804.06520

Higher Spins and Holography -7 LPI, Moscow, June 06, 2018

Plan

- Introduction: HS theory versus Strings
- HS modules and difficulty of the naive extension of HS theory
- Framed oscillator algebra
- Nonlinear HS equations
- Coxeter groups and Cherednik algebras
- Framed Cherednik systems
- Coxeter HS equations
- Relation with strings and tensor models
- Idempotent extension
- B_2 -HS model and $\mathcal{N} = 4$ SUSY
- HS higgsing
- Conclusion

Challenge: Quantum Gravity and String Theory

Conjecture: trans-Planckian regime of exhibits high symmetries

D. Gross 1988, MV 1987...

Key idea of HS gauge theory: to understand what higher symmetries are possible

Important feature: (A)dS background with $\Lambda \neq 0$ Fradkin, MV, 1987

HS theories: $\Lambda \neq 0$, m = 0, symmetric fields $s = 0, 1, 2, ... \infty$ **First Regge trajectory**

String Theory: $\Lambda = 0$, $m \neq 0$ except for a few zero modes Infinite set of Regge trajectories

What is a HS symmetry of a string-like extension of HS theory? MV 2012, Gaberdiel and Gopakumar 2014-2018 String Theory as spontaneously broken HS theory?! (s > 2, m > 0)

HS Algebra and Modules

Free field analysis: realization of the HS algebra hs_1 as Weyl algebra

 $[y_{\alpha}, y_{\beta}]_* = 2i\varepsilon_{\alpha\beta}, \qquad [\bar{y}_{\dot{\alpha}}, \bar{y}_{\dot{\beta}}]_* = 2i\varepsilon_{\dot{\alpha}\dot{\beta}}$ Fradkin, MV 1987 AdS_4 algebra $sp(4) \sim o(3, 2)$

Naive way to extend the spectrum of fields $y_{\alpha} \rightarrow y_{\alpha}^{n}$ does not lead to physically acceptable HS theories The Fock hs_1 -module F_1 describes free boundary conformal fields

 $D|0\rangle = h_1|0\rangle$

Lowest weight representations of the naively extended algebras hs_p built from p copies of oscillators have too high weights

$$h_p = ph_1$$

 $F_1 \otimes F_1 =$ massless fields in the bulk Flato, Fronsdal (1978) For p > 1 the lowest weights in $F_p \otimes F_p$ have no room for gravity (massless spin-two)

Framed Oscillator Algebras

The problem is resolved in the framed oscillator algebras replacing usual oscillator algebra

$$[y^n_{\alpha}, y^m_{\beta}]_* = 2i\delta^{nm}\epsilon_{\alpha\beta}I,$$

where *I* is the unit element by

$$[y^n_{\alpha}, y^m_{\beta}]_* = 2i\delta^{nm}\epsilon_{\alpha\beta}I_n$$

"Units" I_n are assigned to each specie of the oscillators forming a set of commutative central idempotents

$$I_i I_j = I_j I_i, \qquad I_i I_i = I_i$$

This allows us to consider Fock modules F_i obeying

$$I_j F_i = \delta_{ij} F_i$$

equivalent to those of the single-oscillator case

Nonlinear HS Equations

HS star product

$$(f*g)(Z,Y) = \int dSdT \exp iS_A T^A f(Z+S,Y+S)g(Z-T,Y+T)$$

 $[Y_A, Y_B]_* = -[Z_A, Z_B]_* = 2iC_{AB}, \qquad \qquad Z - Y : Z + Y \text{ normal ordering}$

Inner Klein operators:

$$\begin{split} \kappa &= \exp i z_{\alpha} y^{\alpha}, \qquad \bar{\kappa} = \exp i \bar{z}_{\dot{\alpha}} \bar{y}^{\dot{\alpha}}, \qquad \kappa * f = \tilde{f} * \kappa, \qquad \kappa * \kappa = 1 \\ \begin{cases} \mathsf{d}_x W + W * W = 0 \\ \mathsf{d}_x B + W * B - B * W = 0 \\ \mathsf{d}_x S + W * S + S * W = 0 \\ \mathsf{S} * \mathbf{B} - \mathbf{B} * \mathbf{S} = 0 \\ \mathbf{S} * \mathbf{B} - \mathbf{B} * \mathbf{S} = 0 \\ \mathbf{S} * \mathbf{S} = \mathbf{i} (\mathbf{d} \mathbf{Z}^{\mathbf{A}} \mathbf{d} \mathbf{Z}_{\mathbf{A}} + \eta \mathbf{d} \mathbf{z}^{\alpha} \mathbf{d} \mathbf{z}_{\alpha} \mathbf{B} * \mathbf{k} * \kappa + \bar{\eta} \mathbf{d} \bar{\mathbf{z}}^{\dot{\alpha}} \mathbf{d} \bar{\mathbf{z}}_{\dot{\alpha}} \mathbf{B} * \bar{\mathbf{k}} * \bar{\kappa}) \end{split}$$

Dynamical content is located in the x-independent twistor sector

The non-zero curvature has the form of Z_2 -Cherednik algebra

Coxeter Groups and Cherednik Algebras

A rank-*p* Coxeter group C is generated by reflections with respect to a system of root vectors $\{v_a\}$ in a *p*-dimensional Euclidean vector space V. An elementary reflection associated with the root vector v_a

$$R_{v_a}x^i = x^i - 2v_a^i \frac{(v_a, x)}{(v_a, v_a)}, \qquad R_{v_a}^2 = I$$

Cherednik deformation of the semidirect product of the oscillator algebra with the group algebra of C is

$$[q_{\alpha}^{n}, q_{\beta}^{m}] = -i\epsilon_{\alpha\beta} \left(2\delta^{nm} + \sum_{v \in \mathcal{R}} \nu(v) \frac{v^{n}v^{m}}{(v, v)} k_{v} \right), \qquad k_{v}q_{\alpha}^{n} = R_{v}^{n} m q_{\alpha}^{m} k_{v}$$
$$q_{\alpha}^{n} \ (\alpha = 1, 2, \ n = 1; \dots, p)$$

Coupling constants $\nu(v)$ are invariants of C being constant on the conjugacy classes of root vectors under the action of C.

Double commutator of q_{α}^n respects Jacobi identities.

B_p -Coxeter System

Important case of the Coxeter root system is B_p with the roots

 $R_1 = \{ \pm e^n \qquad 1 \le n \le p \}, \qquad R_2 = \{ \pm e^n \pm e^m \quad 1 \le n < m \le p \}.$

Apart from permutations B_p contains reflections of basis axes $v_{\pm}^n = e^n$. R_1 and R_2 form two conjugacy classes of B_p .

The Coxeter group of 3d HS theory is $A_1 \sim B_1$. B_2 underlies the string-like HS models.

The fact of fundamental importance for HS theories is that for any Coxeter root system the generators

$$t_{\alpha\beta} := \frac{i}{4} \sum_{n=1}^{p} \{q_{\alpha}^{n}, q_{\beta}^{n}\}$$

obey the sp(2) commutation relations properly rotating all indices α

$$[t_{\alpha\beta}, q_{\gamma}^{n}] = \epsilon_{\beta\gamma} q_{\alpha}^{n} + \epsilon_{\alpha\gamma} q_{\beta}^{n}$$

Framed Cherednik Systems

 A_{p-1} system. In addition to $q_{\alpha n}$ and k_{nm} , $n, m = 1, \dots p$ introduce I_n

$$I_n I_m = I_m I_n$$
, $I_n I_n = I_n$, $I_n q_{\alpha n} = q_{\alpha n} I_n = q_{\alpha n}$, $I_n q_{\alpha m} = q_{\alpha m} I_n$.

In presence of I_n the deformed oscillator relations respecting Jacobi

$$[q_{\alpha n}, q_{\beta m}] = -i\epsilon_{\alpha\beta} \Big(\delta_{nm} \Big(2I_n + \nu \sum_{l=1}^p \hat{k}_{ln} \Big) - \nu \hat{k}_{nm} \Big), \qquad \hat{k}_{nm} = I_n I_m k_{nm}.$$

 \hat{k}_{nm} obey all relations of S_p except for involutivity replaced by

$$\widehat{k}_{nm}\widehat{k}_{nm}=I_nI_m.$$

$$I_l \hat{k}_{nm} = \hat{k}_{nm} I_l \quad \forall \ l, n, m, \qquad I_n \hat{k}_{nm} = I_m \hat{k}_{nm} = \hat{k}_{nm}.$$

General Framed Cherednik Algebra

$$[q_{\alpha}^{n}, q_{\beta}^{m}] = -i\epsilon_{\alpha\beta} \left(2\delta^{nm}I_{n} + \sum_{v \in \mathcal{R}} \nu(v) \frac{v^{n}v^{m}}{(v, v)} \hat{k}_{v} \right), \qquad \hat{k}_{v} := k_{v} \prod I_{i_{1}(v)} \dots I_{i_{k}(v)}$$

Framed Cherednik algebra still possesses inner sp(2) automorphisms

$$t_{\alpha\beta} := \frac{i}{4} \sum_{n=1}^{p} \{q_{\alpha}^{n}, q_{\beta}^{n}\} I_{n}$$

Framed Star Product

x-dependent fields *W*, *S* and *B* depend on *p* sets of variables Y_A^n , Z_A^n (A = 1, ..., M), I_n , anticommuting differentials dZ_n^A (n = 1, ..., p) and Klein-like operators \hat{k}_v associated with all roots of *C*. Coxeter HS field equations are formulated in terms of the star product

$$(f*g)(Z;Y;I) = \frac{1}{(2\pi)^{pM}} \int d^{pM} S \, d^{pM} T \exp\left[iS_n^A T_m^B \delta^{nm} C_{AB}\right] f(Z_i + I_i S_i; Y_i + I_i S_i; I)$$

$$I_n * Y_A^n = Y_A^n * I_n = Y_A^n, \qquad I_n * Z_A^n = Z_A^n * I_n = Z_A^n, \qquad I_n * I_n = I_n$$
Implying

$$[Y_A^n, Y_B^m]_* = -[Z_A^n, Z_B^m]_* = 2iC_{AB}\delta^{nm}I_n, \qquad [Y_A^n, Z_B^m]_* = 0.$$

This star product admits inner Coxeter-Klein operators

$$\exp i \frac{v^n v^m Z_{\alpha n} Y^{\alpha}{}_m}{(v,v)}$$

Coxeter HS Equations

Unfolded equations for C-HS theories remain the same except for

$$iS * S = dZ^{An} dZ_{An} + \sum_{i} \sum_{v \in \mathcal{R}_i} F_{i*}(B) \frac{dZ_n^{\alpha} v^n dZ_{\alpha} m v^m}{(v, v)} * \kappa_v$$

 κ_v are generators of C acting trivially on all elements except for $dZ_{\alpha n}$

$$\kappa_v * dZ^n_\alpha = R_v{}^n{}_m dZ^m_\alpha * \kappa_v$$

 $F_{i*}(B)$ is any star-product function of the zero-form B on the conjugacy classes R_i of C. In the important case of the Coxeter group B_p

$$iS*S = dZ_{An}dZ^{An} + \sum_{v \in \mathcal{R}_1} F_{1*}(B) \frac{dZ_n^{\alpha} v^n dZ_{\alpha m} v^m}{(v,v)} * \kappa_v + \sum_{v \in \mathcal{R}_2} F_{2*}(B) \frac{dZ_n^{\alpha} v^n dZ_{\alpha m} v^m}{(v,v)} * \kappa_v$$

with arbitrary $F_{1*}(B)$ and $F_{2*}(B)$ responsible for the

- HS and stringy/tensorial features, respectively
- $F_{2*}(B) \neq 0$ for $p \geq 2$.

The framed construction leads to a proper massless spectrum.

Color and Multi-Particle Extensions

W, *S* and *B* are allowed to be valued in any associative algebra *A*. To make contact with the tensorial boundary theory $A = (Mat_N)^p$ with elements represented by $a^{u_1...u_p}v_1...v_p$, $u_i, v_i = 1...N$. *p* is the tensor degree of the boundary model

Multi-particle extensions are associated with the semi-simple Coxeter groups. The simplest option with $C = B_p^N$ is the product of N of B_p systems

$$B_p^{\mathcal{N}} := \underbrace{B_p \times B_p \times \dots}_{\mathcal{N}}.$$

The limit $\mathcal{N} \to \infty$ along with the graded symmetrization of the product factors expressing the spin-statistics gives the (graded symmetric) multi-particle algebra $M(h(\mathcal{C}))$ of the HS algebra $h(\mathcal{C})$ $M(h(\mathcal{C})) = U(h(\mathcal{C}))$: Hopf algebra.

Klein Operators and Single-Trace Operators

Enlargement of the field spectra of the rank-p > 1 Coxeter HS models: $C(Y_{\alpha}^{n}; k_{v})$ depend on p copies of oscillators Y_{α}^{n} and Klein operators k_{v} Qualitative agreement with enlargement of the boundary operators in tensorial boundary models.

Klein operators of Coxeter reflections permute master field arguments

At p = 2 the star product of two master fields $C(Y_1, Y_2|x)k_{12}$ gives

$$(C(Y_1, Y_2|x)k_{12}) * (C(Y_1, Y_2|x)k_{12}) = C(Y_1, Y_2|x) * C(Y_2, Y_1|x).$$

p = 2 system: strings of fields with repeatedly permuted arguments

$$C_{string}^{n} := \underbrace{C(Y_{1}, Y_{2}|x) * C(Y_{2}, Y_{1}|x) * C(Y_{1}, Y_{2}|x) \dots}_{n}$$

are analogous of the single-trace operators in AdS/CFT. $C(Y_1, Y_2|x)$ and $C(Y_1, Y_2|x) * C(Y_2, Y_1|x)$: single-trace-like $C(Y_1, Y_2|x) * C(Y_1, Y_2|x)$: double-trace-like.

From Coxeter HS Theory to Strings and Tensor Models

The spectrum of the B_2 HS model is analogous to that of String Theory with the infinite set of Regge trajectories. B_2 - HS theory has parallels with the stringy Gaberdiel-Gopakumar HS models: dependence on $Y_{1,2}^A$ is like having two HS symmetry algebras

 B_p -HS models with $p \ge 2$ have two coupling constants.

 F_{1*} is analogous to that of the B_1 -HS theory.

 F_{2*} first appears in the rank-two stringy model and, containing the Klein operators that permute different *Y*-variables, generates single-trace-like strings of operators and their tensor generalizations.

To establish relation with usual string theory in flat space the limit $F_{2*}/F_{1*} \rightarrow \infty$ is most interesting.

Idempotent Extension

Let A be an associative algebra with the star product and a set of idempotents

$$\pi_i * \pi_i = \pi_i, \qquad \pi_i \in A.$$

$$a_i{}^j \in A_i{}^j : \quad a_i{}^j = \pi_i * a * \pi_j, \quad a \in A.$$

The matrix-like composition law in A_{π}

$$(a*b)_i{}^j = \sum_k a_i{}^k * b_k{}^j$$

A is the algebra of functions of dx, dZ, Z, Y, k_v, x

The set of idempotents π_i has to be *C*-invariant The idempotent-extended *C*-HS equations have the same form with the replacement of $A \to A_{\{\pi\}}$.

Idempotent extensions of the Coxeter HS systems describe lower-dimensional brane-like objects.

Vector-Like and Supersymmetric Models

Fock idempotent in the B_1 4d HS theory

 $\pi_i^{star} = 4I_i \exp y_{i\alpha} \bar{y}_i^{\alpha}$

 A_0^i -module describes 3d conformal fields= 4d singletons: Idempotent realization of Klebanov-Polyakov AdS_4/CFT_3 vector model HS holography checked by Giombi and Yin in 2009

B_2 HS model

4d conformal massless fields are valued in the Fock module π 2002

$$a_{\alpha} * \pi = 0, \qquad \overline{b}^{\dot{\beta}} * \pi = 0, \qquad \phi_i * \pi = 0, \qquad \pi * \overline{a}^{\dot{\alpha}} = 0, \dots$$

$$[a_{\alpha}, b^{\beta}]_{*} = \delta^{\beta}_{\alpha}, \qquad [\bar{a}_{\dot{\gamma}}, \bar{b}^{\dot{\beta}}]_{*} = \delta^{\dot{\beta}}_{\dot{\gamma}}, \qquad \{\phi_{i}, \bar{\phi}^{j}\}_{*} = \delta_{i}^{j},$$

i, j = 1, ... N. Bilinears: su(2, 2; N). Clifford oscillators: color $Mat_{2^{2N}}$.

The system is consistent at $N \ge 4$ when $\#_B \le \#_F$.

N = 4 SYM: the only N = 4 massless system with spins $s \le 1$.

Higher-Spin Higgsing

- To make connection with Strings the most fundamental question is breaking of HS symmetries
- Spontaneous breaking of HS symmetries resulting in the massive HS fields is only possible in string-like models with the infinite number of Regge trajectories like *B*₂ multi-particle theory
- The simplest option is to give VEV to a topological field $B(Y_1; Y_2)$

$$B_0 = Y_{iA} \cdot Y_j^A (\alpha k^{ij} + \beta \sigma_1^{ij} + \gamma \delta^{ij})$$

that preserves the *AdS* symmetry but breaks down the HS one. Spontaneous symmetry breaking: mixing between the massless rank-one particle module and rank-two current module.

Conclusion

Coxeter HS theories

main principle: formal consistency & massless fields in the spectrum

Tensor-like models are natural duals of the rank-p Coxeter HS models B_2 -HS model is conjectured to be string-like $\mathcal{N} = 4$ SYM is argued to be a natural dual of the B_2 -HS model

 B_p -Coxeter HS theories have two coupling constants and are formulated in AdS: the stringy B_2 -HS models are different from the genuine String Theory in flat space

Multi-particle states of a lower-dimensional model = elementary states in a higher-dimensional (particularly, 10*d* model) The original 3*d* and 4*d* spinorial theories: branes in the 10*d* theory with the 3*d* HS model as a brick from which the others are composed.

Vector Coxeter HS models in any d can also be introduced

The reason why it is difficult to formulate String Theory in AdS_d is analogous:

a naive attempt to deform the string spectrum to AdS leads to infinite lowest energy since all string modes have to contribute to the momentum generators to ensure that

 $[P_n, P_m] \sim \Lambda M_{nm}$

Unitarity

Covariant derivative for a rank-two field $C(Y_1, k_1; Y_2, k_2) := C_{0,1}(Y_1, Y_2)k_2$

$$D_{0}(C_{0,1}(Y_{1},Y_{2})) = \left(D^{\mathsf{L}} - h^{\alpha\dot{\beta}} \left(y_{1\alpha} \frac{\partial}{\partial \bar{y}_{1}^{\dot{\beta}}} + \frac{\partial}{\partial y_{1}^{\alpha}} \bar{y}_{1\dot{\beta}} - iy_{2\alpha} \bar{y}_{2\dot{\beta}} + i \frac{\partial^{2}}{\partial y_{2}^{\alpha} \partial \bar{y}_{2}^{\dot{\beta}}}\right)\right) C_{0,1}(Y_{1},Y_{2})$$

 $C_{0,1}(Y_1, Y_2)$ is valued in the tensor product of the Y_1 -adjoint module and Y_2 -twisted adjoint module.

Twisted adjoint module and its tensor products correspond to unitary multi-particle-like states.

Zero-form fields containing an adjoint module a factor do not form a unitary particle-like representation except for the Y_1 -independent $C_{1,2}(Y_1, Y_2)$ which decribes I_1 unitary massless states in the Y_2 sector.

Non-singlet states in the adjoint module factors can be truncated away: non-singlet elements of the adjoint factor are never generated.

Vector-Like Models

Fock idempotent in the 4d HS theory

$$\pi_i^{star} =$$
 4 $I_i \exp y_{ilpha} ar{y}_i^{lpha}$

 $(y_{i\alpha} - i\bar{y}_{i\alpha}) * \pi_i^{star} = 0, \qquad \pi_i^{star} * (y_{i\alpha} + i\bar{y}_{i\alpha}) = 0.$

For HS fields carrying matrix indices

$$\pi_i = \pi_i^{star} \pi_i^{color}, \qquad \pi_i^{color} = \delta_1^u \delta_v^1.$$

 A_0^i -module describes 3d conformal fields= 4d singletons: Idempotent realization of Klebanov-Polyakov AdS_4/CFT_3 vector model HS holography checked by Giombi and Yin in 2009

Idempotent extensions of the Coxeter HS systems describe lower-dimensional brane-like objects.

N = 4 SUSY

4d conformal massless fields are valued in the Fock module π 2002

$$a_{\alpha} * \pi = 0, \qquad \overline{b}^{\dot{\beta}} * \pi = 0, \qquad \phi_i * \pi = 0, \qquad \pi * \overline{a}^{\dot{\alpha}} = 0, \dots$$

$$[a_{\alpha}, b^{\beta}]_{*} = \delta^{\beta}_{\alpha}, \qquad [\bar{a}_{\dot{\gamma}}, \bar{b}^{\dot{\beta}}]_{*} = \delta^{\dot{\beta}}_{\dot{\gamma}}, \qquad \{\phi_{i}, \bar{\phi}^{j}\}_{*} = \delta_{i}^{j},$$

i, j = 1, ... N. Bilinears: su(2, 2; N). Clifford oscillators: color $Mat_{2^{2N}}$.

B_2 -HS theory contains $y_{i\alpha}$, $\bar{y}_{i\dot{\alpha}}$. Vacuum π is defined by ϕ_i , $\bar{\phi}^j$ and $a_{\alpha} = y_{1\alpha} + iy_{2\alpha}$, $b_{\alpha} = \frac{1}{4i}(y_{1\alpha} - iy_{2\alpha})$, $\bar{a}_{\dot{\alpha}} = \bar{y}_{1\dot{\alpha}} - i\bar{y}_{2\dot{\alpha}}$, $\bar{b}_{\dot{\alpha}} = \frac{1}{4i}(\bar{y}_{1\dot{\alpha}} + i\bar{y}_{2\dot{\alpha}})$ 4d massless conformal fields are valued in the Fock modules.

Reflection $Y_1^A \leftrightarrow Y_2^A$ maps π to the opposite idempotent $\tilde{\pi}$

$$b_{\alpha} * \tilde{\pi} = 0, \qquad \bar{a}^{\dot{\beta}} * \tilde{\pi} = 0, \qquad \bar{\phi}^{i} * \tilde{\pi} = 0, \qquad \tilde{\pi} * \bar{b}^{\dot{\alpha}} = 0, \dots$$

Both π and $\tilde{\pi}$ have to be present. Elements $\pi * a * \tilde{\pi}$ are ill defined: at N = 0, $\pi * \tilde{\pi} = \infty$. Bosons and fermions contribute with opposite signs. The compensation occurs at N = 4 when $\#_B = \#_F$. N = 4 SYM is the only N = 4 massless conformal system with spins $s \leq 1$.